Programa Entrenamiento MT-21

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Programa Entrenamiento MT-21"

Transcripción

1 Programa Entrenamiento MT-1 SOLUCIONARIO Guía de ejercitación avanzada Función potencia y función raíz cuadrada SGUICEN05MT1-A16V1

2 TABLA DE CORRECCIÓN Guía de ejercitación Función potencia y función raíz cuadrada ÍTEM ALTERNATIVA HABILIDAD 1 E E Aplicación D 4 E 5 B 6 D 7 C Aplicación B 9 A Aplicación 10 B 11 A 1 C Aplicación 1 E Aplicación 14 E Aplicación 15 B 16 C Comprensión 17 D 1 A 19 E 0 D 1 D C E 4 C 5 B Aplicación 6 C Aplicación 7 C B 9 C 0 B

3 1. La alternativa correcta es E. I) Falsa, ya que para que una raíz con índice par pertenezca a los reales, la cantidad subradical debe ser mayor o igual a 0. Entonces, f () = 6 ( + 6) 0 6. Luego, el dominio de la función corresponde a todos los mayores o iguales que 6, y no solo a los reales positivos. II) Falsa, ya que f () admite valores desde 6 hacia adelante. Luego, su gráfica se encuentra en el primer y segundo cuadrante. III) Falsa, ya que f ( 6) = = 0 + =. Luego, f ( 6) eiste en los reales. Por lo tanto, ninguna de las afirmaciones es verdadera.. La alternativa correcta es E. Aplicación Reemplazando en la función resulta 9 g = Racionalizando resulta: 1 = 1 ( ) ( 9) = Por lo tanto, el valor de 9 g es 1 17.

4 . La alternativa correcta es D. Primero se debe determinar el valor de m. Reemplazando en la función resulta f () = m 1 =. Despejando la ecuación queda: m 1 = (Elevando al cuadrado) m + 1 = 9 (Despejando) m = m = 4 Entonces, f () = 4 1 f (m) = f (4) = Por lo tanto, el valor de f (m) es La alternativa correcta es E. I) Falsa, ya que podemos determinar f(0) = IR. II) Falsa, el recorrido de la función es IR + {0}. III) Falsa, el valor de f( ) = 0 IR. Por lo tanto, las tres afirmaciones son falsas. 5. La alternativa correcta es B. I) Falsa, ya que f(15) = 0 IR. II) Falsa, el recorrido de la función es IR + U {0}. III) Verdadera, ya que f( ) = 15 IR. Por lo tanto, solo la afirmación III es verdadera.

5 6. La alternativa correcta es D. El dominio de una función corresponde a los valores de que pueden ser reemplazados en la función. Si llamamos g () = + 15, entonces f ( ) g( ). Por lo tanto, sólo pueden reemplazarse valores de de tal manera que g () = Las raíces de la función g () = + 15 son = 5 y =, para los cuales la función toma valor 0. Como la concavidad de g () es positiva, entonces la función tomará valores positivos para todos los a la izquierda de 5 y a la derecha de. Por lo tanto, el dominio de la función f () es ], 5] [, + [. 7. La alternativa correcta es C. Aplicación El dominio de una función corresponde a los valores de que pueden ser reemplazados en la función para que f () eista, entonces: 1 0 (Restando 1) 1 (Multiplicando por 1) 1 Lo que corresponde al intervalo ], 1]. El recorrido de una función corresponde a todos los valores reales que puede tomar la función. Toda función raíz cuadrada tiene como recorrido los números reales positivos y el 0. Pero si se suma una constante fuera de la función, esta constante marca el menor valor que toma la función, es decir, el punto de partida del recorrido. Como la función f (), fuera de la raíz cuadrada se le suma ( 1), entonces el menor valor que toma la función es 1, es decir, el recorrido es [ 1, + [. Luego, Dom f = ], 1] y Rec f = [ 1, + [

6 . La alternativa correcta es B. Para que la epresión pertenezca a los reales debe cumplirse que 0, es decir,. Luego, se puede descartar los gráficos A ( ), D ( ), y E ( ). Dado que 0, entonces el recorrido es [0, +[, es decir sobre el eje X, lo que está representado en la alternativa B. Por lo tanto, el gráfico que mejor representa a la función real f () = representado en la alternativa B. es el 9. La alternativa correcta es A. Aplicación Si el punto (1, ) pertenece a la gráfica de la función g(), significa que g(1) =. Luego: g() = a (Reemplazando con = 1) g(1) = 1 a = 1 a (Despejando) 1 a = (Elevando al cuadrado) 4 (1 a) = 9 (Despejando a) 4 4a = = 4a 5 = 4a 5 = a 4 Por lo tanto, el valor numérico de a es 5. 4

7 10. La alternativa correcta es B., para todo en los reales. Como a b < 0, significa que uno de los dos es positivo y el otro negativo. Como b > a, entonces es posible concluir que b es positivo y a es negativo. Luego, a a a y b b b Por lo tanto, a b = a + b. 11. La alternativa correcta es A. La función h() = ( 1 ) es equivalente a 1 para cualquier valor de en los reales. Es decir, h() = 1 para 1 y h() = (1 ) para 1. Luego: I) Falsa, ya que en general II) Verdadera, ya que h( 1) = 1 ( 1) = = y h() = 1 = 1 = 1. III) Falsa, ya que h(0) = 1 0 = 1 = 1. Entonces, el gráfico de h intersecta al eje de las ordenadas en (0, 1). Por lo tanto, solo la afirmación II es verdadera. 1. La alternativa correcta es C. Aplicación 6( ) = + (Elevando al cuadrado) 6 ( + ) = ( + )² (Eliminando paréntesis) = ² (Ordenando) 0 = ² (Reduciendo) 0 = ²

8 Entonces, ² =, lo que significa que = y = Con = 6( ) Como el lado derecho de la igualdad es positivo, = es una solución. Por lo tanto, la solución negativa de la ecuación 6( ) = + es. 1. La alternativa correcta es E. Aplicación + 1 = 1 (Elevando al cuadrado) ² = + 1 (Ordenando) ² = 0 (Reduciendo) ² + = 0 (Factorizando) ( + 1) = 0 Las soluciones de dicha ecuación son = 0 y = 1. Al comprobar las soluciones en la ecuación original, en ambos casos se cumple la igualdad. Por lo tanto, el conjunto solución de la ecuación + 1 = 1 es { 1, 0}. 14. La alternativa correcta es E Aplicación n a Si h() =, entonces h (a 1 a (a ) = ) 1 n n a a n a n1 n1 a n1 Por lo tanto, h (a 1 ) es igual a n 1 a.

