POSICIONES RELATIVAS de RECTAS y PLANOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "POSICIONES RELATIVAS de RECTAS y PLANOS"

Transcripción

1 POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática

2 Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que venga dada en implícita (e deci, 2 ecuacione) y un plano (1 ecuación). En pincipio, podíamo eolve el itema 3x3 paa ve lo punto comune a ambo. Ahoa bien, eto podemo hacelo má fácilmente mediante el teoema de Rouché-Föbeniu, que no pemite abe el númeo de olucione -e deci, el númeo de punto en común ente la ecta y el plano- in neceidad de eolve dicho itema. Y eto e peciamente lo que haemo en ete tema. I) POSICIÓN RELATIVA DE DOS PLANOS 1 : : ax + by + cz + d = 0 a x + b y + c z + d = 0 a b c d 1) POR RANGOS: etudiamo g (1) a b c d Hay 3 cao: i) g M=g M * =2<3 S.C.I. unipaamético e cotan en una ecta SECANTES: ' ii) g M=1 g M * =2 S.I. oluc. no tienen punto comune PARALELOS: ' iii) g M=g M * =1<3 S.C.I. bipaamético tienen en común un plano COINCIDENTES: = ' n 2) POR : i) i n = (a,b, c) y n = (a',b',c' ) no on popocionale SECANTES ii) " " " " " " on popocionale i d y d' on popocionale COINCIDENTES " " " " no on popocionale PARALELOS 2 Ejecicio final tema: 1 Ejecicio PAEG: 4A jun 2009 (con paámeto) Ejecicio libo ed. Anaya: pág. 177 y.: 22, 44 y 47 1 Ve pág. 166 del libo de ed. Anaya. 2 Nótee que en ealidad todo eto coincide con el etudio po ango, i obevamo la matiz (1)

3 II) POSICIÓN RELATIVA DE TRES PLANOS 3 : ax + by + cz + d = 0 : a x + b y + c z + d = 0 : a x + b y + c z + d = 0 a Etudiemo g a a b b b c c c d d d i) g M=g M * =3 S.C.D. oluc. única, e deci, e cotan en un punto: ii) g M=2 g M * =3 S.I. oluc. e deci, no tienen punto comune: o bien: (pima) iii) g M=g M * =2<3 S.C.I. unipaamético e cotan en una ecta: cao paticula: = ' HAZ DE PLANOS SECANTES 4 '' 3 Ete cao no viene explicado en el libo ed. Anaya, peo puede conultae el ejecicio euelto 10 de la pág Supongamo do plano y ' ecante (e deci, e cotan en una ecta); i queemo que un 3 e plano cualquiea '' también contenga a ea ecta, entonce debido a iii) habá de e combinación lineal de y ': : ax+ by+ cz+ d= 0 : ax + by + cz + d = 0 '' =λ +µ'=0 λ (ax+by+cz+d)+ µ(a'x+b'y+c'z+d')=0 Ejemplo: ejecicio 4 (ve también el ejecicio 96 de la pág. 211 del libo de ed. Anaya) (ECUACIÓN DEL HAZ DE PLANOS DEFINIDO POR y ' )

4 iv) g M=1 g M * =2 S.I. oluc. e deci, no tienen punto comune En qué e difeencia del cao ii)? Hay que tene en cuenta que: g M=1 n, n y n on popocionale lo te plano on paalelo: ' '' cao paticula: = ' '' v) g M=g M * =1<3 S.C.I. bipaamético tienen en común un plano COINCIDENTES NOTA: po n no compena etudialo pue e complicado. Ejecicio final tema: 2, 3, 10, 11 y 12 Ejecicio PAEG: 4A jun 99, 4B ept 2000 (con paámeto) Ejecicio libo ed. Anaya: pág. 167: 2; pág. 177 y.: 28 (in paámeto) y 48 (con paámeto) III) POSICIÓN RELATIVA RECTA-PLANO 5 1) POR RANGOS: eta opción inteea cuando la ecta viene dada en implícita, e deci, como inteección de do plano: : ax + by + cz + d = 0 a x + b y + c z + d = 0 : a x + b y + c z + d = 0 a Etudiemo g a a b b b c c c d d d Hay 3 poibilidade: i) g M=g M * =3 S.C.D. oluc. única, e deci, SE CORTAN: ii) g M=2 g M * =3 S.I. ningún punto en común // iii) g M=g M * =2<3 S.C.I. unipaamético NOTA: no hay má cao, pue e impoible que g M=1 (téngae en cuenta que el hecho de que venga dada como inteección de do plano gaantiza que g M al meno e 2) 5 Ete cao no viene explicado en el libo ed. Anaya, peo pueden conultae lo ejecicio euelto 2 y 3 de la pág. 167 y 11 de la pág. 174

