Una serie temporal o cronológica es en una sucesión de valores que adopta una variable (Y):

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Una serie temporal o cronológica es en una sucesión de valores que adopta una variable (Y):"

Transcripción

1 INTRODUCCIÓN Nos vamos a ocupar ahora de estudiar un fenómeno desde la perspectiva temporal, observando su evolución a través del tiempo, lo que se denomina investigación diacrónica o longitudinal, en contraposición a la sincrónica o seccional, efectuada o referida a un momento concreto del tiempo. Son muchos los fenómenos, tanto en el campo social, económico, físico, etc, que presentan interés para ser analizados diacrónicamente. Supongamos por ejemplo, la evolución de los nacimientos habidos en una nación a través de un periodo largo de tiempo, o el desarrollo de la producción de coches de una empresa, o el movimiento que refleja el volumen de agua registrado en un pantano, etc. Uno de los objetivos de estas técnicas descriptivas que veremos a continuación será desvelar la estructura o esquema de comportamiento que presentan estos fenómenos, analizando las regularidades que manifiestan a través de un periodo de tiempo suficientemente extenso, de su pasado. Esto podría permitirnos efectuar predicciones en el comportamiento futuro a corto o largo plazo. Esta es una de las cuestiones más interesantes y preocupantes a las que se enfrenta el hombre, en su necesidad de planificación y de actuaciones rápidas, de manera que la predicción se hace prácticamente indispensable en muchas cuestiones. DEFINICIÓN DE UNA SERIE TEMPORAL Una serie temporal o cronológica es en una sucesión de valores que adopta una variable (Y): en distintos instantes de tiempo: Gráficamente una serie temporal podría tener la siguiente forma: 1

2 El espacio de tiempo comprendido entre dos observaciones consecutivas cualesquiera consideraremos que es constante, es decir, se observa el fenómeno en instantes tomados regularmente. Si para cada intervalo de tiempo (normalmente se tomarán años) existen varios instantes o periodos dentro del año (trimestres, meses, días) tendremos recogida información de la serie como aparece en la siguiente tabla: es decir, la observación yij será el valor de la variable Y en el periodo j correspondiente al año i. Por ejemplo, si estudiamos meses dentro del año p=12; si son trimestres p=4. Para el estudio de la serie emplearemos las denominadas técnicas de descomposición de la serie, cuyo análisis se basa en el pasado de la misma. Esta técnica establece y acepta previamente un esquema formal concreto para después, según ese esquema prefijado, proceder a determinar sus componentes. Notemos que aquí nos 2

3 limitamos a observar únicamente la variable en estudio, haciendo abstracción de la influencia que puedan tener otras variables en la misma (como en el caso de la regresión). Es preciso decir, que ésta no es la única forma de estudiar las series. El estadístico tiene a su disposición otras técnicas más elaboradas y complejas (ARIMA), buscando durante el proceso, tanto el ajuste de los datos como el esquema a elegir, así como para la búsqueda de sus características concretas o parámetros. Es decir, no hay aceptado un esquema fijo de antemano, sino un abanico de posibilidades que se irán decantando teniendo en cuenta las influencias entre los valores de la serie en los distintos periodos en que se observa. Pasemos a centrarnos en la técnica que nos ocupa: la experiencia y observación de este tipo de fenómenos nos permite desglosar la serie en varias componentes, que representan formas particulares de variación. Por tanto, el estudio descriptivo, tiene como objetivo desentrañar este tipo de movimientos o variaciones y descomponer el fenómeno en estas componentes suponiendo unas relaciones dadas entre ellas, es decir, estableciendo, tal como apuntábamos anteriormente, el tipo de ajuste que suponemos origina "la trayectoria" de la serie. COMPONENTES DE INTERÉS DE UNA SERIE TEMPORAL 1. TENDENCIA Se denomina tendencia o movimiento secular a la trayectoria a largo plazo de la serie, haciendo abstracción de las fluctuaciones que se producen a intervalos más breves de tiempo. Este movimiento puede ser ascendente, descendente, estable o combinación de éstos, pero siempre ha de observarse un periodo de tiempo muy amplio para poder captar dicha componente. Gráficamente: 3

4 Ejemplo: el gráfico anterior podría corresponder al movimiento de los salarios; estos se muestran según una línea ascendente a través del tiempo. 2. COMPONENTE ESTACIONAL Las variaciones estacionales son movimientos repetitivos que se producen sistemáticamente a lo largo de la trayectoria de la serie y generalmente representan las fluctuaciones que se registran de forma constante en periodos de tiempo por lo general, inferiores al año. El hecho de estar en un periodo concreto (mes, trimestre, etc.), año a año puede producir un comportamiento repetitivo de la variable. Gráficamente: Ejemplo: el gráfico anterior podría corresponder a la serie consumo energético familiar ; en los periodos invernales el consumo experimentaría una fuerte subida y durante los veranos una fuerte reducción. 4