9 15. La alternativa correcta es B. I) Falsa, ya que y h , h = = 1 15 = 14 II) Verdadera, ya que m 4 = ( m) 4. Es una función simétrica con respecto al eje Y. III) Falsa, ya que la gráfica tiene forma parabólica con concavidad negativa, por lo cual la función no tiene un menor valor, pero sí un mayor valor, que en este caso es 1. Por lo tanto, solo la afirmación II es verdadera. 16. La alternativa correcta es C. Comprensión Como es un número real, entonces: 6 0 (Multiplicando por ) 6 0 (Sumando 5) (Multiplicando por ) ( 6 + 5) 15 Esto significa que la función h() toma valores desde el 15 hacia arriba. Por lo tanto, el recorrido de la función es [15, + [.

10 17. La alternativa correcta es D. La función f () = (a) n es igual a a n n. Como n es un número entero mayor que, entonces se reconocen dos casos: * Si n es par, entonces el gráfico tiene la forma de la función cuadrática. * Si n es impar, entonces el gráfico tiene la forma de la función cúbica. En caso de que la función esté multiplicada por un factor negativo, entonces la gráfica sufre una simetría con respecto al eje X, o sea las ramas invierten su sentido de crecimiento. Luego: I) Verdadera, ya que si a es negativo y n es impar, entonces a n es negativo. Es decir, f tiene la forma de la simétrica de la función cúbica. II) III) Verdadera, ya que si a es negativo y n es par, entonces a n es positivo. Es decir, f tiene la forma de la función cuadrática. Falsa, ya que la gráfica representa una función que tiene la forma de la simétrica de la función cuadrática. Para eso se necesitaría que n fuera par y a n fuera negativo, lo que es imposible. Por lo tanto, solo los gráficos I y II podrían representar una función de la forma f () = (a) n. 1. La alternativa correcta es A. Como f (1) = a 1 n 1 =, entonces a =. Además, f ( ) = ( ) 1 1 n =, luego ( ) n = 64, lo que solo se cumple si n = 6. Luego: I) Verdadera, ya que se calculó anteriormente. II) Falsa, ya que se calculo anteriormente que n = III) Falsa, ya que f () =, entonces f (4) = = 51. Por lo tanto, solo la afirmación I es verdadera.

11 19. La alternativa correcta es E. El gráfico mostrado tiene dos ramas crecientes con forma parabólica cuyo vértice corresponde al punto ( 6, 0). Entonces, corresponde a una función p() = a( + 6) n, con a positivo y n par. Luego, se puede descartar las alternativas A, B y D. El punto (0, 1) pertenece al gráfico de la función, lo que significa que p(0) = 1. Analizando cada una de las alternativas restantes resulta: C) h() = ( + 6)² h(0) = 6² = 6 = 7 E) n() = ( 6) n(0) = Por lo tanto, la función que representa mejor al gráfico adjunto es n() = ( 6) La alternativa correcta es D. Desarrollando la función resulta g() = (² 1) (1 ) = ² 1 ³ + Luego, g() = ³ + ² + 1. Como el término cúbico es negativo, entonces el gráfico de g está invertido con respecto al original. Además, como el coeficiente de posición es negativo, entonces el gráfico de g intersecta al eje Y en la semirrecta negativa. El único gráfico que cumple con ambas características es el que se encuentra en la alternativa D, por lo cual se pueden descartar los demás. Por lo tanto, el gráfico que mejor representa a la función g es el que se encuentra en la alternativa D.

12 1. La alternativa correcta es D. f () = y g() =. Luego: 1 1 I) Verdadera, ya que si > 0, entonces ³ > 0. Como >, entonces >. Es decir, f () > g() para cualquier valor positivo de. II) Falsa, ya que f = 1 16 g() =. f ( ) III) Verdadera, ya que. Como 0, entonces se puede g( ) f ( ) simplificar y queda = 4. g( ) Por lo tanto, solo las afirmaciones I y III son verdaderas.. La alternativa correcta es C. Para encontrar los puntos de intersección entre dos funciones es necesario resolver la ecuación que se forma al igualarlas. Luego: f () = g() 6 = 4 (Cuatro de las soluciones son = 0. Si 0, se divide por 4 ) ² = (Aplicando raíz cuadrada) = Luego, los puntos de intersección de las funciones son A(0, 0), B(, ) y C(, ), como muestra la gráfica:

13 Los puntos de intersección mencionados forman el triángulo ABC, de base y altura base altura. Entonces, su área es. Por lo tanto, los puntos de intersección de las gráficas forman un polígono cuya área es.. La alternativa correcta es E. Para determinar los intervalos donde una función es mayor que otra, se debe analizar los puntos de intersección entre ellas, planteando la igualdad. Entonces: f () = h() = 5 (Una solución inmediata es = 0. Si 0, se divide por ) 1 = ² (Esta igualdad tiene dos soluciones, = 1 y = 1) Luego, los gráficos de las funciones se intersectan en tres puntos: 1, 0 y 1.Entonces, hay cuatro intervalos de interés: ], 1] ; [ 1, 0] ; [0, 1] y [1, +[. Analizándolos: * ], 1] 1 ² 1 Al multiplicar por ³ (negativo) la desigualdad se invierte 5 ³ h() f () * [ 1, 0] ² 1 Al multiplicar por ³ (negativo) la desigualdad se invierte 0 5 ³ h() f () * [0, 1] ² 1 Al multiplicar por ³ (positivo) 0 5 ³ h() f () * [1, +[ 1 ² 1

14 Al multiplicar por ³ (positivo) 5 ³ h() f () Luego, la función h() es mayor o igual a f () para el segundo y cuarto caso. Por lo tanto, h() f () solo para el intervalo [ 1, 0] [1, +[. 4. La alternativa correcta es C. Si el gráfico de la función real g() = (p + m) intersecta al eje Y en el punto (0, ), entonces g(0) = (p 0 + m) = m³ =. Luego, m = =. Además, si intersecta al eje X en el punto (6, 0), entonces g(6) = (p 6 ) = 0. Para que 1 esto se cumpla, (p 6 ) debe ser 0. Luego, p = 6 Entonces, g() =. Luego, g(5) = Por lo tanto, el valor numérico de g(5) es La alternativa correcta es B. Aplicación Aplicando la fórmula del interés compuesto, tenemos: C = K(1 + i) n C = (1 + 0,1) C = (1,1) C = 5.40 Al cabo de años, el capital acumulado es $5.40.