5 2) POR VECTORES: eta opción inteea cuando la ecta viene dada en paamética o continua: : : a' x x = a + λu y = b + λv z = c + λw + b' y + c' z + d' = 0 i) i n 0 SE CORTAN u ii) i u n = 0 y ademá (a,b,c) (a,b,c) // Ejecicio final tema: 4, 5, 7, 8 y 9 Ejecicio PAEG: 3B ept 2003, 4A jun 2010 (in paámeto); 4B ept 2001, 3B ept 2002, 4A ept 2008, 4B ept 2010, 4B jun 2012, 4A jun 2011 (con paámeto) Ejecicio libo ed. Anaya: pág. 167: 1; pág. 177 y.: 24, 39, 40 (in paámeto) y 50 (con paámeto) IV) POSICIÓN RELATIVA DE DOS RECTAS 6 Razónee peviamente que ólo caben cuato poibilidade. 1) POR RANGOS: eta opción inteea cuando amba ecta vienen dada en implícita: : ax + by + cz + d = 0 a x + b y + c z + d = 0 : a x + b y + c z + d = 0 a x + b y + c z + d = 0 Etudiemo a a g a a b b b b c c c c d d d d y teniendo en cuenta que g M al meno e 2 (dado que amba ecta vienen dada en implícita), caben la iguiente poibilidade: i) g M=3 g M * =4 S.I. oluc. e deci, no tienen punto comune SE CRUZAN [debido a (*)] ii) g M=g M * =3 S.C.D. oluc. única, e deci, un punto en común SE CORTAN (*) En el cao i) no pueden e amba ecta paalela, ya que // g M=2 DEM: Supongamo // : ' n y n '' lo 4 vectoe n etán en un mimo plano (el a amba ecta) ólo puede habe do de ello l.i. g M=2 (C.Q.D.) n y n ''' (Po la mima azón, en el cao iii) amba ecta on paalela) 6 Ve pág. 162 y 163 del libo de ed. Anaya.

6 iii) g M=2 g M * =3 S.I. oluc. no hay punto comune PARALELAS [debido también a (*)] iv) g M=g M * =2<3 S.C.I. unipaamético tienen en común una ecta COINCIDENTES 2) POR VECTORES 7 : eta opción inteea cuando la do ecta vienen dada en paamética o continua: : x : x = A = A + λu + λu i) [g( u, u )=2 y] g( u, DEM: g( u, u, A A u, A A )=3 SE CRUZAN )=3 g( u, u )=2 y no on paalela, e deci e cotan o e cuzan; no pueden cotae pue entonce u, u y A A eían coplanaio, e deci eía g( u, u, A )=2 A ii) g( u, u )=2 y g( u, u, A A )=2 SE CORTAN DEM: g( u, u )=2 y no on paalela, e deci e cotan o e cuzan; en ete cao e cotan pue g( u, u, A )=2 u, u y A A A on coplanaio: A u A u iii) g( u, u )=1 y g( u, u, A A )=2 PARALELAS DEM: g( u, u )=1 y on paalela o coinciden; en ete cao on paalela pue g( u, u, A A )=2 u, u y A A on coplanaio: A u A u iv) g( u, u )=1 y g( u, u, A A )=1 COINCIDENTES DEM: g( u, u, A )=1 u, u y A AA tienen la mima diección: = A u A u Ejecicio final tema: 6 Ejecicio PAEG: 2A jun 98, 1B ept 98, 4A ept 2006, 4A jun 2007 (in paámeto); 4B ept 2009, 2B ept 2001 (con paámeto) Ejecicio libo ed. Anaya: pág. 163: 1 y 2; pág. 176 y.: 12, 13, 14, 17, 30, 31, 33 (in paámeto) y 53 (con paámeto) 7 Ve pág. 160 y 161 del libo ed. Anaya y ejecicio euelto 6 de la pág. 171 y 9 de la pág. 173

7 I.E.S. FERNANDO DE MENA DPTO. DE MATEMÁTICAS POSICIONES RELATIVAS de RECTAS y PLANOS 2 PLANOS: : ax + by + cz + d = 0 : a x + b y + c z + d = 0 g M g M * POSICIÓN RELATIVA 2 Eo! Macado no definido. 2 SECANTES (e cotan en una ecta) 1 2 PARALELOS 1 1 COINCIDENTES 3 PLANOS: : ax + by + cz + d = 0 : a x + b y + c z + d = 0 :a x + b y + c z + d = 0 g M g M * POSICIÓN RELATIVA 3 3 SE CORTAN EN UN PUNTO 2 3 o pima tiangula SE CORTAN DOS A DOS 2 2 o HAZ DE PLANOS SECANTES (e cotan en una ecta) 1 2 o PARALELOS 1 1 COINCIDENTES