5 ESTUDIO DE LA TENDENCIA MEDIAS MÓVILES Pretendemos obtener una trayectoria que refleje el movimiento a largo plazo de la serie eliminando o reduciendo en lo posible las fluctuaciones periódicas que van teniendo lugar en torno a la misma. Un modo de reducir la variabilidad de la serie, se obtiene mediante el cálculo de promedios que aglutinen y compensen valores altos y bajos. El método consiste pues, en ir agrupando sistemáticamente un número fijo k de valores de la serie y determinar para cada grupo su media. Nota: En este caso no es preciso utilizar la notación de los valores de la serie con doble subindicación yij, por lo que designaremos con yi los valores de la serie. Obtención de las medias móviles de orden k: Tomaremos los k primeros elementos observados en la serie y calculamos su media: y esta media y 1, la hacemos corresponder al periodo mediano (o medio) de los periodos 1,2,3,...,k (notemos que si k es impar, la mediana es el instante que está en el centro, pero si k es par, será un instante comprendido entre los dos centrales). Para obtener la segunda media móvil, consideramos los elementos: Y calculamos su media De manera análoga asignamos esta media al instante mediano correspondiente a los periodos de las observaciones que intervienen en dicha suma. Así sucesivamente se continúa el proceso hasta que intervenga en la media la última observación de la serie. Obtendremos así las n-k+1 medias móviles que representan el nuevo movimiento suavizado de la serie. 5

6 donde de forma general: Aclaraciones: - Notemos que las medias obtenidas por un movimiento de orden k, par, no estarán asignadas a los instantes registrados en la serie original. Por consiguiente, en este caso es preciso centralizar la serie de medias móviles efectuando un nuevo movimiento de orden dos (cálculo de medias móviles con k=2) sobre los valores y' de las medias móviles de orden k. - Es evidente que cuanto mayor sea k más suavizadas serán las series obtenidas, es decir, reflejarán menos fluctuaciones, pero también perderemos más información, ya que si k es par, perdemos en total k observaciones; y si k es impar, perdemos en total k-1 observaciones. - Hay que señalar también que este método, aunque fácil de calcular, es poco manejable si lo comparamos con las ventajas de una ecuación o función matemática. Ejemplo: Los siguientes datos corresponden al número de accidentes de tráfico durante 10 meses registrados en una determinada zona considerada como conflictiva: Si representamos la serie 6

7 vemos que su tendencia es ascendente; vamos a obtenerla mediante medias móviles de orden 3. Tomemos por tanto, los tres primeros valores de la serie y calculemos su media: Quitemos ahora el primer valor y añadamos el cuarto: Quitando el segundo valor y añadiendo el quinto: Repitiendo esta operación aparecen todas las medias móviles de orden 3. Asignaremos cada una de ellas al periodo mediano correspondiente: Observe que como k es impar, hemos perdido k-1 observaciones (3-1=2). Representemos la nueva serie de medias móviles: De forma similar a la obtención de las medias móviles de orden 3, calculemos las de orden 4. Son las siguientes: 20.5, 23, 27.25, 35.5, 42.75, 46.5,

8 que corresponderán a los periodos medianos: 2.5, 3.5, 4.5,..., 12.5 Nota: 2.5=Me(1,2,3,4); 3.5=Me(2,3,4,5), etc. Volvemos a tomar en las medias móviles de orden 4, medias móviles de orden 2, ya que es preciso centrar la serie para que los valores obtenidos vengan referidos también a los periodos originales: Nota: 3=Me(2.5,3.5); 4=Me(3.5,4.5), etc. Hemos perdido k=4 observaciones. Si representemos estas medias móviles, vemos que la serie se suaviza aún más: serie original y tendencia (por medias móviles de orden 4) ESTUDIO DE LA COMPONENTE ESTACIONAL Pretendemos ahora, estimar la variación de la variable en cada periodo estacional, para que nos indique el incremento que ha experimentado un periodo estacional dado, tomando como base un valor medio referido a todo el año. En ocasiones nos interesará conocer las variaciones estacionales, y eliminarlas del comportamiento global de la serie, para poder observar mejor el movimiento de ésta.(desestacionalización). 8

9 Veremos el método de las medias móviles (hay muchos más) distinguiendo también según el esquema adoptado: multiplicativo o aditivo. Método de las medias móviles/esquema Multiplicativo Suponemos que el esquema es multiplicativo, es decir: En primer lugar se ha de determinar un movimiento de medias móviles de orden p igual al número de periodos observados por año para eliminar de las observaciones originales las fluctuaciones estacionales. Por ejemplo, si estudiamos una serie, considerando los meses del año, entonces p=12. Los nuevos valores así obtenidos reflejarán fundamentalmente las variaciones cíclicas y de tendencia. Designaremos con y' estos nuevos valores para distinguirlos de los originales y. Podríamos entonces expresar el esquema: y dividiendo esta ecuación por Y' y despejando la componente estacional, queda: La componente estacional viene reflejada fundamentalmente por los cocientes y/y' más unos cocientes residuales que reflejan fundamentalmente las variaciones irregulares. Por último determinaremos la media para cada periodo estacional, con lo cual obtendremos un valor representativo de cada uno de ellos, a la vez que al promediar eliminamos las variaciones irregulares bajo el supuesto de que dichos valores se complementarán y anularán, en términos generales. Los valores obtenidos serán las componentes estacionales. En definitiva: i. Partimos de una serie de valores yij donde j es el periodo observado e i el año. ii. Obtenemos medias móviles de orden p (nº de periodos dentro del año) y ij iii. Realizamos el cociente 9