15 6. La alternativa correcta es C. Aplicación Aplicando la fórmula del interés compuesto, tenemos: C = K(1 + i) n C = 0.000(1 + 0,05) C = 0.000(1,05) C = 0.000(1,105) C =.00 Al cabo de 4 meses el capital acumulado es $ La alternativa correcta es C. (1) m es un número primo. Con esta información, no es posible determinar el recorrido de la función, ya que eisten infinitos números primos. () m es múltiplo de. Con esta información, no es posible determinar el recorrido de la función, ya que eisten infinitos números múltiplos de. Con ambas informaciones, es posible determinar el recorrido de la función, ya que solo el es un número primo múltiplo de. Luego, el recorrido de la función f () = + es [, + [. Por lo tanto, la respuesta es: Ambas juntas.

16 . La alternativa correcta es B. (1) h(a) = 0. Con esta información, no es posible determinar el valor numérico de h(a), ya que h(a) = a a = 0 = 0. O sea, no se puede determinar el valor de a. () h(a) = 1. Con esta información, es posible determinar el valor numérico de h(a), ya que h(a) = a a = a = 1 a = 1. Luego, h(a) = a a a. Por lo tanto, la respuesta es: () por sí sola. 9. La alternativa correcta es C. Como f () = a n, entonces f (a) = a a n = a n+1. Luego: (1) a es un número negativo. Con esta información, no se puede afirmar que f (a) es un número negativo, ya que si la base es negativa el signo del resultado depende del eponente. () n es un número par. Con esta información, no se puede afirmar que f (a) es un número negativo, ya que el eponente es n + 1 (impar). Y si el eponente es impar el signo del resultado depende de la base. Con ambas informaciones, se puede afirmar que f (a) es un número negativo, ya que si la base es negativa y el eponente es impar, entonces el resultado es negativo. Por lo tanto, la respuesta es: Ambas juntas.

17 0. La alternativa correcta es B. (1) a =. Con esta información, no es posible determinar la cantidad de puntos de intersección entre los gráficos de h y p, ya que en este caso el parámetro a determina la proporción dentro del gráfico, pero no su forma. () n =. Con esta información, es posible determinar la cantidad de puntos de intersección entre los gráficos de h y p, ya que una función potencia de eponente par positivo y una función potencia de eponente par negativo siempre se intersectan en dos puntos. Por lo tanto, la respuesta es: () por sí sola.

Programa Entrenamiento MT-21

Programa Entrenamiento MT-21 Programa Entrenamiento MT-1 SOLUCIONARIO Guía de ejercitación avanzada Inecuaciones y sistemas de inecuaciones lineales SGUICEN030MT1-A16V1 TABLA DE CORRECCIÓN Guía de ejercitación Inecuaciones y sistemas

Más detalles

SOLUCIONARIO Composición de funciones y función inversa

SOLUCIONARIO Composición de funciones y función inversa SOLUCIONARIO Composición de funciones y función inversa SGUICES04MT-A6V TABLA DE CORRECCIÓN GUÍA PRÁCTICA Composición de funciones y función inversa Ítem Alternativa E Comprensión A 3 D 4 B 5 C 6 D 7 A

Más detalles

SGUIC3M020MT311-A16V1. GUIA DE EJERCITACIÓN Propiedades de las potencias

SGUIC3M020MT311-A16V1. GUIA DE EJERCITACIÓN Propiedades de las potencias SGUICM00MT11-A16V1 GUIA DE EJERCITACIÓN Propiedades de las potencias TABLA DE CORRECCIÓN GUÍA PRÁCTICA PROPIEDADES DE LAS POTENCIAS Ítem Alternativa 1 C D B 4 E ASE 5 A 6 C 7 A 8 C B 10 E Comprensión 11

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel Estimado alumno: Aquí encontrarás las claves de corrección, las habilidades y los procedimientos de resolución asociados a cada pregunta, no obstante, para reforzar tu aprendizaje es fundamental que asistas

Más detalles

SOLUCIONARIO Desigualdades e inecuaciones de primer grado

SOLUCIONARIO Desigualdades e inecuaciones de primer grado SOLUCIONARIO Desigualdades e inecuaciones de primer grado SGUICES031MT1-A16V1 1 TABLA DE CORRECCIÓN Desigualdades e Inecuaciones de primer grado Ítem Alternativa 1 D D 3 A 4 C 5 A 6 C 7 D 8 E 9 B 10 A

Más detalles

SOLUCIONARIO Sistema de inecuaciones de primer grado

SOLUCIONARIO Sistema de inecuaciones de primer grado SOLUCIONARIO Sistema de inecuaciones de primer grado SGUICEG032EM31-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Sistema de inecuaciones de primer grado Ítem Alternativa 1 C 2 A 3 E 4 D 5 C 6 A 7 E 8 C 9

Más detalles

SOLUCIONARIO Posiciones relativas de rectas en el plano

SOLUCIONARIO Posiciones relativas de rectas en el plano SOLUCIONARIO Posiciones relativas de rectas en el plano SGUICES0MT-A6V TABLA DE CORRECCIÓN GUÍA PRÁCTICA Posiciones relativas de rectas en el plano Ítem Alternativa B C Comprensión B 4 E 5 D 6 E 7 A 8

Más detalles

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN 1) El vértice de la parábola f ( x) x² 8x 5 corresponde al par ordenado: a) (4,11) b) (4, 11) c) ( 8,5) d) ( 4,11) e)