8 I.E.S. FERNANDO DE MENA DPTO. DE MATEMÁTICAS RECTA-PLANO: : ax + by + cz + d = 0 a x + b y + c z + d = 0 : a x + b y + c z + d = 0 g M g M * POSICIÓN RELATIVA 3 3 SECANTES (e cotan en un punto) 2 3 PARALELOS 2 2 RECTA CONTENIDA EN EL PLANO : ax + by + cz + d = 0 a x + b y + c z + d = 0 : a x + b y + c z + d = 0 a x + b y + c z + d = 0 2 RECTAS: : x : x = A = A + λu + λu g M g M * POSICIÓN RELATIVA g(u,u ) g(u,u,a A ) 3 4 SE CRUZAN SE CORTAN PARALELAS COINCIDENTES 1 1

9 POSICIÓN RELATIVA de RECTAS y PLANOS 2º BACH. 1. Etudia la poición elativa de lo iguiente plano; cao de e ecante, halla la ecuacione paamética de la ecta que definen: a) 3x-y+2z-1=0 b) x+y-5z=-4 c) x+y-5z=-4 x+y-5z+4=0-3x-3y+15z=1-3x-3y+15z=12 (Soluc: ecante; paalelo; coincidente) 2. Etudia la poición de lo iguiente plano: x+3y+2z=0 2x-y+z=0 4x-5y-3z=0 (Soluc: e cotan en el oigen) 3. (S) Detemina el valo de k paa que lo iguiente plano e coten a lo lago de una ecta: x+y+z=2 2x+3y+z=3 kx+10y+4z=11 (Soluc: k=7) 4. (S) Halla la ecuación del plano que paa po el oigen de coodenada y contiene la ecta deteminada po lo plano x+y+z-1=0 x-y-2=0 (Soluc: x+3y+2z=0) 5. Detemina la poición elativa de y en lo iguiente cao; i e cotan, halla el punto de inteección: a) : 2x+y+z=4 b) : x= 2t c) : x= 5+λ x+y-2z=2 y=1+3t y=-3 : x-y+8z=1 z= t z= -λ : 3x+2y-11z-5=0 : x=1-2α+β y=3+3α+3β z=8+4α+β (Soluc: paalelo; e cotan en (6,10,3); ) 6. Detemina la poición elativa de lo iguiente pae de ecta. Cao de e ecante, enconta el punto de inteección: a) : x=1+3λ b) : x=-4+6λ c) : 2x-y=0 d) : 2x-z=5 y=2+4λ y=-5+8λ 3x-z+1=0 x+5y-2z=7 z=-1-2λ z=8-4λ : 3x-z=0 : x+2y-z=4 : x=7-3µ : x=3+µ 3y-2z=0 7x+4y+5z=6 y=10-4µ y=5+2µ z=-5+2µ z=3-µ (Soluc: coincidente; e cotan en (2,3,4); e cuzan; e cuzan)

10 7. (S) Calcula la ecuación del plano que paa po (3,7,-5) y e paalelo al plano : 2x+3y+z+5=0. Ademá, halla la poición elativa ente el plano que e acaba de calcula y la ecta : 3x+2y+1=0 8x-2y-2z+2=0 (Soluc: 2x+3y+z-22=0; e cotan) 8. (S) Se conidea la ecta : x-2y-2z=0 y el plano : 2x+y+mz=n. Se pide: x+5y-z=0 a) Paa qué valoe de m y n, y on ecante? b) Paa qué valoe de m y n, y on paalelo? c) Paa qué valoe de m y n, contiene a la ecta?. (Soluc: m -23/7 y n; m=-23/7 y n 0; m=-23/7 y n=0) 9. (S) Dado el plano : x+y+mz=n y la ecta : x/1=(y-2)/-1=z/2 a) Calcula m y n paa que y ean ecante b) Calcula m y n paa que y ean paalelo c) Calcula m y n paa que contenga a. (Soluc: m 0 y n; m=0 y n 2; m=0 y n=2) 10. (S) Detemina la poición elativa de lo plano: : 2x+3y+z-1=0 ': x-y+z+2=0 '': 2x-2y+2z+3=0 (Soluc: ' // '' y cota a ambo) 11. (S) Etudia, paa lo difeente valoe de a, la poición elativa de lo iguiente plano: : ax+y+z=1 ': x+ay+z=1 '': x+y+az=1 (Soluc: a 1 y a -2 e cotan en un punto; a=1 coincidente; a=-2 e cotan do a do fomando un pima) 12. (S) Detemina paa qué valoe de λ y µ lo plano: a) Tienen un único punto común b) Paan po una mima ecta. : 2x-y+3z-1=0 ': x+2y-z+µ=0 '': x+λy-6z+10=0 (Soluc: λ 7 y µ; λ=7 y µ=3)