10 iv. Obtenemos cada componente estacional (media para cada periodo estacional): Nota: Si suponemos que el total de años observados es n, notemos que al tomar movimiento de medias móviles de orden p (nº observaciones por año), habremos perdido información referente a las primeras y últimas observaciones, por lo que sólo utilizaremos n-1 valores para obtener las medias. Normalización de los índices estacionales: Conviene rectificar o normalizar esos índices obtenidos, si se comprueba que la suma de todos ellos difiere de p. Designando a los índices ya normalizados por E.*j, para que se verifique esto: de donde, despejando el índice normalizado: siendo M la media de todos los índices estacionales. Ejemplo: En la siguiente tabla se recoge el número de individuos (en miles) que han acudido durante los años a una estación de invierno: 10

11 Representemos la serie: Vemos que existe componente estacional; por ejemplo, en los primeros trimestres del año, el aumento de individuos en la estación aumenta considerablemente. Veamos cuál es el aumento o disminución por trimestres. Hallamos medias móviles de orden 4 (nº de periodos). Recuerde que para centrar la serie hemos de efectuar seguidamente otro movimiento de orden 2, ya que el primer número de orden es par y por consiguiente hemos perdido 4 observaciones. Los resultados son: 11

12 Realizamos ahora los cocientes entre las observaciones originales entre las observaciones correspondientes a la tendencia y eliminamos las variaciones irregulares promediando: Observando las medias trimestrales vemos que en los dos primeros trimestres la afluencia a la estación de invierno es mayor a la media anual. La suma de estas medias o índices estacionales debería ser igual a 4 (nº de periodos); en este caso la suma es , por lo que es necesario normalizarlas para obtener los índices estacionales definitivos. Para ello, dividimos todos ellos por su media: resultando los índices estacionales definitivos: Por lo tanto, en el 1er trimestre el número de individuos aumenta un 64.9% respecto a la media anual, en el 2º un 25.9%, en el 3º disminuye un 56.7% y en el 4º también disminuye un 34.1% respecto a la media anual. 12

SERIES DE TIEMPO INTRODUCCIÓN

SERIES DE TIEMPO INTRODUCCIÓN Clase Nº 5 SERIES DE TIEMPO INTRODUCCIÓN La forma más utilizada para el análisis de las tendencias futuras es realizar pronósticos. La función de un pronóstico de demanda de un bien, por ejemplo ventas

Más detalles

SERIES DE TIEMPO EMPLEANDO EXCEL Y GRAPH

SERIES DE TIEMPO EMPLEANDO EXCEL Y GRAPH SERIES DE TIEMPO EMPLEANDO EXCEL Y GRAPH 1) DEFINICIÓN Las series de tiempo llamadas también series cronológicas o series históricas son un conjunto de datos numéricos que se obtienen en períodos regulares

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

SERIES TEMPORALES (esquemas)

SERIES TEMPORALES (esquemas) SERIES TEMPORALES (esquemas) INTRODUCCIÓN DESCOMPOSICIÓN (ANÁLISIS CLÁSICO) TENDENCIA SECULAR VARIACIONES CICLICAS VARIACIONES ESTACIONALES VARIACIÓN ERRÁTICA ANÁLISIS DE LA TENDENCIA MEDIAS MÓVILES ALISAMIENTO

Más detalles

EJERCICIOS RESUELTOS DE SERIES TEMPORALES

EJERCICIOS RESUELTOS DE SERIES TEMPORALES EJERCICIOS RESUELTOS DE SERIES TEMPORALES Estadística Descriptiva: SERIES TEMPORALES Facultad Ciencias Económicas y Empresariales Departamento de Economía Aplicada Profesor: Santiago de la Fuente Fernández.

Más detalles

CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL

CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL Contextualización En la primera parte del curso hemos estudiado el análisis clásico de series temporales en el que se asume que una serie temporal resulta de la

Más detalles

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es Matemáticas 1 o ESO David J. Tarifa García info@esobachilleratouniversidad.com.es 1 Matemáticas - 1 o ESO 2 Índice 1 Tema 1. Los números naturales 6 1.1 Suma de números naturales................................