Más detalles

Guía de Funciones Cuadráticas

Guía de Funciones Cuadráticas Colegio Raimapu Departamento de Matemática Guía de Funciones Cuadráticas Nombre del Estudiante: ) Cuál de los siguientes gráficos representa a la función f() =? A) B) C) D) E) º Medio ) El punto que no

Más detalles

SOLUCIONARIO Función exponencial

SOLUCIONARIO Función exponencial SOLUCIONARIO Función eponencial SGUICES06MT1-AV1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Función eponencial Ítem Alternativa 1 E C C 4 D C 6 C 7 D 8 E 9 D Comprensión 10 A 11 C 1 B Comprensión 1 A 14 D Comprensión

Más detalles

Programa Egresados EM-33 SOLUCIONARIO Taller 3

Programa Egresados EM-33 SOLUCIONARIO Taller 3 Programa Egresados EM-33 SOLUCIONARIO Taller 3 STALCEG003EM33-A16V1 TABLA DE CORRECCIÓN Taller 3 PREGUNTA ALTERNATIVA HABILIDAD 1 C E 3 A 4 C 5 B 6 B 7 C 8 C 9 C 10 A 11 B Comprensión 1 D 13 D 14 D 15

Más detalles

SCUACAC030MT22-A16V1. SOLUCIONARIO Ejercitación Operatoria de Logaritmos

SCUACAC030MT22-A16V1. SOLUCIONARIO Ejercitación Operatoria de Logaritmos SCUACAC00MT-A6V SOLUCIONARIO Ejercitación Operatoria de Logaritmos TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN DE OPERATORIA DE LOGARITMOS Ítem Alternativa B A A 4 A 5 B 6 E ASE 7 B ASE B 9 B 0 E D

Más detalles

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23 C u r s o : Matemática Material N 9 GUÍA TEÓRICO PRÁCTICA Nº 3 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA II

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA II C u r s o : Matemática 3º Medio Material Nº MT-11 UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA II INTERSECCIÓN CON EL EJE Y La parábola asociada a la función = a + b + c siempre intersecta al eje de

Más detalles

Tutorial MT-a2. Matemática Tutorial Nivel Avanzado. Función exponencial y logarítmica II

Tutorial MT-a2. Matemática Tutorial Nivel Avanzado. Función exponencial y logarítmica II 467890467890 M ate m ática Tutorial MT-a Matemática 006 Tutorial Nivel Avanzado Función eponencial y logarítmica II Matemática 006 Tutorial Función eponencial y logarítmica Marco Teórico. Función eponencial..

Más detalles

Guía de trabajo matemáticas

Guía de trabajo matemáticas Guía de trabajo matemáticas 3 año medio 016 Primer semestre Profesor: Gino Mangili Cuadra DEPARTAMENTO DE MATEMATICA Compendio Matemática 3 año medio Nombre: Curso: Números Complejos Reseña histórica:

Más detalles

SOLUCIONARIO Ejercitación Operatoria de potencias

SOLUCIONARIO Ejercitación Operatoria de potencias SOLUCIONARIO Ejercitación Operatoria de potencias SCUACAC08MT-A6V TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN OPERATORIA DE POTENCIAS Ítem Alternativa D D 3 D B E 6 D Comprensión 7 B 8 D 9 D 0 D C A

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Logaritmos y propiedades GUICEN025MT21-A16V1. Si el a% de b 5

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Logaritmos y propiedades GUICEN025MT21-A16V1. Si el a% de b 5 GUÍA DE EJERCITACIÓN AVANZADA Logaritmos y propiedades Programa Entrenamiento Si el a% de b 5 Desafío es 0, con a y b mayores que 1, entonces es siempre correcto afirmar que Matemática I) log b = 4 II)

Más detalles

Las desigualdades absolutas son aquellas que se cumplen sea cual sea el valor real que se sustituye. Por ejemplo:

Las desigualdades absolutas son aquellas que se cumplen sea cual sea el valor real que se sustituye. Por ejemplo: MATEMÁTICAS BÁSICAS INECUACIONES INTERVALOS DE NÚMEROS REALES Una desigualdad es la epresión de dos cantidades tales que una es mayor que otra. Las desigualdades en general se clasifican en absolutas y

Más detalles

SOLUCIONARIO Ecuaciones de segundo grado

SOLUCIONARIO Ecuaciones de segundo grado SOLUCIONARIO Ecuaciones de segundo grado SGUICES00MT1-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Ecuaciones de segundo grado Ítem Alternativa 1 E A E 4 C 5 D 6 C 7 B 8 A 9 C 10 A 11 B 1 A 1 E 14 C 15 B

Más detalles

SGUIC3M021MT311-A16V1. GUIA DE EJERCITACIÓN Álgebra

SGUIC3M021MT311-A16V1. GUIA DE EJERCITACIÓN Álgebra SGUIC3M01MT311-A16V1 GUIA DE EJERCITACIÓN Álgebra TABLA DE CORRECCIÓN GUÍA PRÁCTICA ALGEBRA Ítem Alternativa 1 D D 3 C 4 A 5 B 6 D 7 C 8 B 9 E 10 A 11 C 1 C 13 B 14 B 15 E 16 B 17 A 18 C 19 B 0 B 1. La

Más detalles

Guía de Matemática NM 3: Inecuaciones

Guía de Matemática NM 3: Inecuaciones Centro Educacional San Carlos de Aragón. Coordinación Académica Enseñanza Media. Sector: Matemática. Nivel: NM Prof.: Ximena Gallegos H. Guía de Matemática NM : Inecuaciones Nombre(s): Curso: Fecha. Contenido:

Más detalles

Ecuación Función cuadrática

Ecuación Función cuadrática Eje temático: Álgebra y funciones Contenidos: Función cuadrática - Ecuaciones de segundo grado Traslaciones de función cuadrática y función raíz Nivel: 3 Medio Ecuación Función cuadrática 1. Ecuación cuadrática

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA GUÍA TEÓRICO PRÁCTICA Nº8 A la función de segundo grado f() = a + b + c, siendo a, b, c lr a 0 se le denomina función cuadrática. La

Más detalles

Solución: pasando a restar el término de la derecha de la inecuación y sacando MCD:

Solución: pasando a restar el término de la derecha de la inecuación y sacando MCD: . Resolver la inecuación: Solución: empleando la siguiente propiedad de valor absoluto a a a, tenemos lo siguiente: Resolviendo por el método de puntos críticos, para cada caso tenemos: 0 0 0 Entonces

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel SGUIC3M023M311-A16V1 Estimado alumno: Aquí encontrarás las claves de corrección, las habilidades y los procedimientos de resolución asociados a cada pregunta, no obstante, para reforzar tu aprendizaje

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel SGUIC3M0M311-A15V1 Estimado alumno: Aquí encontrarás las claves de corrección, las habilidades y los procedimientos de resolución asociados a cada pregunta, no obstante, para reforzar tu aprendizaje es

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

que asocia a cada número entero su triple menos dos:

que asocia a cada número entero su triple menos dos: Dada la función f que asocia a cada número entero su triple menos dos: a) Escribe la epresión que nos proporciona f 0,, b) Calcula la imagen para ) Dada la siguiente función : ), ) y 0) a) Calcula b) Determina

Más detalles

4 E.M. Curso: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: Unidad de Aprendizaje: Función Cuadrática y Función Raíz Cuadrada.

4 E.M. Curso: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: Unidad de Aprendizaje: Función Cuadrática y Función Raíz Cuadrada. Curso: Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Función Cuadrática y Función Raíz Cuadrada Habilidad: 4 E.M. 8 Racionamiento Matemático/ Comprensión, Aplicación/ A.S.E. Valores/

Más detalles

NÚMEROS ENTEROS Y RACIONALES GUÍA DE EJERCITACIÓN Teorema de Thales y división de segmentos

NÚMEROS ENTEROS Y RACIONALES GUÍA DE EJERCITACIÓN Teorema de Thales y división de segmentos SGUICM0M11-A16V1 NÚMEROS ENTEROS Y RACIONALES GUÍA DE EJERCITACIÓN Teorema de Thales y división de segmentos 1 TABLA DE CORRECCIÓN TEOREMA DE THALES Y DIVISIÓN DE SEGMENTOS ÍTEM ALTERNATIVA HABILIDAD 1

Más detalles

FUNCIÓN. La Respuesta correcta es D

FUNCIÓN. La Respuesta correcta es D FUNCIONES FUNCIÓN La Respuesta correcta es D FUNCIÓN Función Continua: Es aquella en la que su gráfica se puede recorrer en forma ininterrumpida en toda su extensión. FUNCIÓN Función Discontinua: Es aquella

Más detalles

I) La pendiente de PS es cero. II) La pendiente de RQ es negativa. III) La pendiente de SR NO es un número real.

I) La pendiente de PS es cero. II) La pendiente de RQ es negativa. III) La pendiente de SR NO es un número real. Programa Estándar Anual Nº Guía práctica Ecuación de la recta en el plano cartesiano Ejercicios PSU 1. En la figura, PQRS es un trapecio. Entonces, cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?

Más detalles

Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos

Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos 12345678901234567890 M ate m ática Tutorial MT-b11 Matemática 2006 Tutorial Nivel Básico Inecuaciones e intervalos Matemática 2006 Tutorial Inecuaciones e intervalos I. Definición y Propiedades de las

Más detalles

Clase. Función cuadrática y ecuación de segundo grado

Clase. Función cuadrática y ecuación de segundo grado Clase Función cuadrática y ecuación de segundo grado Aprendizajes esperados Aplicar los conceptos matemáticos asociados al estudio de la función cuadrática. Graficar una función cuadrática, determinando

Más detalles

Tercero Medio MATEMÁTICA

Tercero Medio MATEMÁTICA Guía de ejercitación Funciones: eponencial, logarítmica raíz cuadrada Programa Tercero Medio MATEMÁTICA I. Mapa conceptual FUNCIONES Son de la forma Son de la forma Son de la forma f() = a f() = log a

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Función exponencial y función logarítmica GUICEN033MT21-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Función exponencial y función logarítmica GUICEN033MT21-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Función eponencial función logarítmica Matemática Programa Entrenamiento Desafío Cierto medicamento, una vez que es inectado, decrece de manera eponencial a lo largo del tiempo

Más detalles

Bloque 33 Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG047EM33-A17V1

Bloque 33 Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG047EM33-A17V1 SGUICEG047EM33-A17V1 Bloque 33 Guía: Ubicación de puntos, distancia longitudes en el plano cartesiano TABLA DE CORRECCIÓN UBICACIÓN DE PUNTOS, DISTANCIAS Y LONGITUDES EN EL PLANO CARTESIANO N Clave Dificultad

Más detalles

Inecuaciones: son desigualdades en las que se encuentra presente en uno cualquiera de los miembros, o en ambos, una o más variables, o incógnitas.

Inecuaciones: son desigualdades en las que se encuentra presente en uno cualquiera de los miembros, o en ambos, una o más variables, o incógnitas. TEMA: INECUACIONES Desigualdad: se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,, Por ejemplo: 6 0 ; 0 ; 8, etc.... Las

Más detalles

Unidad 1: Funciones de Potencia Tema 2: Función cuadráticas Lección 3: Soluciones

Unidad 1: Funciones de Potencia Tema 2: Función cuadráticas Lección 3: Soluciones 1 Unidad 1: Funciones de Potencia Tema : Función cuadráticas Lección 3: Soluciones 10 A.RE.10.4.5 Resuelve ecuaciones e desigualdades cuadráticas con coeficientes reales sobre el conjunto de números reales

Más detalles

Tutorial MT-b7. Matemática Tutorial Nivel Básico. Ecuaciones y Sistemas de ecuaciones

Tutorial MT-b7. Matemática Tutorial Nivel Básico. Ecuaciones y Sistemas de ecuaciones 146890146890 M ate m ática Tutorial MT-b Matemática 006 Tutorial Nivel Básico Ecuaciones y Sistemas de ecuaciones Matemática 006 Tutorial Ecuaciones y sistemas de ecuaciones Marco Teórico 1. Ecuaciones

Más detalles

UNIDAD DE APRENDIZAJE V

UNIDAD DE APRENDIZAJE V UNIDAD DE APRENDIZAJE V Saberes procedimentales Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. Relaciona la ecuación de segundo grado en dos