POSICIONES RELATIVAS de RECTAS y PLANOS

POSICIONES RELATIVAS de RECTAS y PLANOS POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A Examen de Evaluación. Geometía. Matemática II. Cuo 009-00 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA Cuo 009-00 -V-00 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos

Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos Bloque 3. Geometía y Tigonometía Tema 3 La ecta en el plano Ejecicio euelto 3.3-1 Halla la ecuación vectoial, en paamética, continua y geneal de la ecta que paa po el punto indicado y tiene po vecto dieccional

Más detalles

TEMA 13: EL ESPACIO MÉTRICO

TEMA 13: EL ESPACIO MÉTRICO TEMA 3: EL ESACIO MÉTRICO. DISTANCIA ENTRE DOS UNTOS. ÁNGULO ENTRE DOS RECTAS 3. VECTOR NORMAL CARACTERÍSTICO O ASOCIADO AL LANO 4. ANGULO ENTRE DOS LANOS 5. ANGULO ENTRE RECTA Y LANO 6. DISTANCIA DE UN

Más detalles

TEMA 7: PROPIEDADES MÉTRICAS

TEMA 7: PROPIEDADES MÉTRICAS Depatamento e Matemática º Bachilleato TEMA 7: PROPIEDADES MÉTRICAS 1- HAZ DE PLANOS PARALELOS Too lo plano paalelo a un plano Ax + By + Cz + D tenán el mimo vecto nomal que el e : n A, Po lo tanto, too

Más detalles

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes.

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes. 826464 _ 0341-0354.qxd 12/2/07 10:04 Página 341 Ángulo y ecta INTRODUCCIÓN RESUMEN DE LA UNIDAD A nueto alededo encontamo ecta y ángulo que influyen en nueto movimiento: calle, avenida, plano, etc. El

Más detalles

ÁNGULOS y DISTANCIAS entre RECTAS y PLANOS

ÁNGULOS y DISTANCIAS entre RECTAS y PLANOS ÁNGULOS y DISTANCIAS ente RECTAS y PLANOS MATEMÁTICAS II º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática 1. PROBLEMAS DE ÁNGULOS 1 1.1 ÁNGULO DE DOS RECTAS: Si la do ecta on paalela

Más detalles

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas. º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

I.E.S. Mediterráneo de Málaga Modelo5_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1A

I.E.S. Mediterráneo de Málaga Modelo5_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1A Opción A Ejecicio A [ 5 puntos] Se sabe que la función f: R R definida po f ( - +b+ si ) =, es deiable. a -5+a si > Detemina los aloes de a y b Paa se deiable debe de se, pimeamente, función continua,

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

Geometría Analítica. Ejercicio nº 1.-

Geometría Analítica. Ejercicio nº 1.- Geomeía Analíica Ejecicio nº.- a Aveigua el puno iméico de A ) con epeco a B ). b Halla el puno medio del egmeno de eemo A ) B ). Ejecicio nº.- a Halla el puno medio del egmeno cuo eemo on A( ) con epeco

Más detalles

ÁNGULOS y DISTANCIAS entre RECTAS y PLANOS

ÁNGULOS y DISTANCIAS entre RECTAS y PLANOS ÁNGULOS y DISTANCIAS ente RECTAS y PLANOS MATEMÁTICAS II º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática 1. PROBLEMAS DE ÁNGULOS 1.1 ÁNGULO DE DOS RECTAS: Si la do ecta on paalela

Más detalles

81 BAC CNyS GEOMETRÍA ANALÍTICA PLANA ÍNDICE 1. PRESENTACIÓN DEL TEMA 2. PUNTOS Y VECTORES EN EL PLANO 3. ECUACIONES DE LA RECTA 4.