Más detalles

Metodología. del ajuste estacional. Tablero de Indicadores Económicos

Metodología. del ajuste estacional. Tablero de Indicadores Económicos Metodología del ajuste estacional Tablero de Indicadores Económicos Metodología del ajuste estacional Componentes de una serie de tiempo Las series de tiempo están constituidas por varios componentes que,

Más detalles

ESTRATEGIAS DE CÁLCULO MENTAL

ESTRATEGIAS DE CÁLCULO MENTAL ESTRATEGIAS DE CÁLCULO MENTAL El cálculo mental consiste en realizar cálculos matemáticos utilizando sólo el cerebro sin ayudas de otros instrumentos como calculadoras o incluso lápiz y papel. Las operaciones

Más detalles

Series de Tiempo. Series de Tiempo

Series de Tiempo. Series de Tiempo Series de Tiempo 1. Requisitos de Estadística Descriptiva: a. Media, Mediana b. Desviación estándar c. Regresión lineal 2. Qué es una serie de tiempo a. Componentes de la Serie de Tiempo (tipos de variación):

Más detalles

Apuntes de ESTADÍSTICA. y series temporales. Sixto Sánchez Merino. Dpto. de Matemática Aplicada Universidad de Málaga

Apuntes de ESTADÍSTICA. y series temporales. Sixto Sánchez Merino. Dpto. de Matemática Aplicada Universidad de Málaga Apuntes de ESTADÍSTICA Números índice y series temporales Sixto Sánchez Merino Dpto. de Matemática Aplicada Universidad de Málaga Apuntes de Estadística 2009, Sixto Sánchez Merino. Este trabajo está editado

Más detalles

Tema 3. Series de Tiempo

Tema 3. Series de Tiempo Tema 3. Series de Tiempo 3.3.1. Definición En Estadística se le llama así a un conjunto de valores observados durante una serie de períodos temporales secuencialmente ordenada, tales períodos pueden ser

Más detalles

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán Capítulo 4 MEDIDA DE MAGNITUDES Autor: Santiago Ramírez de la Piscina Millán 4 MEDIDA DE MAGNITUDES 4.1 Introducción El hecho de hacer experimentos implica la determinación cuantitativa de las magnitudes

Más detalles

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales.

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales. Series Temporales Introducción Una serie temporal se define como una colección de observaciones de una variable recogidas secuencialmente en el tiempo. Estas observaciones se suelen recoger en instantes

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

METODOS ELEMENTALES DE PROCESAMIENTO DE SERIES DE TIEMPO

METODOS ELEMENTALES DE PROCESAMIENTO DE SERIES DE TIEMPO METODOS ELEMENTALES DE PROCESAMIENTO DE SERIES DE TIEMPO Jorge Galbiati Riesco En este apunte se da una visión general sobre algunos procedimientos en el análisis en series de tiempo. Inicialmente presentamos

Más detalles

Gestión Financiera 2º AF 1

Gestión Financiera 2º AF 1 LEY FINANCIERA DE INTERÉS SIMPLE Gestión Financiera 2º AF 1 1.1 Concepto Operación financiera cuyo objeto es la sustitución de un capital presente por otro equivalente con vencimiento posterior, mediante

Más detalles

9.Método de integración por partes.-

9.Método de integración por partes.- Matemáticas de º de bachillerato página 6 Integral indefinida P P P Se trata de otro método que permite resolver cierto tipo de integrales. Veamos: Sea u() una función. Para abreviar la epresaremos por

Más detalles

Análisis descriptivo de series temporales aplicadas al precio medio de la vivienda en España

Análisis descriptivo de series temporales aplicadas al precio medio de la vivienda en España Análisis descriptivo de series temporales aplicadas al precio medio de la vivienda en España Justo Puerto María Paz Rivera * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

Contenido. Horizontes temporales de la previsión La influencia del ciclo de vida del producto

Contenido. Horizontes temporales de la previsión La influencia del ciclo de vida del producto Previsión Contenido Qué es la previsión? Horizontes temporales de la previsión La influencia del ciclo de vida del producto Tipos de previsiones La importancia estratégica de la previsión Recursos humanos

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

NÚMEROS ÍNDICE - SERIES TEMPORALES

NÚMEROS ÍNDICE - SERIES TEMPORALES NÚMEROS ÍNDICE - SERIES TEMPORALES 1 INTRODUCCIÓN Hasta ahora hemos trabajado con series de valores, que hemos tratado de forma estadística para conocer descriptivamente sus características. Existen valores

Más detalles

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas).

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). TEMA 5.- GRAFOS 5.1.- DEFINICIONES BÁSICAS Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). Gráficamente representaremos

Más detalles

ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960

ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960 ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960 Verón, Juan Antonio* ; Herrera, Carlos Gabriel*; Rodríguez, Norma Leonor** * Facultad de Tecnología y Ciencias Aplicada de la UNCa.