Más detalles

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4 NÚMEROS COMPLEJOS (C) DEFINICIÓN DE LA UNIDAD IMAGINARIA El cuadrado de un número real siempre es no negativo. Por ejemplo, no existe ningún número real x para el cual x 2 = -1. Para remediar esta situación,

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Potencias y propiedades GUICEN002MT21-A16V1. Si N es un número entero, entonces la expresión

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Potencias y propiedades GUICEN002MT21-A16V1. Si N es un número entero, entonces la expresión GUÍA DE EJERCITACIÓN AVANZADA Potencias y propiedades Programa Entrenamiento Desafío Si N es un número entero, entonces la expresión Matemática I) N N siempre es un número real. II) (N ) N es un número

Más detalles

palabra igual ya que es fundamental para todo lo se que realiza en matemática.

palabra igual ya que es fundamental para todo lo se que realiza en matemática. ECUACIONES ALGEBRAICAS. Introducción Parte de la genialidad que tuvo la humanidad fue la creación de la palara igual ya que es fundamental para todo lo se que realiza en matemática. Pero descriir tal palara

Más detalles

Desafío. Propiedades de los números racionales GUÍA DE EJERCITACIÓN AVANZADA GUICEN038MT21-A17V1

Desafío. Propiedades de los números racionales GUÍA DE EJERCITACIÓN AVANZADA GUICEN038MT21-A17V1 PROGRAMA ENTRENAMIENTO Propiedades de los números racionales Desafío Un número n, en los enteros positivos, tiene un total de p divisores positivos distintos. Luego, es correcto afirmar que si GUÍA DE

Más detalles

Examen de práctica de Matemática de Bachillerato E.D.A.D. 2012

Examen de práctica de Matemática de Bachillerato E.D.A.D. 2012 Eamen de práctica de Matemática de Bachillerato E.D.A.D. 0 SELECCIÓN ÚNICA. Uno de los factores de. Uno de los factores de a a 5 a 5 a 5 9 es 9a 6a 5. Al factorizar 5 es uno de los factores es 4. Uno de

Más detalles

( 3) esto no es igual a 3 ya que sería

( 3) esto no es igual a 3 ya que sería MATEMÁTICA MÓDULO 3 Eje temático: Álgebra y Funciones 1. RAÍCES CUADRADAS Y CÚBICAS Comencemos el estudio de las raíces haciéndonos la siguiente pregunta: si el área de un cuadrado es 15 cm, cuál es su

Más detalles

SGUICES023MT21-A16V1. SOLUCIONARIO Logaritmos

SGUICES023MT21-A16V1. SOLUCIONARIO Logaritmos SGUICES0MT1-A16V1 SOLUCIONARIO Logaritmos 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Logaritmos Ítem Alternativa 1 A B A E ASE A 6 C 7 B 8 E 9 B 10 A 11 D 1 B 1 E 1 C 1 D 16 E Comprensión 17 E 18 C 19 C 0 C ASE

Más detalles

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1 SGUICEG055EM-A7V Bloque Guía: Ecuación de la recta en el lano cartesiano TABLA DE CORRECCIÓN ECUACIÓN DE LA RECTA EN EL PLANO CARTESIANO N Clave Dificultad estimada B Alicación Media A Alicación Media

Más detalles

Guía de Materia Matemáticas Funciones

Guía de Materia Matemáticas Funciones Guía de Materia Matemáticas Funciones Funciones Definición: Una función de en es una relación de en en la que cada elemento del conjunto se relaciona con uno solo un elemento de Ejemplo f a m n b q r c

Más detalles

INECUACIONES LINEALES

INECUACIONES LINEALES INECUACIONES POLINÓMICAS EN UNA VARIABLE Las inecuaciones en general, son desigualdades entre epresiones algebraicas en las que intervienen una o más variables. Cuando las epresiones algebraicas de cada

Más detalles

Ecuación de segundo grado

Ecuación de segundo grado UNEFA C.I.N.U. Matemáticas 0 Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008) Fundamentos de Matemáticas, Unidad 5 Ecuaciones e Inecuaciones,

Más detalles

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1 UCV FACULTAD DE INGENIERIA CALCULO I 16/04/010 Solución al primer eamen parcial 1. Encuentre el conjunto de todos los números reales que satisfacen el sistema de inecuaciones - 3 4 4 0 1 1 1 Solución:

Más detalles

SOLUCIONARIO SIMULACRO MT

SOLUCIONARIO SIMULACRO MT SOLUCIONARIO SIMULACRO MT-04 008 1 1. La alternativa correcta es E Razones, proporciones, porcentajes e interés El porcentaje de asistencia se calcula de la siguiente forma: asistentes 100 total invitados

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

7.FUNCIÓN REAL DE VARIABLE REAL

7.FUNCIÓN REAL DE VARIABLE REAL 7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el

Más detalles

Una variable es una cantidad que se simboliza por una literal y que puede tomar diferentes valores.

Una variable es una cantidad que se simboliza por una literal y que puede tomar diferentes valores. MATEMÁTICAS BÁSICAS TEORÍA DE ECUACIONES DEFINICIÓN DE OLINOMIO Y DE ECUACIÓN Una variable es una cantidad que se simboliza por una literal y que puede tomar diferentes valores. Una constante es una magnitud

Más detalles

FUNCIONES Y SUS GRÁFICAS. APLICACIONES GRADO: 11º AREA: MATEMÁTICAS.