81 BAC CNyS GEOMETRÍA ANALÍTICA PLANA ÍNDICE 1. PRESENTACIÓN DEL TEMA 2. PUNTOS Y VECTORES EN EL PLANO 3. ECUACIONES DE LA RECTA 4. GEOMETRÍ NLÍTIC LN 81 C CNyS ÍNDICE 1. RESENTCIÓN DEL TEM 2. UNTOS Y VECTORES EN EL LNO 3. ECUCIONES DE L RECT 4. HZ DE RECTS 5. RLELISMO Y ERENDICULRIDD 6. OSICIONES RELTIVS DE DOS RECTS 7. NGULO QUE

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r Actividad SISTEMA IÉRICO II TEMA 9 Paa eolve eta actividad, emo de tene en cuenta lo iguiente: o ecta on paalela en el epacio, i u poyeccione obe lo do plano de poyección también lo on.. Sea el punto P(-P

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones GEOMETRÍA ANALÍTICA 8. ECUACIONES DE UNA RECTA Para determinar una recta neceitamo una de eta do condicione 1. Un punto P(x, y ) y un vector V = (a,b). Do punto P(x, y ), Q(x 1, y 1 ) Un punto P(x, y )

Más detalles

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u Geometía. Puntos, ectas y planos en el espacio. Poblemas méticos en el espacio Pedo Casto Otega. Coodenadas o componentes de un vecto Sean dos puntos ( a, a ) y ( ) uuu uuu vecto son: = ( b a, b a, b a

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

XIII. La a nube de puntos-variables

XIII. La a nube de puntos-variables XIII. La a nube de punto-vaiable Una vaiable e epeentada con un vecto en R n. El conunto de etemidade de lo vectoe que epeentan la vaiable contituyen la nube de punto N. m im m n i m Pogama PRESTA - 999

Más detalles

N r euros es el precio

N r euros es el precio RETABILIDADES ACTIVOS FIACIEROS Ejemplo 1: Una leta del teoo a doce mee tiene un nominal de 10.000 euo. Ha ido compada po un pecio de 9.500 euo. Cual e el endimiento implícito de dicha leta?. Rendimiento

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 0- Pofeso: Jaime Andés Jaamillo González (jaimeaj@conceptocomputadoes.com) Pate del mateial ha sido tomado de documentos

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

RECTAS Y PLANOS EN EL ESPACIO

RECTAS Y PLANOS EN EL ESPACIO UNIDAD 6 RECTA Y PLANO EN EL EPACIO Página 1 1. Puntos alineados en el plano Comprueba que los puntos A (, ), B (8, ) y C (1, ) no están alineados. A (, ) B (8, ) C (1, ) AB = (, 1); BC = (, ) No tienen

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

TANGENCIAS Tangencias como aplicación de los conceptos de potencia e inversión TEMA5. Objetivos y orientaciones metodológicas. 1.

TANGENCIAS Tangencias como aplicación de los conceptos de potencia e inversión TEMA5. Objetivos y orientaciones metodológicas. 1. ANGNIAS angencia como aplicación de lo concepto de potencia e inveión A5 DIBUJ GÉI bjetivo y oientacione metodológica l objetivo de ete tema e hace aplicación de lo concepto de potencia e inveión en la

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

x+3y = 8 4y+z = 10 ; s: x 7 = y a-4 = z+6 5a-6 b) Para el valor del parámetro a = 4, determine, si es posible, el punto de corte de ambas rectas.

x+3y = 8 4y+z = 10 ; s: x 7 = y a-4 = z+6 5a-6 b) Para el valor del parámetro a = 4, determine, si es posible, el punto de corte de ambas rectas. [04] [EXT-A] a) Estudie la posición relativa de las rectas r y s en función del parámetro a: r: x+y = 8 4y+z = 0 ; s: x = y a-4 = z+ 5a- b) Para el valor del parámetro a = 4, determine, si es posible,

Más detalles

Si sólo tenemos en cuenta las relaciones existentes entre los puntos del espacio y los vectores de V

Si sólo tenemos en cuenta las relaciones existentes entre los puntos del espacio y los vectores de V IES Pae Poea (Guaix) Matemática II UNIDAD 0 GEOMETRÍA MÉTRICA Si ólo tenemo en cuenta la elacione exitente ente lo punto el epacio y lo ectoe e V, la geometía etingiá u etuio a la poicione elatia e punto,

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta.