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

Series de Tiempo. Germán Aneiros Pérez. Máster en Técnicas Estadísticas Curso 2008-09. Departamento de Matemáticas Universidade da Coruña

Series de Tiempo. Germán Aneiros Pérez. Máster en Técnicas Estadísticas Curso 2008-09. Departamento de Matemáticas Universidade da Coruña Departamento de Matemáticas Universidade da Coruña Máster en Técnicas Estadísticas Curso 2008-09 Bibliografía Índices Bibliografía Tema 1: Análisis descriptivo de una tiempo Tema 2: Series de tiempo y

Más detalles

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible

Más detalles

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 1. Electrónica Digital Antes de empezar en el tema en cuestión, vamos a dar una posible definición de la disciplina que vamos a tratar, así como su ámbito

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

Ideas básicas sobre movimiento

Ideas básicas sobre movimiento Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

33 El interés compuesto y la amortización de préstamos.

33 El interés compuesto y la amortización de préstamos. 33 El interés compuesto y la amortización de préstamos. 33.0 El interés compuesto. 33.0.0 Concepto. 33.0.02 Valor actualizado de un capital. 33.0.03 Tiempo equivalente. 33.02 Amortización de préstamos.

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL 1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD.

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD. Experimentos con un solo factor: El análisis de varianza Jhon Jairo Padilla Aguilar, PhD. Experimentación en sistemas aleatorios: Factores Controlables Entradas proceso Salidas Factores No controlables

Más detalles

7.1. Conceptos básicos. Clasificación

7.1. Conceptos básicos. Clasificación Unidad 7 Préstamos 7.1. Conceptos básicos. Clasificación 7.1.1. Elementos de un préstamo 7.1.2. El tipo de interés. Componentes 7.1.3. Clasificación 7.2. Préstamos amortizables con reembolso único 7.2.1.

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID ECONOMETRIA PRIMER PARCIAL 17 DE ENERO DE 2008 1.- A) La transformación estacionaria es SOLUCIONES

Más detalles

Introducción. Estadística 1. 1. Introducción

Introducción. Estadística 1. 1. Introducción 1 1. Introducción Introducción En este tema trataremos de los conceptos básicos de la estadística, también aprenderemos a realizar las representaciones gráficas y a analizarlas. La estadística estudia

Más detalles

Medidas de tendencia Central

Medidas de tendencia Central Medidas de tendencia Central 7.1 Media 7.1.1 Media para un conjunto de datos no agrupados Este parámetro lo usamos con tanta cotidianidad que nos será muy familiar, aunque también aprenderemos algunas

Más detalles

Series temporales: predicción (Dossier)

Series temporales: predicción (Dossier) Series temporales: predicción (Dossier) Luca Di Gennaro Splendore Universitat Pompeu Fabra Los actos de los locos dijo Farach exceden las previsiones del hombre cuerdo. Jorge Luis Borges (1899 1986) El

Más detalles

TEMA 7 TEMA 7. SERIES TEMPORALES. Carmen Arriero Villacorta 1. DEFINICIÓN. Serie temporal de aeronaves Aeropuerto de Ibiza

TEMA 7 TEMA 7. SERIES TEMPORALES. Carmen Arriero Villacorta 1. DEFINICIÓN. Serie temporal de aeronaves Aeropuerto de Ibiza TEMA 7 SERIES TEMPORALES Carmen Arriero Villacorta CURSO 212 213 1 Nº Aeronaves 1. DEFINICIÓN Una serie temoral es una serie estadística cuyos valores deenden del tiemo. D(t, Y t ) Y 1, Y 2,,, Y t,, Y

Más detalles

Predefinición de asientos en AbanQ

Predefinición de asientos en AbanQ Índice de contenido Predefinición de asientos en AbanQ...2 Introducción...2 Los asientos predefinidos en AbanQ...3 Preparación para crear un asiento predefinido...4 Alta de un nuevo asiento predefinido...7

Más detalles

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Capítulo 15 Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Los modelos factoriales de análisis de varianza (factorial = más de un factor) sirven para evaluar el efecto

Más detalles

Pronósticos Por Lic. Gabriel Leandro, MBA http://www.auladeeconomia.com

Pronósticos Por Lic. Gabriel Leandro, MBA http://www.auladeeconomia.com Pronósticos Por Lic. Gabriel Leandro, MBA http:// 1.1. Necesidad de pronosticar Entorno altamente incierto La intuición no necesariamente da los mejores resultados Mejorar la planeación Competitividad

Más detalles

Tema 4 : Tabulación de datos

Tema 4 : Tabulación de datos Tema 4 : Tabulación de datos La tabulación consiste en presentar los datos estadísticos en forma de tablas o cuadros. --Partes de una tabla TITULO de la tabla, que debe ser preciso y conciso CONTENIDO,

Más detalles

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN CIENCIAS EMPRESARIALES ESTADÍSTICA