FUNCIONES Y SUS GRÁFICAS. APLICACIONES GRADO: 11º AREA: MATEMÁTICAS. Gestores de Calidad 05 INSTITUCIÓN EDUCATIVA DEPARTAMENTAL RURAL EL ALTICO MUNICIPIO DE COGUA ESTRUCTURA CURRICULAR TECNICO PROFESIONAL EN AGROINDUSTRIA En equipo trabajando, personas mejorando FUNCIONES

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE PRIMER GRADO

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE PRIMER GRADO UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE PRIMER GRADO CONCEPTOS ECUACIÓN es una igualdad entre dos epresiones algebraicas que contienen elementos desconocidos llamados incógnitas. RAÍZ O SOLUCIÓN de una

Más detalles

GUÍA DE EJERCICIOS. Área Matemáticas

GUÍA DE EJERCICIOS. Área Matemáticas GUÍA DE EJERCICIOS INECUACIONES Área Matemáticas Resultados de aprendizaje Aplicación de las propiedades de desigualdad, en la demostración de proposiciones simples.resolución de Inecuaciones, con aplicación

Más detalles

Guía de Ejercicios: Funciones

Guía de Ejercicios: Funciones Guía de Ejercicios: Funciones Área Matemática Resultados de aprendizaje Determinar dominio y recorrido de una función. Analizar funciones: inyectivas, sobreyectivas y biyectivas. Determinar la función

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo Desafío Una población estadística está compuesta de cuatro números enteros consecutivos, siendo n el menor de ellos. La desviación

Más detalles

( ) ( ) -3. Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir,

( ) ( ) -3. Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir, Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir, f : x y Definida así: f ( x) = ax + bx + c donde a, b c R.(Por un Polinomio de º grado). Su gráfica es una

Más detalles

CÁLCULO. Función Lineal. Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en.

CÁLCULO. Función Lineal. Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en. Función Lineal Se llama función lineal a toda función que tiene la forma:. con Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en. Muchas son

Más detalles

Como se vio anteriormente un binomio es una expresión algebraica de dos términos.

Como se vio anteriormente un binomio es una expresión algebraica de dos términos. Como se vio anteriormente un binomio es una epresión algebraica de dos términos. Ejemplos: 1) a+b ) ²-4yz ) -ab³-b³ 4) 1+4⁴ 5) -1-a²b La factorización de binomios es un proceso muy importante en álgebra.

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Propiedades y operatoria de números enteros GUICEN023MT21-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Propiedades y operatoria de números enteros GUICEN023MT21-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Propiedades y operatoria de números enteros Programa Entrenamiento Desafío Un número n, en los enteros positivos, tiene un total de p divisores positivos distintos. Luego,

Más detalles

es una identidad algebraica

es una identidad algebraica MATEMÁTICAS BÁSICAS ECUACIONES CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores y se

Más detalles

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera:

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera: Funciones cuadráticas Función cuadrática Deinición: Una unción cuadrática es una unción : R R deinida por la ormula = a + b + c Donde a, b y c son números reales y a 0. Esta epresión de la unción cuadrática

Más detalles

SOLUCIÓN DE ECUACIONES CUADRÁTICAS POR FACTORIZACIÓN

SOLUCIÓN DE ECUACIONES CUADRÁTICAS POR FACTORIZACIÓN Qué vas a aprender: Utilizar ecuaciones cuadráticas para modelar situaciones y resolverlas usando la factorización SOLUCIÓN DE ECUACIONES CUADRÁTICAS POR FACTORIZACIÓN Al finalizar la sección - asegúrate

Más detalles

Resolver ecuaciones racionales y con raíz transformando la ecuación en una lineal o cuadrática. Ecuación Expresiones Variables.

Resolver ecuaciones racionales y con raíz transformando la ecuación en una lineal o cuadrática. Ecuación Expresiones Variables. Clase : Ecuaciones lineales, cuadráticas, racionales y con raíz Resolver ecuaciones lineales y cuadráticas. Resolver ecuaciones racionales y con raíz transformando la ecuación en una lineal o cuadrática..

Más detalles

DEFINICION DE RELACIÓN

DEFINICION DE RELACIÓN DEFINICION DE RELACIÓN Se Define como relación o correspondencia R entre los conjuntos B C, a un subconjunto del producto cartesiano B C, compuesto por pares de elementos que cumplen cierta regla definida.

Más detalles

SGUICEG024MT22-A16V1. SOLUCIONARIO Ubicación de puntos, distancia y longitudes en el plano cartesiano

SGUICEG024MT22-A16V1. SOLUCIONARIO Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG04MT-A16V1 SOLUCIONARIO Ubicación de puntos, distancia longitudes en el plano cartesiano 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA UBICACIÓN DE PUNTOS, DISTANCIA Y LONGITUDES EN EL PLANO CARTESIANO Ítem

Más detalles

FU CIÓ CUADRÁTICA. y = a.x 2 + b.x + c. Término Cuadrático Término Lineal Término Independiente. Matestay. a = 1 b = 4 c = 3. d 2.

FU CIÓ CUADRÁTICA. y = a.x 2 + b.x + c. Término Cuadrático Término Lineal Término Independiente. Matestay. a = 1 b = 4 c = 3. d 2. FU CIÓ CUADRÁTICA La función cuadrática es una función mu común en Matemática. Se trata de una función de segundo grado: la "" aparece elevada al cuadrado como máima potencia. Su representación gráfica

Más detalles

Matemáticas III. Geometría analítica

Matemáticas III. Geometría analítica Matemáticas III. Geometría analítica Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Gráfico Exponencial, Polinominal y Cuadrático. Grafico de la funcion exponencial F(x)=a^ x, con a > 1. F(x)= 2^x

Gráfico Exponencial, Polinominal y Cuadrático. Grafico de la funcion exponencial F(x)=a^ x, con a > 1. F(x)= 2^x Gráfico Exponencial, Polinominal y Cuadrático Grafico de la funcion exponencial F(x)=a^ x, con a > 1 F(x)= 2^x Rec: R+ F(x):creciente en su recorrido ( la curva crece de izquierda a derecha) Asintótica

Más detalles

Remedial Unidad N 1 Matemática Octavo Básico 2017

Remedial Unidad N 1 Matemática Octavo Básico 2017 Remedial Unidad N 1 Matemática Octavo Básico 2017 GUÍA DE TRABAJO REMEDIAL N 1 UNIDAD N 1 Nombre Curso 8 año básico Fecha Objetivo Habilidad cognitiva Tiempo Utilizar las operaciones de multiplicación

Más detalles

1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo:

1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo: Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo: 3 + x y = 3 x x + x 3 + x y = 3 x x + x Abierta hacia arriba Abierta hacia abajo Abierta hacia abajo Calcula

Más detalles

EGRESADOS. Matemática PROGRAMA. Guía: Función exponencial. Ejercicios PSU

EGRESADOS. Matemática PROGRAMA. Guía: Función exponencial. Ejercicios PSU PROGRAMA EGRESADOS Ejercicios PSU. I) f(0) = II) f( ) = III) f Solo I Solo II Solo III () = 8 E) Solo I y III I, II y III Sea la función real f() = 7. Cuál(es) de las siguientes afirmaciones es (son) FALSA(S)?