5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta. . Expresar en forma paramétrica y reducida la recta x+ 3 = y- 5 = z -. Hallar el valor de m para que los puntos A(3,m,), B(,,-) y C(-,0,-4) pertenezcan a la misma recta. 3. Probar que todos los planos

Más detalles

TANGENCIAS ENTRE RECTAS Y CIRCUNFERENCIAS

TANGENCIAS ENTRE RECTAS Y CIRCUNFERENCIAS ANGENCIAS ENRE RECAS Y CIRCUNFERENCIAS 1 RECA Y CIRCUNFERENCIA ANGENES. Una ecta y una cicunfeencia on tangente cuano tienen un único punto en común, llamao punto e tangencia. Ente una ecta y una cicunfeencia

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

sea paralela al plano

sea paralela al plano x = 1+2t 1. [ANDA] [EXT-A] Considera los puntos A(1,1,2) y B(1,-1,-2) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por

Más detalles

A) TRAZADO DE RECTAS TANGENTES

A) TRAZADO DE RECTAS TANGENTES ecta tangente a una cicunfeencia que paan po un punto (pc). a) El punto etá en la cicunfeencia. (1 olución) A) TAZAD DE ECTAS TANGENTES ecta tangente a do cicunfeencia de ditinto adio (cc). a) Tangente

Más detalles

El haz de planos paralelos queda determinado por un vector normal, n A, B,

El haz de planos paralelos queda determinado por un vector normal, n A, B, HAZ DE PLANOS HAZ DE PLANOS PARALELOS Dado un plano, por ejemplo, π :3x4y2z1 cuyo vector normal es n 3, 4, 2, cualquier otro plano que tenga el mismo vector normal será un plano paralelo a. El plano π

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍ NLÍTIC PLN / Ecuaciones de la ecta Un punto y un vecto Dos puntos Un punto y la pendiente,,,,,, Coodenadas del vecto diecto ECUCION VECTORIL (x, y) (p, p ) + τ (v, v ) ECUCION PRMETRIC x p + τ

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas

Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas Relación. Geometría en el espacio (II) 1. Estudiar la posición relativa de los siguientes conjuntos de planos: (a)

Más detalles

Universidad de Tarapacá Facultad de Ciencias Departamento de Física

Universidad de Tarapacá Facultad de Ciencias Departamento de Física Univesidad de Taapacá Facultad de Ciencias Depatamento de Física Aplica el álgea de vectoes: Poducto escala Poducto vectoial Magnitudes físicas po su natualeza Escalaes Vectoiales Es un escala que se

Más detalles

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin.

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin. RECTAS Y ÁNGULOS 5º de E. Pimaia RECTAS Y ÁNGULOS -TEMA 5 RECTA.- Es una sucesión infinita de puntos que tienen la misma diección. La ecta no tiene ni pincipio ni fin. Po dos puntos del plano pasa una

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles

longitud de C = 211: r

longitud de C = 211: r a En efecto: (m + n)2 = a 2 + b 2 = (h 2 + m 2 )+ ~ 2 + n 2 ) = 2h 2 + m 2 + n 2. Luego 2m n = 2h 2, Yasí m n = h 2. El númeo 11: (pi) Desde hace apoximadamente 4000 años, se notó que el númeo de veces

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Temas 6 y 7 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

2. [2014] [EXT-B] Determinar los valores de los parámetros a y b para los que tiene inversa la matriz A =

2. [2014] [EXT-B] Determinar los valores de los parámetros a y b para los que tiene inversa la matriz A = MasMatescom [204] [EXT-A] Estudiar, para los distintos valores del parámetro m, el siguiente sistema de ecuaciones Resolverlo cuando m = 3 mx-y+3z = 0 x+y+7z = 0 2x-my+4z = 0 2 [204] [EXT-B] Determinar

Más detalles

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio 1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto

Más detalles

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

C. E. C. y T. No. 11 WILFRIDO MASSIEU PÉREZ

C. E. C. y T. No. 11 WILFRIDO MASSIEU PÉREZ C E C T No WILFRIDO MASSIEU PÉREZ Altua A Recta paalela a BC C Distancia (0, 0) Bisectiz B Ing J Ventua Ángel Felícitos Academia de Matemáticas C E C T No WILFRIDO MASSIEU PÉREZ La unidad de Apendizaje

Más detalles

LOS ERRORES EN QUÍMICA ANALÍTICA

LOS ERRORES EN QUÍMICA ANALÍTICA LOS ERRORES EN QUÍMICA ANALÍTICA MONOGRAFÍA PARA ALUMNOS DE º DE LA LICENCIATURA EN QUÍMICA 00 DR. JOSÉ MARÍA FERNÁNDEZ ÁLVAREZ Edificio de Invetigación. C/Iunlaea,1. 31080 Pamplona. Epaña Tel. +34 948

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO ESACIOS AFÍN Y EUCLÍDEO Nota: Los pocedimietos expestos o so los úicos qe eselve los poblemas Defiició El espacio afí so los ptos coexistiedo jto al espacio vectoial V, co sistema de efeecia ( pto fijo

Más detalles

8. Movimiento Circular Uniforme

8. Movimiento Circular Uniforme 8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita

Más detalles

A continuación obligamos, aplicando el producto escalar, a que los vectores:

A continuación obligamos, aplicando el producto escalar, a que los vectores: G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

Solución a los ejercicios de vectores:

Solución a los ejercicios de vectores: Tema 0: Solución ejecicios de intoducción vectoes Solución a los ejecicios de vectoes: Nota : Estas soluciones pueden tene eoes eatas (es un ollo escibios las soluciones bonitas con el odenado), así que

Más detalles

Modelo1_2009_Enunciados. Opción A

Modelo1_2009_Enunciados. Opción A a) Duración: hora y 30 minutos. b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la o realizar únicamente los cuatro ejercicios de la. e) Se permitirá el uso de calculadoras que

Más detalles

CI51J HIDRAULICA DE AGUAS SUBTERRANEAS Y SU APROVECHAMIENTO

CI51J HIDRAULICA DE AGUAS SUBTERRANEAS Y SU APROVECHAMIENTO CI5J CI5J HIDRAULICA DE AGUAS SUBTERRANEAS Y SU AROVECHAIENTO TEA 5 ECUACIONES GENERALES DE LA HIDRAULICA EN EDIOS OROSOS SOLUCION DIRECTA DE LA ECUACION DE LALACE ETODO DE LAS IAGENES OTOÑO 8 UNIVERSIDAD

Más detalles

3. Campo eléctrico de distribuciones continuas de carga. M.A.Monge / B. Savoini Dpto. Física UC3M

3. Campo eléctrico de distribuciones continuas de carga. M.A.Monge / B. Savoini Dpto. Física UC3M Campo eléctico II: Ley de Gau 1. Intoducción 2. Ditibucione continua de caga. 3. Campo eléctico de ditibucione continua de caga. 4. Flujo del campo eléctico. 5. Ley de Gau. 6. Aplicacione de la ley de

Más detalles

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas I. E. S. Siete Colinas (Ceuta) Depatamento de Matemáticas Matemáticas de º de Bachilleato El Espacio Afín Po Javie Caoquino CaZas Catedático de matemáticas del I.E.S. Siete Colinas Ceuta 005 El Espacio

Más detalles

ejerciciosyexamenes.com GEOMETRIA

ejerciciosyexamenes.com GEOMETRIA GEOMETRIA 1.- Dado el vector AB= (2,-1,3) y el punto B(3,1,2) halla las coordenadas del punto A. Sol: A =(1,2,-1) 2.- Comprobar si los vectores AB y CD son equipolentes, siendo A(1,2,-1), B(0,3,1), C(1,1,1)

Más detalles

RECTAS EN EL ESPACIO.

RECTAS EN EL ESPACIO. IES Pade Poeda (Guadi UNI 9 GEOETRÍ FÍN RETS EN EL ESPIO EUIONES E L RET Una ecta queda deteminada po Un punto ( a a a Un ecto de diección ( ( ; se le llama deteminación lineal de la ecta Si X ( es un

Más detalles

c) Hallar los planos del haz que cumplen que el ángulo que forman con el eje OY tiene por seno el valor

c) Hallar los planos del haz que cumplen que el ángulo que forman con el eje OY tiene por seno el valor 1. [ANDA] [JUN-A] De un paralelogramo ABCD conocemos tres vértices consecutivos A(,-1,0), B(-,1,0) y C(0,1,). a) Calcula la ecuación de la recta que pasa por el centro del paralelogramo y es perpendicular

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

EJERCICIOS SOBRE VECTORES

EJERCICIOS SOBRE VECTORES EJERCICIOS SOBRE VECTORES 1) Dados los puntos A = ( 2, 1,4) ( 3,1, 5) uuu vecto AB B =, calcula las componentes del 2) Dados los puntos A = ( 2, 1,4), B = ( 3,1, 5) ( 4,2, 3) C =, detemina las uuu uuu

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2 CÁLCULO Pime cuso de Ingenieo de Telecomunicación Segundo Examen Pacial. 1 de Junio de 1 Pimea pate Ejecicio 1. Obtene la expesión en que se tansfoma z xx +z xy +z yy ; al cambia las vaiables independientes

Más detalles

AFININDAD: CARACTERISTICAS Y PROPIEDADES

AFININDAD: CARACTERISTICAS Y PROPIEDADES La finia e una tanfomación homogáfica que cumple la iguiente leye: - o punto fine etán alineao con una ecta que igue la iección e afinia - o ecta fine e cotan iempe en una ecta fija llamaa e afinia. La

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:

Más detalles

Tema 4: Intersecciones. Perpendicularidad y mínimas distancias. Paralelismo.