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN CIENCIAS EMPRESARIALES ESTADÍSTICA ESCUELA UIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA E CIECIAS EMPRESARIALES ESTADÍSTICA Ejercicios Resueltos AÁLISIS ESTADÍSTICO DE DOS VARIABLES Y RE- GRESIÓ LIEAL SIMPLE Curso 6-7 Curso 6-7 1)

Más detalles

PLANIFICACIÓN Y PROGRAMACIÓN DE PROYECTOS METODOS PERT Y GANTT

PLANIFICACIÓN Y PROGRAMACIÓN DE PROYECTOS METODOS PERT Y GANTT PLANIFICACIÓN Y PROGRAMACIÓN DE PROYECTOS METODOS PERT Y GANTT [Escriba aquí una descripción breve del documento. Normalmente, una descripción breve es un resumen corto del contenido del documento. Escriba

Más detalles

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 2011 UNED DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 7] Diseños con más de dos grupos independientes. Análisis de varianza con dos factores completamente aleatorizados 1 Índice 7.1 Introducción...

Más detalles

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO - 1 - UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO Tema 1: Operaciones financieras: elementos Tema 2: Capitalización y descuento simple Tema 3: Capitalización y descuento compuesto Tema

Más detalles

CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 3 CAPITALIZACIÓN COMPUESTA

CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 3 CAPITALIZACIÓN COMPUESTA CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 3 CAPITALIZACIÓN COMPUESTA Javier Bilbao García 1 1.- Capitalización Compuesta Definición: Operación financiera que persigue sustituir un capital por

Más detalles

1.5.- FUNCIONES Y SUS GRAFICAS. OBJETIVO.- Que el alumno conozca el concepto de función, su representación gráfica así como su uso en el Cálculo.

1.5.- FUNCIONES Y SUS GRAFICAS. OBJETIVO.- Que el alumno conozca el concepto de función, su representación gráfica así como su uso en el Cálculo. 1.5.- FUNCIONES Y SUS GRAFICAS OBJETIVO.- Que el alumno conozca el concepto de función, su representación gráfica así como su uso en el Cálculo. 1.5.1.- Introducción. Como ya mencionamos al inicio de estas

Más detalles

Empresarial y Financiero

Empresarial y Financiero Curso de Excel Empresarial y Financiero SESIÓN : REGRESIÓN Rosa Rodríguez Relación con el Mercado Descargue de yahoo.com los Datos de precio ajustado de cierre de las acciones de General Electric (GE),

Más detalles

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO Unidad 1 Números Reales Utilizar los números enteros, racionales e irracionales para cuantificar situaciones de la vida cotidiana. Aplicar adecuadamente

Más detalles

Las Tasas de Interés Efectiva y Nominal

Las Tasas de Interés Efectiva y Nominal 1 Las Tasas de Interés Efectiva y Nominal En el presente documento se explican los diferentes tipos de tasas de interés que normalmente se utilizan en el mercado financiero. Inicialmente veremos la diferencia

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

Objetivos del estudio de mercado Introducción

Objetivos del estudio de mercado Introducción Estudio de Mercado Definición El concepto de mercado se refiere a dos ideas relativas a las transacciones comerciales. Por una parte se trata de un lugar físico especializado en las actividades de vender

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

TEMA 9 LOS TIPOS DE CAMBIO Y LA BALANZA DE PAGOS

TEMA 9 LOS TIPOS DE CAMBIO Y LA BALANZA DE PAGOS TEMA 9 LOS TIPOS DE CAMBIO Y LA BALANZA DE PAGOS Balanza de pagos Tipos de cambio Regímenes de tipo de cambio Política de esterilización El mercado monetario internacional Paridad cubierta de intereses

Más detalles

EXAMEN DE ESTADÍSTICA DESCRIPTIVA - GRADO ADE Enero 2013

EXAMEN DE ESTADÍSTICA DESCRIPTIVA - GRADO ADE Enero 2013 EXAMEN DE ESTADÍSTICA DESCRIPTIVA - GRADO ADE Enero 2013 1. Se presentan las notas de selectividad de la asignatura de Matemáticas Aplicadas a las Ciencias Sociales corregidas por un profesor en un grupo

Más detalles

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL IES PABLO RUIZ PICASSO EL EJIDO (ALMERÍA) CURSO 2013-2014 UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL ÍNDICE 1.- INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 2.- SISTEMA BINARIO 2.1.- TRANSFORMACIÓN DE BINARIO A DECIMAL

Más detalles

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control.

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control. ESTUDIOS DE CAPACIDAD POTENCIAL DE CALIDAD 1.- INTRODUCCIÓN Este documento proporciona las pautas para la realización e interpretación de una de las herramientas fundamentales para el control y la planificación

Más detalles

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR UNIDAD 3: ARITMÉTICA DEL COMPUTADOR Señor estudiante, es un gusto iniciar nuevamente con usted el desarrollo de esta tercera unidad. En esta ocasión, haremos una explicación más detallada de la representación

Más detalles

ANÁLISIS DE LA VARIANZA PARTE SEGUNDA

ANÁLISIS DE LA VARIANZA PARTE SEGUNDA ANÁLISIS DE LA VARIANZA PARTE SEGUNDA Septiembre de 2012 Índice general 1. INTRODUCCIÓN............................... 1 2. FUNDAMENTOS DEL DISEÑO EN BLOQUES ALEATORIZADOS 1 3. EJEMPLO DE DISEÑO EN BLOQUES

Más detalles

Módulos basados en circuitos. secuenciales. Introducción. Contenido. Objetivos. Capítulo. secuenciales

Módulos basados en circuitos. secuenciales. Introducción. Contenido. Objetivos. Capítulo. secuenciales Capítulo Módulos basados en circuitos en circuitos Módulos basados Introducción Así como en el Capítulo 5 analizamos módulos basados en puertas, ahora toca referirnos a módulos construidos con biestables

Más detalles

Tutoríal para el cálculo del volumen de trabajo ECTS en una asignatura en un modelo de simulación con hoja de cálculo Excel

Tutoríal para el cálculo del volumen de trabajo ECTS en una asignatura en un modelo de simulación con hoja de cálculo Excel Tutoríal para el cálculo del volumen de trabajo ECTS en una asignatura en un modelo de simulación con hoja de cálculo Excel Objetivos versión 2.0 (19 jun 2007) Agustín Romero Medina - Para que el profesor

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

5. EVOLUCIÓN DE LA POBLACIÓN ACTIVA ARAGONESA EN LA ÚLTIMA CRISIS (2008-2012) 1. Introducción

5. EVOLUCIÓN DE LA POBLACIÓN ACTIVA ARAGONESA EN LA ÚLTIMA CRISIS (2008-2012) 1. Introducción 5. EVOLUCIÓN DE LA POBLACIÓN ACTIVA ARAGONESA EN LA ÚLTIMA CRISIS (2008-2012) 1. Introducción La población activa aragonesa se ha reducido desde el máximo histórico alcanzado en 2008 Durante el último

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

Diseños en cuadrados latinos

Diseños en cuadrados latinos Capítulo 7 Diseños en cuadrados latinos 7.1. Introducción En el modelo en bloques aleatorizados, que estudiamos en el capítulo anterior, considerábamos un factor principal y un factor de control o variable

Más detalles

LECCION 1ª Introducción a la Estadística Descriptiva

LECCION 1ª Introducción a la Estadística Descriptiva LECCION 1ª Introducción a la Estadística Descriptiva La estadística descriptiva es una ciencia que analiza series de datos (por ejemplo, edad de una población, altura de los estudiantes de una escuela,

Más detalles

DISEÑO DE ENCUESTAS. 1. Introducción. 3. Diseño de la encuesta 4. Tipos de muestreo y selección de la muestra

DISEÑO DE ENCUESTAS. 1. Introducción. 3. Diseño de la encuesta 4. Tipos de muestreo y selección de la muestra DISEÑO DE ENCUESTAS DISEÑO DE ENCUESTAS 1. Introducción 2. Tipos de encuestas 3. Diseño de la encuesta 4. Tipos de muestreo y selección de la muestra introducción Obtención de información De qué forma

Más detalles

, o más abreviadamente: f ( x)

, o más abreviadamente: f ( x) TEMA 5: 1. CONCEPTO DE FUNCIÓN Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El consumo de gasolina de un coche depende de la velocidad del mismo. La factura

Más detalles

BREVE APUNTE SOBRE EL PROBLEMA DE LA MULTICOLINEALIDAD EN EL MODELO BÁSICO DE REGRESIÓN LINEAL

BREVE APUNTE SOBRE EL PROBLEMA DE LA MULTICOLINEALIDAD EN EL MODELO BÁSICO DE REGRESIÓN LINEAL BREVE APUNTE SOBRE EL PROBLEMA DE LA MULTICOLINEALIDAD EN EL MODELO BÁSICO DE REGRESIÓN LINEAL Ramón Mahía Febrero 013 Prof. Ramón Mahía ramon.mahia@uam.es Qué se entiende por Multicolinealidad en el marco

Más detalles

UN PROBLEMA DE MATEMÁTICA-FICCIÓN EN TRES ACTOS. José Antonio Mora Sánchez. CEP d'alacant

UN PROBLEMA DE MATEMÁTICA-FICCIÓN EN TRES ACTOS. José Antonio Mora Sánchez. CEP d'alacant UN PROBLEMA DE MATEMÁTICA-FICCIÓN EN TRES ACTOS. José Antonio Mora Sánchez. CEP d'alacant Las calculadoras ofrecen la posibilidad de modificar la óptica desde la que se abordan ciertos problemas matemáticos.

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO:

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: 2º ESO OBJETIVOS: Resolver problemas con enunciados relacionados con la

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva Observamos datos provenientes de una o varias muestras de la población bajo estudio. El objetivo es obtener conclusiones sobre toda la población a partir de la muestra observada.

Más detalles

Apuntes de Matemática Discreta 7. Relaciones de Orden

Apuntes de Matemática Discreta 7. Relaciones de Orden Apuntes de Matemática Discreta 7. Relaciones de Orden Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 7 Relaciones de Orden Contenido

Más detalles

Maria José González/ Dep. Tecnología

Maria José González/ Dep. Tecnología Señal analógica es aquella que puede tomar infinitos valores para representar la información. Señal digital usa solo un número finito de valores. En los sistemas binarios, de uso generalizado en los circuitos

Más detalles

Índice 1/ 34. 1- Tu primera encuesta

Índice 1/ 34. 1- Tu primera encuesta Índice 1- Tu primera encuesta 1/ 34 2- Planificación previa Qué voy a preguntar? A quién voy a preguntar? Qué voy a hacer con los datos? Cómo los voy a presentar? 3- Recogemos los datos 4- Procesamos los

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

Sistemas de dos ecuaciones lineales con dos incógnitas

Sistemas de dos ecuaciones lineales con dos incógnitas Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente

Más detalles

CURSO: INTRODUCCION A PRONOSTICOS

CURSO: INTRODUCCION A PRONOSTICOS MANAGEMENT CONSULTORES CURSO: INTRODUCCION A PRONOSTICOS Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-11-15-5468-3369 Fax: 054-11-4433-4202 Mail:mgm_consultas@mgmconsultores.com.ar

Más detalles

TEMA 5 Demanda agregada: Familias y Empresas

TEMA 5 Demanda agregada: Familias y Empresas TEMA 5 Demanda agregada: Familias y Empresas Índice 5.1.- Introducción 5.2.- Supuestos del modelo 5.3.- La condición de equilibrio 5.4.- La demanda de consumo 5.5.- Análisis gráfico de la función de consumo.

Más detalles

VARIACIONES SISTEMÁTICAS DEL VOLUMEN DE NEGOCIACIÓN EN EL IBEX-35

VARIACIONES SISTEMÁTICAS DEL VOLUMEN DE NEGOCIACIÓN EN EL IBEX-35 VARIACIONES SISTEMÁTICAS DEL VOLUMEN DE NEGOCIACIÓN EN EL IBEX-35 Jesús Mª Sánchez Montero Departamento de Economía Aplicada I Universidad de Sevilla jsmonter@us.es Javier Gamero Rojas (jgam@jet.es) Departamento

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

CASO PRÁCTICO HERRAMIENTAS DE BASES DE DATOS EN EXCEL

CASO PRÁCTICO HERRAMIENTAS DE BASES DE DATOS EN EXCEL CASO PRÁCTICO HERRAMIENTAS DE BASES DE DATOS EN EXCEL Nuestra empresa es una pequeña editorial que maneja habitualmente su lista de ventas en una hoja de cálculo y desea poder realizar un análisis de sus

Más detalles

EJERCICIOS DE FUNCIONES REALES

EJERCICIOS DE FUNCIONES REALES EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa

Más detalles

IV. Factores de Consolidación

IV. Factores de Consolidación Factores PARA Consolidar UNA Empresa IV. Factores de Consolidación L os Factores de la Consolidación Empresarial En esta sección se presentan los resultados obtenidos con técnicas estadísticas sobre los

Más detalles

Métodos de promedios. Diplomado en Gestión Estratégica de las Finanzas Públicas MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS

Métodos de promedios. Diplomado en Gestión Estratégica de las Finanzas Públicas MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS La estimación o proyección de ingresos futuros puede llevarse a cabo mediante diferentes métodos estadísticos de extrapolación, entre ellos: sistema

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Socioestadística I Análisis estadístico en Sociología

Socioestadística I Análisis estadístico en Sociología Análisis estadístico en Sociología Capítulo 3 CARACTERÍSTICAS DE LAS DISTRIBUCIOES DE FRECUECIAS 1. CARACTERÍSTICAS DE UA DISTRIBUCIÓ UIVARIATE Hasta ahora hemos utilizado representaciones gráficas para

Más detalles

UNIDAD I INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS 1. ÁLGEBRA DE BOOLE 2. MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH 1-1. R. ESPINOSA R. y P. FUENTES R.

UNIDAD I INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS 1. ÁLGEBRA DE BOOLE 2. MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH 1-1. R. ESPINOSA R. y P. FUENTES R. UNIDAD I INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS. ÁLGEBRA DE BOOLE 2. MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH - . INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS. ÁLGEBRA DE BOOLE. ÁLGEBRA DE BOOLE El álgebra de Boole

Más detalles

El Ábaco. Descripción. Para qué sirve?

El Ábaco. Descripción. Para qué sirve? El Ábaco El ábaco es un instrumento que sirve para facilitar al alumno el aprendizaje del concepto de sistema posicional de numeración (en cualquier base), cómo se forman las distintas unidades que lo

Más detalles