Más detalles

OLIMPIADAS COSTARRICENSES DE MATEMÁTICAS

OLIMPIADAS COSTARRICENSES DE MATEMÁTICAS OLIMPIADAS COSTARRICENSES DE MATEMÁTICAS UNA - UCR - TEC - UNED - MEP - MICITT Álgebra e iπ + φ φ 0 III Nivel I Eliminatoria Marzo 06 Índice. Presentación. Contenidos 3. Algunos consejos útiles 4. Problemas

Más detalles

Funciones, límites y continuidad

Funciones, límites y continuidad 8/0/016 Funciones, límites y continuidad C U R S O 0 1 5-0 1 6 Funciones, limites y continuidad Los puntos rojos son los que entran en el eamen de º evaluación 1) Concepto de función. Dominio y recorrido.

Más detalles

Tema 5: Funciones. Límites de funciones

Tema 5: Funciones. Límites de funciones Tema 5: Funciones. Límites de funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

Guía de Matemática Tercero Medio

Guía de Matemática Tercero Medio Guía de Matemática Tercero Medio Aprendizaje Esperado: 1. Plantean y resuelven problemas que involucran ecuaciones de segundo grado; explicitan sus procedimientos de solución y analizan la existencia y

Más detalles

Es el estudio de la geometría a través de técnicas análisis matemático y el álgebra. y = mx + n. La recta intersecta al eje Y en el punto (0, n).

Es el estudio de la geometría a través de técnicas análisis matemático y el álgebra. y = mx + n. La recta intersecta al eje Y en el punto (0, n). Programa Acompañamiento Cuadernillo de ejercitación Ejercitación Ecuación de la recta GEOMETRÍA ANALÍTICA Qué es? Es el estudio de la geometría a través de técnicas del análisis matemático el álgebra.

Más detalles

Función cuadrática. Ecuación de segundo grado completa

Función cuadrática. Ecuación de segundo grado completa Función cuadrática Una función cuadrática es aquella que puede escribirse como una ecuación de la forma: f(x) = ax 2 + bx + c donde a, b y c (llamados términos) son números reales cualesquiera y a es distinto

Más detalles

GUIA Nº3. FUNCIONES 2º MEDIO A) 30 B) 20 C) 10 D) 0 E) -10. A) sólo I B) sólo III C) I y II D) II y III E) I, II y III

GUIA Nº3. FUNCIONES 2º MEDIO A) 30 B) 20 C) 10 D) 0 E) -10. A) sólo I B) sólo III C) I y II D) II y III E) I, II y III Colegio Raimapu Departamento de Matemática GUIA Nº. FUNCIONES º MEDIO 1. Si f(x)= x + 10 y f(b)= 0, entonces b es igual a: A) 0 B) 0 C) 10 D) 0 E) -10. Si f(x) = x ; Cuál(es) de las siguientes afirmaciones

Más detalles

1 er Problema. 2 Problema

1 er Problema. 2 Problema Facultad de Contaduría Administración. UNAM Lugares geométricos Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS LUGARES GEOMÉTRICOS Eisten dos problemas fundamentales en la Geometría Analítica:.

Más detalles

LA ECUACIÓN CUADRÁTICA

LA ECUACIÓN CUADRÁTICA INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA DURACION 3

Más detalles

Colegio Universitario Boston Función Logarítmica Función Logarítmica 226

Colegio Universitario Boston Función Logarítmica Función Logarítmica 226 226 Una función logarítmica es una función de la forma representa a la base de la función, y cumple el papel de argumento., donde Para que una función se considere logarítmica se debe cumplir que el valor

Más detalles

Tutorial MT-a8. Matemática Tutorial Nivel Avanzado. Guía global Geometría

Tutorial MT-a8. Matemática Tutorial Nivel Avanzado. Guía global Geometría 12345678901234567890 M ate m ática Tutorial MT-a8 Matemática 2006 Tutorial Nivel Avanzado Guía global Geometría Matemática 2006 Tutorial Guía Global Geometría Ejercicios 1. Cuál de las siguientes opciones

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

Cociente. Resto Cómo procedimos? 3 x por 2

Cociente. Resto Cómo procedimos? 3 x por 2 COLEGIO SECUNDARIO LA PLATA Colegio Secundario La Plata Educar para un mundo mejor DIVISIÓN DE POLINOMIOS Definición: Dados dos polinomios, P() y Q(), siempre eisten polinomios C() y R(), únicos, llamados

Más detalles

EJERCICIOS RESUELTOS. DETERMINACIÓN ANALÍTICA DEL DOMINIO Y RANGO DE FUNCIONES.

EJERCICIOS RESUELTOS. DETERMINACIÓN ANALÍTICA DEL DOMINIO Y RANGO DE FUNCIONES. AYUDA EJERCICIOS RESUELTOS. DETERMINACIÓN ANALÍTICA DEL DOMINIO Y RANGO DE FUNCIONES. DADAS LAS FUNCIONES, DETERMINAR SU DOMINIO Y RANGO. a) b) f 4 c) p d) g e) f) h g) q SOLUCIÓN: a) Empleando al algoritmo

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

PROBLEMAS RESUELTOS DE LA ECUACIÓN DE LA RECTA

PROBLEMAS RESUELTOS DE LA ECUACIÓN DE LA RECTA PROLEMS RESUELTOS DE L ECUCIÓN DE L RECT 1) Hallar la pendiente el ángulo de inclinación de la recta que pasa por los puntos (-, ) (7, -) 1 m 1 m 7 1 comom tan entonces 1 1 tan 1,4 ) Los segmentos que

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4

Más detalles

Álgebra Básica Desarrollo ejercicios Guia 7.

Álgebra Básica Desarrollo ejercicios Guia 7. Álgebra Básica Desarrollo ejercicios Guia 7. Ecuaciones Racionales 1. Resuelva las siguientes ecuaciones racionales, analizando el dominio y dando el conjunto solución. a) 1 m Convencionalmente despejamos,

Más detalles

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones

Más detalles