Tema 4: Intersecciones. Perpendicularidad y mínimas distancias. Paralelismo. Tema 4: nteeccone. ependculadad y mínma dtanca. aalelmo. nteeccone. Una nteeccón e el luga geométco de lo punto que petenecen a la vez a todo lo elemento que ntevenen (fgua ). La nteeccón de do plano e

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

4. [ANDA] [JUN-B] Dados los puntos A(2,1,1) y B(0,0,1), halla los puntos C en el eje OX tales que el área del triángulo de vértices A, B y C es 2.

4. [ANDA] [JUN-B] Dados los puntos A(2,1,1) y B(0,0,1), halla los puntos C en el eje OX tales que el área del triángulo de vértices A, B y C es 2. Selectividad CCNN 008 x-z = -. [ANDA] [SEP-A] Sea la recta dada por y+z = a) Halla la ecuación del plano que es paralelo a la recta s y contiene a la recta r, dada por x- = -y+ = z-. b) Estudia la posición

Más detalles

GEOMETRÍA. punto, la recta y el plano.

GEOMETRÍA. punto, la recta y el plano. MISIÓN 011-II GEMETRÍ STUS GEMETRÍ a geometía es la ama de las Matemáticas que tiene po objeto el estudio de las figuas geométicas. Se denomina figua geomética a cualquie conjunto no vacío de puntos del

Más detalles

8A-5B = -2 1 3, 2A-B =

8A-5B = -2 1 3, 2A-B = MasMatescom 1 [ANDA] [JUN-A] Sea la matriz A = 001 2 1 2 1 k 1 a) Para qué valores del parámetro k no existe la matriz inversa de la matriz A? Justifica la respuesta b) Para k = 0, resuelve la ecuación

Más detalles

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011 EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 5 AÑOS SIN CICLO MEDIO COMPLETO PRACTICO Función Lineal Rectas Noviembe RECORDAR: Una unción lineal es de la oma popiedad que los cocientes incementales:

Más detalles

ÁLGEBRA LINEAL GEOMETRÍA

ÁLGEBRA LINEAL GEOMETRÍA ÁLGER LINEL GEOMETRÍ ESPCIO VECTORIL DE LOS VECTORES LIRES: V 3 Se llama vecto fijo de oigen y extemo al egmento oientado. Si el oigen y el extemo coinciden, hablamo del vecto nulo : = 0. Un vecto fijo

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva. TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

Corrección topográfica de la imagen para mejorar las clasificaciones en zonas montañosas. Por Carmen Recondo. Modelos y métodos.

Corrección topográfica de la imagen para mejorar las clasificaciones en zonas montañosas. Por Carmen Recondo. Modelos y métodos. Po Camen Recondo Coeccón toogáfca de la magen aa mejoa la clafcacone en zona montañoa. Modelo método. Jonada de Coeccón Toogáfca de mágene de Satélte Camu de Mee. Unvedad de Ovedo. 7 de dcembe de 009.

Más detalles

Geometría. Producto por un escalar: a(x,y)=(ax,ay). Verifican las propiedades: 1. Distributivas (respecto del escalar y respecto de los vectores).

Geometría. Producto por un escalar: a(x,y)=(ax,ay). Verifican las propiedades: 1. Distributivas (respecto del escalar y respecto de los vectores). Geometría 1.- Espacio Vectorial. (R 3 ) Sean los conjuntos de las n-uplasr,r 3 yr n. Se definen las operaciones Suma: (a,b)+(c,d)=(a+c,b+d). Verifican las propiedades asociativa, conmutativa, elemento

Más detalles

Tema03: Circunferencia 1

Tema03: Circunferencia 1 Tema03: Circunferencia 1 3.0 Introducción 3 Circunferencia La definición de circunferencia e clara para todo el mundo. El uo de la circunferencia en la práctica y la generación de uperficie de revolución,

Más detalles

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula.

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula. Junio OPCÓN Poblema. a) Si obsevamos los desaollos de ) ( y ) ( vemos que se difeencian en el cuadado de la matiz unitaia. Dado que en este caso se veifica: ) ( ) ( ) ( ) ( + + ) ( ) ( ) ( b) b.) Paa que

Más detalles

UNIDAD 12. ECUACIONES DE RECTA Y PLANO

UNIDAD 12. ECUACIONES DE RECTA Y PLANO 4 Unidad. Ecaciones de la ecta el plano UNIDD. EUIONES DE RET Y PLNO. Intodcción. Espacio fín... Vecto en el espacio. Vecto libe fijo... Opeaciones con ectoes.. Dependencia e independencia de ectoes. ase.4.

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles