Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE."

Transcripción

1 Invesigación y écnicas de Mercado Previsión de Venas ÉCNICAS CUANIAIVAS ELEMENALES DE PREVISIÓN UNIVARIANE. (II) écnicas elemenales: Modelos Naive y Medias Móviles. Medición del error de previsión. Profesor: Ramón Mahía Curso I.- Marco de análisis Como ya se dijo en el documeno anerior, el análisis de series emporales pare del esquema básico de que una serie de iempo puede desagregarse en los componenes endencial, cíclico, esacional e irregular. Esos 4 componenes se agrupan según un esquema adiivo, muliplicaivo o mixo: Adiivo: Y = + C + E + I Muliplicaivo: Y = C E I Mixo: (por ejemplo: Y = ( + C )( + E ) + I ) Ese esquema de descomposición supone deecar la mayor o menor presencia de cada componene a fin de elegir qué méodo de Modelización / Previsión parece más adecuado; la fuere presencia de componene endencial, esacional y cíclico requiera en cada caso un esquema analíico ad-hoc (bien sea auoproyecivo o condicional). A modo de resumen puede concluirse que:. Los méodos que se revisarán en ese documeno y el siguiene (ajuses de endencias) son exclusivamene auoproyecivos (incondicionales) de modo que, en érminos generales, funcionan enla medida en que el pasado de la serie sea úil para avanzar el fuuro, es decir, en la medida en que los parones que componen la serie presenen un comporamieno emporal regular. 2. El ajuse del ciclo no suele realizarse con écnicas auoproyecivas de ese ipo dado que, por definición, las variaciones cíclicas pese

2 a describir habiualmene algunas oscilaciones muy amplias, presenan parones menos regulares de comporamieno. Así pues, el ciclo es maeria de análisis en un esquema condicional (causal). 3. El componene esacional, ampoco suele ser represenado por méodos auoproyecivos dado que su carácer exremadamene regular permie una comprensión más sencilla una vez que se deermine su ampliud y su frecuencia. Por ano, la esacionalidad de la serie iende a eliminarse (la serie se filra o corrige de esacionalidad) cenrando los esfuerzos en el componene cíclico y endencial. Una vez elaborada la modelización (previsión) de la serie. Se reincopora de nuevo la componene esacional previamene eliminada para obener una serie con el "aspeco" global de la serie inicial. 4. El componene erráico no es, por definición, maeria de análisis: esencialmene se raa de una porción aleaoria, impredecible de la serie de iempo; un residuo del análisis. 5. odo lo anerior lleva a la conclusión de que las écnicas que se presenarán en ese documeno se cenran en la exploración de la media de la serie o su componene endencial. Hablar de media y endencia viene a ser lo mismo en ano que una endencia es una media no consane o, dicho de oro modo, una serie que oscila alrededor de una media consane (serie esacionaria en media) es una serie sin endencia. 6. Llegados a ese exremo, en ese documeno se abordarán sólo un conjuno de écnicas simples de exploración de series sin aender a los ajuses de endencia emporales. 7. Las diferencias enre las écnicas de medias móviles o alisado y las écnicas de ajuse de endencia pueden resumirse en: la mayor o menor presencia del componene endencial: en la medida en que el componene endencial es muy marcado, las écnicas de medias móviles y/o alisados funcionan peor; en la medida en que las series presenan oscilaciones alrededor de una media esacionaria esas écnicas simples funcionan mejor las écnicas de medias móviles y alisados son más flexibles (en maeria de acualización y rapidez de manejo) que las de ajuse de endencia y más fáciles de implemenar (no requieren el uso inensivo de méodos de ajuse paramérico) las écnicas de medias móviles y alisados requieren menos volumen de información que las de ajuse de endencia las écnicas de ajuse de endencia suelen orienarse a un plazo de análisis más largo (medio plazo) mienras que las 2

3 medias móviles y los alisados se orienan a la obención de ajuses (previsiones) a muy coro plazo. 8. En conclusión, son écnicas conexo de inerés por Cenrando el inerés en el componene Enre los méodos auoproyecivos en maeria de ajuse de endencia, desaca el modelo de regresión para ajuse de endencias emporales. El modelo maemáico de ajuse de endencia puede variar: En conclusión: Enre las écnicas de exploración no condicional (auoproyecivas) de los disinos componenes de una serie, desacan las écnicas de ajuse de endencia (reservadas para series relaivamene largas, para ajuses cenrados en el medio plazo y orienadas a la exploración de series con endencia muy marcada) y un conjuno de écnicas simples de promedios móviles y alisados (más sencillas, orienadas a series coras sin componenes endenciales muy marcados y para análisis a muy coro plazo). II.- Medición básica del error de esimación / previsión Aunque el objeivo del documeno es el de presenar algunas écnicas de análisis simple, conviene inroducir aquí algunos concepos básicos fundamenales relaivos a la medición del error de esimación. Parece evidene que la elección enre las disinas écnicas, además de guiarse por crierios puramene écnicos a priori, esará condicionada plenamene por la calidad del ajuse que cada écnica consiga, eso es, el mayor o menor error de esimación. A lo largo de los documenos sucesivos, se presenará alguna écnica adicional de medición del error de predicción pero, en ese puno, conviene al menos presenar algunas concepos de carácer muy básico: Error de esimación /predicción: e = Y Y Observación gráfica del error: Resula prácica habiual examinar el gráfico de ajuse de écnica desde el primer momeno en que esa se esima. En ocasiones, las medidas calculadas para el oal de la muesra como el porcenaje medio de error absoluo no permien apreciar si exisen punos aípicos en el ajuse con un elevado error o si, por ejemplo, el error ˆ + 3

4 se va ampliando a medida que nos acercamos al final de la muesra perjudicando poseriores predicciones. Error Cuadráico Medio: ECM = = ( e ) 2 Al raarse de una medida absolua, no permie valorar la precisión de una esimación, an sólo iene inerés para comparar esimaciones alernaivas sobre una misma serie. En cualquier caso, el error cuadráico medio puede uilizarse para realizar afirmaciones en érminos de probabilidad sobre la precisión de las esimaciones. omando la raíz del ECM como la desviación ípica del error de predicciones podemos asumir que la predicción realizada equivale a la media y que esos errores siguen una disribución normal afirmando, por ano: Que el 68% de las observaciones esarán denro del área marcada por la previsión +/- vez el valor de la raíz del ECM. Que el 95% de las observaciones esarán denro del área marcada por la previsión +/- 2 veces el valor de la raíz del ECM. Que el 99,7% de las observaciones esarán denro del área marcada por la previsión +/- 3 veces el valor de la raíz del ECM. Porcenaje Medio de Error Absoluo: PMEA = = Esa medida es una medida relaiva en la que compara el residuo obenido con los valores de la variable de análisis lo que apora una dimensión más valiosa a la medida. Ajuses de Punos de Cambio de endencia: Suele observarse habiualmene si la serie ha conseguido reproducir los cambios de endencia de la serie original. Probablemene, la capacidad de una esimación de seguir la endencia de la serie original se evalua por la capacidad para reproducir los cambios de endecia reales de la serie. Si la esimación no consigue reproducir esos cambios su uilidad será limiada. Un cambio de endencia es un paso de la serie desde una eapa de crecimieno a una de decrecimieno o viceversa, es decir, un mínimo o un máximo local. Si se produce un mínimo o máximo en la serie original pero nuesra esimación es incapaz de reprducirlo diremos e y 4

5 que exise un Error de ipo II en el ajuse. Si la serie esimada indica un cambio de endencia que en realidad no ocurrió decimos que se ha producido un Error de ipo I. Errores ipo I: Cambios de endencia esimados que no han sucedido en la realidad Errores ipo II: Cambios de endencia real no reproducidos por el modelo % Errores de ipo I: oal de errores de ipo I enre cambios de endencia esimados % Errores de ipo II: oal de errores de ipo II enre cambios de endencia reales Deección de Errores de ipo I y II (Ejemplo numérico) real predicción Mx/min Reales Mx/min Esimados Errores sep-0 3,0 2,0 oc-0 2,0 2, nov-0,8 3,0 x I dic-0,6 2,0 m II ene-02 3,0,8 m I feb-02 3,2 2, mar-02 4,0 2,4 x x abr-02 3,0 2,3 m m may-02 4,0 2, x II jun-02 3,0 2,0 m I jul-02 2,0 4,0 x I ago-02,8 3,8 sep-02,6 3,5 m m oc-02 5,0 3,9 nov-02 6,0 5,5 x I dic-02 6,3 4,5 ene-03 6,8 4,2 feb-03 6,9 4, x m I/II mar-03 5,0 4,3 5

6 7,5 6,5 5,5 4,5 3,5 2,5 real predicción,5 sep-0 nov-0 ene-02 mar-02 may-02 jul-02 sep-02 nov-02 ene-03 mar-03 En conclusión: Cualquier écnica de esimación / previsión debe evaluarse en érminos de error. La evaluación del error normalmene implica un diagnósico gráfico (a fin de deecar aípicos o zonas de errores con parones recurrenes) y la elaboración de alguna medida resumen, preferenemene relaiva. Además, ineresa ambién evaluar la capacidad del méodo de ajuse para la capación de punos de cambio de endnecia. III.- Modelos Naive para la previsión La primera de las aproximaciones a una serie de iempo con fines predicivos consise en suponer un esquema de evolución muy simple del ipo: Modelo naive I () : Y ˆ + = Y Modelo naive II: Yˆ Y + ( Y Y ) + = Ese La capacidad prediciva de ese ipo de modelos es muy limiada por lo que no suelen uilizarse más que como marco de referencia para evaluar la calidad de méodos más complejos: un méodo más complejo que no lograra susanciales reducciones del error de predicción respeco a cualquiera de los modelos naive sería, evidenemene, un mal méodo (complejidad sin conraparida). IV.- Medias móviles Una forma de perfeccionar aunque muy levemene, los méodos ingenuos mencionados más arriba, consise en esimar el valor fuuro de ˆ + El érmino Y indica esimación para Y en el período + 6

7 una serie uilizar promedios de las observaciones pasadas más recienes de la serie analizada. Así, para cada período, el cálculo del promedio se renueva añadiendo el más reciene y eliminando el más aniguo de los considerados. La "ampliud" de la media móvil, eso es, el número de observaciones incluidas en el cálculo promedio, se denomina "orden" de la media móvil: Media móvil de orden "p": Y y + y + y p + y ˆ p 2 p+ + = M = Algunas cuesiones generales debe remarcarse respeco a la uilidad y mecanismo de aplicación de esa écnica: La écnica mejora las aproximaciones "naive" en ano que considera, para su cálculo información relaiva a dos o más períodos precedenes. La presencia de endencia marcada o esacionalidad hace muy arriesgado uilizar las medias móviles para la esimación y absoluamene inviables para la previsión. Las medias móviles resulan más apropiadas cuando la aleaoriedad de los daos sea elevada y la auocorrelación muy baja. La media móvil solo iene "memoria" de un período y, por ano, sólo debe ser uilizada con fines predicivos a muy coro plazo. Una media móvil presena una progresión ano más suavizada cuano mayor sea el número de érminos incluidos en el promedio. Para eviar la incidencia de la esacionalidad, pueden elaborarse medias móviles de orden igual al orden esacional (de hecho, esa écnica esá enre las écnicas de "alisado") pero eso, válido a efecos de ajuse promedio general, implicará serios sesgos en maeria de predicción; dicho de oro modo, una media móvil de ese ipo "filra" la esacionalidad y, por ano, después habrá de nuevo de añadirse a la esimación realizada sobre la serie filrada. Se conoce como media móvil cenrada la que se elabora con un número impar de períodos y, por ano, puede asignarse al período cenral de la muesra. Una media móvil con un número par de períodos queda necesariamene "descenrada". 7

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

Tema 8: SERIES TEMPORALES

Tema 8: SERIES TEMPORALES Inroducción a la Economería Tema 8: ERIE TEMPORALE Tema 8: ERIE TEMPORALE. Concepo y componenes de una serie emporal. Definiremos una serie emporal como cualquier conjuno de N observaciones cuaniaivas

Más detalles

UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA

UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA Por Mónica Orega Moreno Profesora Esadísica. Deparameno Economía General y Esadísica RESUMEN El aumeno de la siniesralidad laboral

Más detalles

Sistemade indicadores compuestos coincidentey adelantado julio,2010

Sistemade indicadores compuestos coincidentey adelantado julio,2010 Sisemade indicadores compuesos coincideney adelanado julio,2010 Sisema de Indicadores Compuesos: Coincidene y Adelanado SI REQUIERE INFORMACIÓN MÁS DETALLADA DE ESTA OBRA, FAVOR DE COMUNICARSE A: Insiuo

Más detalles

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables. ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés

Más detalles

Introducción a la Estadística Empresarial. Capítulo 4.- Series temporales Jesús Sánchez Fernández

Introducción a la Estadística Empresarial. Capítulo 4.- Series temporales Jesús Sánchez Fernández Inroducción a la Esadísica Empresarial. Capíulo 4.- Series emporales CAPITULO 4.- SERIES TEMPORALES 4. Inroducción. Hasa ahora odas las variables que se han esudiado enían en común que, por lo general,

Más detalles

Nota Técnica Índice de Tipo de Cambio Efectivo Real Multilateral con ponderadores móviles

Nota Técnica Índice de Tipo de Cambio Efectivo Real Multilateral con ponderadores móviles Noa Técnica Índice de Tipo de Cambio Efecivo Real Mulilaeral con ponderadores móviles 1. Inroducción: La presene noa écnica preende inroducir y explicar al público el Índice de Tipo de Cambio Efecivo Real

Más detalles

PRÁCTICA 4 TEMA 6: SERIES TEMPORALES

PRÁCTICA 4 TEMA 6: SERIES TEMPORALES PRÁCTICA 4 TEMA 6: SERIES TEMPORALES En las prácicas aneriores se habían analizado observaciones de variables de ipo ransversal (por ejemplo, obenidas para diferenes municipios). Llamaremos Serie Temporal

Más detalles

Guía de Ejercicios Econometría II Ayudantía Nº 3

Guía de Ejercicios Econometría II Ayudantía Nº 3 Guía de Ejercicios Economería II Ayudanía Nº 3 1.- La serie del dao hisórico del IPC Español desde enero de 2002 hasa diciembre de 2011, esá represenada en el siguiene gráfico: 115 110 105 100 95 90 85

Más detalles

SERIES TEMPORALES. Cecilia Esparza Catalán

SERIES TEMPORALES. Cecilia Esparza Catalán SERIES TEMPORALES Cecilia Esparza Caalán Cecilia Esparza Caalán ÍNDICE Página.- INTRODUCCIÓN.. 2 2.- ANÁLISIS PRELIMINAR DE UNA SERIE... 3 - Tendencia y nivel de la serie.... 4 - Esacionalidad.... 9 -

Más detalles

UNIDAD IX. Técnicas de Suavización

UNIDAD IX. Técnicas de Suavización UNIDAD IX Técnicas de Suavización UNIDAD IX La esadísica demuesra que suele ser más fácil hacer algo bien que explicar por qué se hizo mal. Allen L. Webser, 1998 Cuál es el objeivo de la Técnica de suavización?

Más detalles

Aplicaciones de la Probabilidad en la Industria

Aplicaciones de la Probabilidad en la Industria Aplicaciones de la Probabilidad en la Indusria Cuara pare Final Dr Enrique Villa Diharce CIMAT, Guanajuao, México Verano de probabilidad y esadísica CIMAT Guanajuao,Go Julio 010 Reglas para deección de

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

Análisis de inversiones y proyectos de inversión

Análisis de inversiones y proyectos de inversión Análisis de inversiones y proyecos de inversión Auora: Dra. Maie Seco Benedico Índice 5. Análisis de Inversiones 1. Inroducción. 2. Crierios para la valoración de un proyeco. 3. Técnicas de valoración

Más detalles

6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA

6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA 38 6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA 6.1 Méodo general Para valorar los usos recreacionales del agua, se propone una meodología por eapas que combina el uso de diferenes écnicas

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

PRÁCTICA 3: Sistemas de Orden Superior:

PRÁCTICA 3: Sistemas de Orden Superior: PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se

Más detalles

Test. Cada pregunta correcta está valorada con 0.5 puntos y cada incorrecta resta 0.25 puntos

Test. Cada pregunta correcta está valorada con 0.5 puntos y cada incorrecta resta 0.25 puntos Teléf.: 91 533 38 4-91 535 19 3 8003 MADRID EXAMEN DE ECONOMETRÍA (enero 010) 1h 15 Apellidos: Nombre: Tes. Cada preguna correca esá valorada con 0.5 punos y cada incorreca resa 0.5 punos 1.- Al conrasar

Más detalles

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos...

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos... Asignaura: Ingeniería Indusrial Índice de Conenidos 1 Inroducción... 2 2 Tiempo de vida... 3 3 Función de fiabilidad... 4 4 Vida media... 6 5 Tasa de fallo... 9 6 Relación enre concepos... 12 7 Observaciones

Más detalles

METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001

METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001 METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001 Insiuo Nacional de Esadísica y Censos (INDEC) Dirección

Más detalles

Pg. 1 CONCEPTOS BÁSICOS DE MATEMÁTICA ECONÓMICA PARA EL MANEJO DE SERIES

Pg. 1 CONCEPTOS BÁSICOS DE MATEMÁTICA ECONÓMICA PARA EL MANEJO DE SERIES Pg. 1 CONCEPTOS BÁSICOS DE MATEMÁTICA ECONÓMICA PARA EL MANEJO DE SERIES Ramón Mahía Abril de 2001 Pg. 2 OBJETIVO DEL DOCUMENTO Cualquier ejercicio de análisis económico simple requerirá el manejo de la

Más detalles

Mtro. Horacio Catalán Alonso

Mtro. Horacio Catalán Alonso ECONOMETRIA TEORÍA DE LA COINTEGRACIÓN Mro. I. REGRESIÓN ESPURÍA Y X Dos series que presenan camino aleaorio. Si ambas series se consideran en una modelo economérico. Y = Y -1 + u u N(0,s 2 u) X =X -1

Más detalles

ESTIMACION DE LA TASA DE DESEMPLEO NO ACELERADORA DE LA INFLACION PARA LA ECONOMIA ECUATORIANA RESUMEN

ESTIMACION DE LA TASA DE DESEMPLEO NO ACELERADORA DE LA INFLACION PARA LA ECONOMIA ECUATORIANA RESUMEN ESTIMACION DE LA TASA DE DESEMPLEO NO ACELERADORA DE LA INFLACION PARA LA ECONOMIA ECUATORIANA Segundo Fabián Vilema Escudero 1, Francisco Xavier Marrio García. 2 RESUMEN Esa esis esablece la uilización

Más detalles

Descomposición de series temporales

Descomposición de series temporales Noas del Curso Series de Tiempo I. Licenciaura de Esadísica Descomposición de series emporales Inroducción De acuerdo a Fischer (995) el precursor de los méodos modernos de descomposición fue Macauley

Más detalles

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo:

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: Escuela Superior Poliécnica del Lioral Faculad de Economía y Negocios 30-11-2011 Examen Parcial de Economería II Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: REGLAMENTO DE EVALUACIONES Y CALIFICACIONES

Más detalles

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA hp://www.vinuesa.com 1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA 1.1.- INTRODUCCIÓN Los filros de pila consiuyen una clase de filros digiales no lineales. Un filro de pila que es usado

Más detalles

MACROECONOMIA II. Grado Economía 2013-2014

MACROECONOMIA II. Grado Economía 2013-2014 MACROECONOMIA II Grado Economía 2013-2014 PARTE II: FUNDAMENTOS MICROECONÓMICOS DE LA MACROECONOMÍA 3 4 5 Tema 2 Las expecaivas: los insrumenos básicos De qué dependen las decisiones económicas? Tipo de

Más detalles

RE01 DIFERENCIA DEL LOGRO PROMEDIO EN COMPRENSIÓN LECTORA Y MATEMÁTICAS PARA 6 DE PRIMARIA Y 3 DE SECUNDARIA ENTRE 2000 Y 2005

RE01 DIFERENCIA DEL LOGRO PROMEDIO EN COMPRENSIÓN LECTORA Y MATEMÁTICAS PARA 6 DE PRIMARIA Y 3 DE SECUNDARIA ENTRE 2000 Y 2005 RESULTADOSEDUCATIVOS RE01 DIFERENCIA DEL LOGRO PROMEDIO EN COMPRENSIÓN LECTORA Y MATEMÁTICAS PARA 6 DE PRIMARIA Y 3 DE SECUNDARIA ENTRE 2000 Y 2005 FÓRMULA RE01 NOMBREdelINDICADOR Diferencia del loro promedio

Más detalles

Enfoques de Programación Matemática para la Previsión de la Demanda mediante descomposición de series temporales

Enfoques de Programación Matemática para la Previsión de la Demanda mediante descomposición de series temporales IX Congreso de Ingeniería de Organización Gijón, 8 y 9 de sepiembre de 2005 Enfoques de Programación Maemáica para la Previsión de la Demanda mediane descomposición de series emporales Josefa Mula Bru,

Más detalles

Revisión de la matriz producto/sector de consumo real de productos siderúrgicos y de los indicadores de actividad de los sectores utilizadores

Revisión de la matriz producto/sector de consumo real de productos siderúrgicos y de los indicadores de actividad de los sectores utilizadores Observaorio Indusrial del Secor Meal Revisión de la mariz produco/secor de consumo real de producos siderúrgicos y de los indicadores de acividad de los secores uilizadores Revisión de la mariz produco/secor

Más detalles

TEMA 2 LOS MODELOS ECONOMETRICOS Y SU PROBLEMATICA

TEMA 2 LOS MODELOS ECONOMETRICOS Y SU PROBLEMATICA TEMA 2 LOS MODELOS ECONOMETRICOS Y SU PROBLEMATICA 1. CONCEPTO DE MODELO El ermino modelo debe de idenificarse con un esquema menal ya que es una represenación de la realidad. En ese senido, Pulido (1983)

Más detalles

TEMA 2 MODELO LINEAL SIMPLE (MLS) Gujarati, Econometria (2004)

TEMA 2 MODELO LINEAL SIMPLE (MLS) Gujarati, Econometria (2004) EMA 2 MODELO LINEAL SIMPLE (MLS) Gujarai, Economeria (2004). Planeamieno e inerpreación del modelo economérico lineal simple. Capíulo 2 páginas 36 a 39 2. Hipóesis Básicas del Modelo Capíulo 3 páginas

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

ESCUELA POLITÉCNICA NACIONAL

ESCUELA POLITÉCNICA NACIONAL ESCUELA POLIÉCNICA NACIONAL ESCUELA DE CIENCIAS DAOS AÍPICOS Y FALANES, ANÁLISIS DE INERVENCIÓN Y DESESACIONALIZACIÓN DE SERIES CRONOLÓGICAS. APLICACIONES A DAOS DE UNA EMPRESA DE VENA DIRECA PROYECO PREVIO

Más detalles

Tendencia y Ciclos en el Producto Interno Bruto de Cuba: Estimación con un Modelo Estructural Univariante de Series Temporales. 1

Tendencia y Ciclos en el Producto Interno Bruto de Cuba: Estimación con un Modelo Estructural Univariante de Series Temporales. 1 Tendencia y Ciclos en el Produco Inerno Bruo de Cuba: Esimación con un Modelo Esrucural Univariane de Series Temporales. 1 Pavel Vidal Alejandro * Annia Fundora Fernández ** Noviembre del 2004 Resumen:

Más detalles

MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO

MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO EUSKAL ESTATISTIKA ERAKUNDEA INSTITUTO VASCO DE ESTADISTICA Donosia-San Sebasián, 1 01010 VITORIA-GASTEIZ

Más detalles

LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR

LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR 1 LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR José Luis Moncayo Carrera 1 Ec. Manuel González 2 RESUMEN El presene documeno iene como objeivo, presenar la aplicación de écnicas economéricas en

Más detalles

Consorcio de Investigación Económica y Social (CIES) Concurso de Investigación CIES - IDRC - Fundación M.J. Bustamante 2012. Informe Técnico Final

Consorcio de Investigación Económica y Social (CIES) Concurso de Investigación CIES - IDRC - Fundación M.J. Bustamante 2012. Informe Técnico Final Consorcio de Invesigación Económica y Social (CIES) Concurso de Invesigación CIES - IDRC - Fundación M.J. Busamane 2012 Informe Técnico Final (Agoso 2013) Creación y Desrucción de Empleos en Economías

Más detalles

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temísocles Monás Puede el comporamieno acual de la políica fiscal sosenerse sin generar una deuda pública que crezca sin límie?

Más detalles

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

IGEP Tema 2. Leyas financieras básicas: estudio usando aplicaciones informáticas.

IGEP Tema 2. Leyas financieras básicas: estudio usando aplicaciones informáticas. IGEP Tema 2. Leyas financieras básicas: esudio usando aplicaciones informáicas. onenido. apial financiero... 2. Leyes financieras: capialización y descueno...4 2. Leyes de capialización...4 2.2 Leyes de

Más detalles

Los datos fueron obtenidos de una publicación del Golden Gate Bridge.

Los datos fueron obtenidos de una publicación del Golden Gate Bridge. Pronósicos Resumen El procedimieno Pronósicos esa diseñado para pronosicar valores fuuros de daos de series de iempo. Una serie de iempo consise de un conjuno secuencial de daos numéricos omados en inervalos

Más detalles

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Diarios

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Diarios La Conducción de la Políica Monearia del Banco de México a ravés del Régimen de Saldos Diarios INDICE I. INTRODUCCIÓN...2 II. LA OPERACIÓN DEL BANCO DE MÉXICO EN EL MERCADO DE DINERO...3 III. IV. II.1.

Más detalles

MODELO DE PREDICCIÓN DE ALTA FRECUENCIA DE LA DEMANDA DE AUTOMOVILES EN ESPAÑA: un enfoque basado en modelos ARIMA de series temporales

MODELO DE PREDICCIÓN DE ALTA FRECUENCIA DE LA DEMANDA DE AUTOMOVILES EN ESPAÑA: un enfoque basado en modelos ARIMA de series temporales Observaorio Indusrial del Secor de fabricanes de auomóviles y camiones MODELO DE PREDIIÓN DE ALTA FREUENIA DE LA DEMANDA DE AUTOMOVILES EN ESPAÑA: un enfoque basado en modelos ARIMA de series emporales

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

CAPÍTULO 3: INFILTRACIÓN

CAPÍTULO 3: INFILTRACIÓN 27 CAPÍTULO 3: INFILTRACIÓN 3.1 DEFINICIÓN El agua precipiada sobre la supericie de la ierra, queda deenida, se evapora, discurre por ella o penera hacia el inerior. Se deine como inilración al paso del

Más detalles

TEMA 3 EXPECTATIVAS, CONSUMO E INVERSIÓN

TEMA 3 EXPECTATIVAS, CONSUMO E INVERSIÓN TEMA 3 EXPECTATIVAS, CONSUMO E INVERSIÓN En el Tema 2 analizamos el papel de las expecaivas en los mercados financieros. En ése nos cenraremos en los de bienes y servicios. El papel que desempeñan las

Más detalles

UNIVERSIDAD DE MATANZAS CAMILO CIENFUEGOS FACULTAD DE INGENIERIAS QUÍMICA MECANICA. MONOGRAFÍA LAS SERIES CRONOLÓGICAS EN EL MANTENIMIENTO PREDICTIVO

UNIVERSIDAD DE MATANZAS CAMILO CIENFUEGOS FACULTAD DE INGENIERIAS QUÍMICA MECANICA. MONOGRAFÍA LAS SERIES CRONOLÓGICAS EN EL MANTENIMIENTO PREDICTIVO UNIVERSIDAD DE MATANZAS CAMILO CIENFUEGOS FACULTAD DE INGENIERIAS QUÍMICA MECANICA. MONOGRAFÍA LAS SERIES CRONOLÓGICAS EN EL MANTENIMIENTO PREDICTIVO Ing. Laureano Suárez Marínez 1 MSc Juan Landa García.

Más detalles

Metodología de cálculo del diferencial base

Metodología de cálculo del diferencial base Meodología de cálculo del diferencial base El diferencial base es el resulado de expresar los gasos generales promedio de operación de las insiuciones de seguros auorizadas para la prácica de los Seguros

Más detalles

PATRON = TENDENCIA, CICLO Y ESTACIONALIDAD

PATRON = TENDENCIA, CICLO Y ESTACIONALIDAD Pronósicos II Un maemáico, como un pinor o un poea, es un fabricane de modelos. Si sus modelos son más duraderos que los de esos úlimos, es debido a que esán hechos de ideas. Los modelos del maemáico,

Más detalles

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS 9.2 La asa naural de desempleo y la curva de Phillips La relación enre el desempleo y la inflación La curva de Phillips, basada en los daos aneriores

Más detalles

Uso de Análisis Factorial Dinámico para Proyecciones Macroeconómicas

Uso de Análisis Factorial Dinámico para Proyecciones Macroeconómicas Uso de Análisis Facorial Dinámico para Proyecciones Macroeconómicas Alvaro Aguirre y Luis Felipe Céspedes * Resumen En ese rabajo implemenamos el méodo desarrollado por Sock y Wason (998) de análisis facorial

Más detalles

INSTITUTO NACIONAL DE PESCA

INSTITUTO NACIONAL DE PESCA INSTITUTO NACIONAL DE PESCA Dirección General de Invesigación Pesquera en el Pacífico Nore Subdirección de Tecnología en el Pacífico Nore. Indicadores económico-financieros para la capura de camarón y

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003

REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003 REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003 ADAPTACION DE LOS TIPOS DE INTERES DE INTERVENCION A LA REGLA DE TAYLOR. UN ANALISIS ECONOMETRICO Carlos Paeiro Rodríguez 1, Deparameno de Análisis

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO Prácica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO OBJETIVOS Esudiar los procesos de carga y de descarga de un condensador. Medida de capacidades por el méodo de la consane de iempo. MATERIAL Generador

Más detalles

Molécula de Azúcar ( C 12 H 22 O 11 ) Informe estadístico del sector agroindustrial de la caña de azúcar Zafras 2007/08 2013/14

Molécula de Azúcar ( C 12 H 22 O 11 ) Informe estadístico del sector agroindustrial de la caña de azúcar Zafras 2007/08 2013/14 Molécula de Azúcar ( C 12 H 22 O 11 ) Informe esadísico del secor agroindusrial de la caña de azúcar Zafras 2007/08 2013/14 INTRODUCCIÓN Ese primer informe esadísico del secor agroindusrial de la caña

Más detalles

Ciclos Económicos y Riesgo de Crédito: Un modelo umbral de proyección de la morosidad bancaria de Perú

Ciclos Económicos y Riesgo de Crédito: Un modelo umbral de proyección de la morosidad bancaria de Perú Ciclos Económicos y Riesgo de Crédio: Un modelo umbral de proyección de la morosidad bancaria de Perú Subgerencia de Análisis del Sisema Financiero y del Meado de Capiales Deparameno de Análisis del Sisema

Más detalles

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS)

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) Anexo VI Prácicas de Sismología e Ingeniería Sísmica PRACTICA 5. TRATAMIENTO DE ACELEROGRAMAS. 1. OBJETIVO Aprender a llevar a cabo

Más detalles

Análisis espectral Tareas

Análisis espectral Tareas Análisis especral Tareas T3.1: Implemenación y represenación del periodograma El objeivo de esa area es que los alumnos se familiaricen con la función más sencilla de análisis especral no paramérico. Programe

Más detalles

El comportamiento del precio de las acciones

El comportamiento del precio de las acciones El comporamieno del precio de las acciones Esrella Peroi Invesigador enior Bolsa de Comercio de Rosario eperoi@bcr.com.ar Para comprender el funcionamieno de los modelos de valuación de opciones sobre

Más detalles

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN.

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN. El seguro de vida como variable aleaoria. Cómo calcular su función de disribución. Nieo Ranero, Armando Universiy of Valencia, Spain Do. Maemáicas Económico Empresarial, Edificio Deparamenal Orienal, Av.

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

Índice de Precios y Cotizaciones de la Bolsa Mexicana de Valores S.A.B. de C.V. (en adelante IPC y BMV respectivamente).

Índice de Precios y Cotizaciones de la Bolsa Mexicana de Valores S.A.B. de C.V. (en adelante IPC y BMV respectivamente). Auorización SHCP: 09/11/2010 Fecha de publicación úlima modificación: 29/08/2014 Fecha de enrada en vigor: 05/09/2014 Condiciones Generales de Conraación del Conrao de Fuuro sobre el Índice de Precios

Más detalles

Metodología del Índice de Nivel de Actividad Registrada (INA R)

Metodología del Índice de Nivel de Actividad Registrada (INA R) Meodología del Índice de Nivel de Acividad Regisrada (INA R) Dirección responsable de la información esadísica y conenidos: DIRECCIÓN DE ESTADÍSTICAS ECONÓMICAS Realizadores: Ligia ordillo Pasquel Corrección

Más detalles

Foundations of Financial Management Page 1

Foundations of Financial Management Page 1 Foundaions of Financial Managemen Page 1 Combinaciones empresarias: decisiones sobre absorciones y fusiones de empresas Adminisración financiera UNLPam Faculad de Ciencias Económicas y Jurídicas Profesor:

Más detalles

Indicadores demográficos METODOLOGÍA

Indicadores demográficos METODOLOGÍA Indicadores demográicos METOOLOGÍA 1. Objeivos y uilidades El objeivo de esa operación esadísica es la obención de una serie de indicadores descripivos de la siuación demográica de Galicia, con la que

Más detalles

Control de un péndulo invertido usando métodos de diseño no lineales

Control de un péndulo invertido usando métodos de diseño no lineales Conrol de un péndulo inverido usando méodos de diseño no lineales F. Salas salas@caruja.us.es J.Aracil aracil@esi.us.es F. Gordillo gordillo@esi.us.es Depo de Ingeniería de Sisemas y Auomáica.Escuela Superior

Más detalles

MEDICIÓ N DEL VALOR ECONÓ MICO AGREGADO: INVERSIÓ N RECUPERADA Y VALOR AGREGADO IRVA

MEDICIÓ N DEL VALOR ECONÓ MICO AGREGADO: INVERSIÓ N RECUPERADA Y VALOR AGREGADO IRVA MEDICIÓ N DEL VALOR ECONÓ MICO AGREGADO: INVERSIÓ N RECUPERADA Y VALOR AGREGADO IRVA (Borrador) Ignacio Vélez-Pareja Deparameno de Adminisración Universidad Javeriana, Bogoá, Colombia Abril de 2000 Resumen

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto)

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto) Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 4 - Soluciones 1 Learning by Doing (versión en iempo discreo) Considere una economía cuyas preferencias, ecnología, y acumulación

Más detalles

Observatorio * EL AUMENTO DEL IVA EN ESPAÑA: UNA CUANTIFICACIÓN ANTICIPADA DE SUS EFECTOS **

Observatorio * EL AUMENTO DEL IVA EN ESPAÑA: UNA CUANTIFICACIÓN ANTICIPADA DE SUS EFECTOS ** Revisa de Economía Aplicada E Número 53 (vol. XVIII), 2010, págs. 163 a 183 A Observaorio * EL AUMENTO DEL IVA EN ESPAÑA: UNA CUANTIFICACIÓN ANTICIPADA DE SUS EFECTOS ** GONZALO FERNÁNDEZ-DE-CÓRDOBA Universidad

Más detalles

Metodología de Cálculo Mensual de los Índices de Precios de Comercio Exterior

Metodología de Cálculo Mensual de los Índices de Precios de Comercio Exterior Meodología de Cálculo Mensual de los Índices de Precios de Comercio Exerior Dirección Técnica de Indicadores Económicos Dirección Ejecuiva de Índices de Precios LIMA PERÚ Ocubre de 2013 1 ÍNDICE Pág. Inroducción

Más detalles

Estadística de Valor Tasado de Vivienda

Estadística de Valor Tasado de Vivienda Esadísica de Valor Tasado de Vivienda Meodología Subdirección General de Esudios y Esadísicas Madrid, enero de 2016 Índice 1 Inroducción 2 Objeivos 3 Ámbios de la esadísica 3.1 Ámbio poblacional 3.2 Ámbio

Más detalles

ESTIMACIÓN DE LAS NECESIDADES DE VIVIENDA EN EL MUNICIPIO DE CORVERA DE ASTURIAS

ESTIMACIÓN DE LAS NECESIDADES DE VIVIENDA EN EL MUNICIPIO DE CORVERA DE ASTURIAS ESTIMACIÓN DE LAS NECESIDADES DE VIVIENDA EN EL MUNICIPIO DE CORVERA DE ASTURIAS Monserra Díaz Fernández Caedráica del Deparameno de Economía Cuaniaiva Mª Paz Méndez Rodríguez Prof. Asociada del Deparameno

Más detalles

Paul Castillo - Alex Contreras - Jesús Ramírez. XXVI Encuentro de economistas - Lima noviembre de 2008

Paul Castillo - Alex Contreras - Jesús Ramírez. XXVI Encuentro de economistas - Lima noviembre de 2008 Relación n enre dinero e inflación: n: Perú 1993-2008 Paul Casillo - Alex Conreras - Jesús Ramírez XXVI Encuenro de economisas - Lima noviembre de 2008 ÍNDICE Moivación Revisión de la lieraura y evidencia

Más detalles

DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA DE PRONÓSTICO DE VENTAS EN WHIRLPOOL ARGENTINA

DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA DE PRONÓSTICO DE VENTAS EN WHIRLPOOL ARGENTINA DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA DE PRONÓSTICO DE VENTAS EN WHIRLPOOL ARGENTINA Enrique Yacuzzi (Universidad del CEMA) Guillermo Paggi (Whirlpool Argenina) i RESUMEN La nueva siuación compeiiva de

Más detalles

CORRELACIÓN LINEAL Y ANÁLISIS DE REGRESIÓN

CORRELACIÓN LINEAL Y ANÁLISIS DE REGRESIÓN CORRELACIÓN LINEAL Y ANÁLISIS DE REGRESIÓN Auores: Alicia Vila (avilag@uoc.edu), Máximo Sedano (msedanoh@uoc.edu), Ana López (alopezra@uoc.edu), Ángel A. Juan (ajuanp@uoc.edu), MAPA CONCEPTUAL Definición

Más detalles

Medición del tiempo de alza y de estabilización.

Medición del tiempo de alza y de estabilización. PRÁCTICA # 2 FORMAS DE ONDA 1. Finalidad Esudiar la respuesa de configuraciones circuiales simples a diferenes formas de exciación. Medición del iempo de alza y de esabilización. Medición del reardo. Medición

Más detalles

PREVISIÓN DE LA DEMANDA

PREVISIÓN DE LA DEMANDA Capíulo 0. Méodos de Previsión de la OBJETIVOS. Los pronósicos y la planificación de la producción y los invenarios. 2. El proceso de elaboración de los pronósicos. Méodos de previsión de la demanda 4.

Más detalles

Tema 6: Modelización con datos de series temporales. Universidad Complutense de Madrid 2013

Tema 6: Modelización con datos de series temporales. Universidad Complutense de Madrid 2013 Tema 6: Modelización con daos de series emporales Universidad Compluense de Madrid 23 Inroducción (I) Una caracerísica que disingue los daos de series emporales de los daos de sección cruzada, es que los

Más detalles

J.1. Análisis de la rentabilidad del proyecto... 3

J.1. Análisis de la rentabilidad del proyecto... 3 Esudio de la implanación de una unidad produciva dedicada a la Pág 1 abricación de conjunos soldados de aluminio J.1. Análisis de la renabilidad del proyeco... 3 J.1.1. Desglose del proyeco en coses ijos

Más detalles

Solvencia II. Los Conceptos Básicos. Por: P. Aguilar. Febrero de 2008

Solvencia II. Los Conceptos Básicos. Por: P. Aguilar. Febrero de 2008 Solvencia II Los Concepos Básicos Por: P. Aguilar Febrero de 2008 El esquema regulaorio de Solvencia II planea un impaco relevane en el ejercicio de la prácica acuarial. Tal esquema se caraceriza por descansar

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

LA EVALUACION SOCIOECONOMICA DE PROYECTOS DE INVERSION: EL ESTADO DEL ARTE * I. INTRODUCCION: LA DEFINICION DE LA EVALUACION ECONOMICA.

LA EVALUACION SOCIOECONOMICA DE PROYECTOS DE INVERSION: EL ESTADO DEL ARTE * I. INTRODUCCION: LA DEFINICION DE LA EVALUACION ECONOMICA. LA EVALUACION SOCIOECONOMICA DE PROYECTOS DE INVERSION: EL ESTADO DEL ARTE * Karen Marie Mokae Faculad de Ciencias Económicas y Sociales Universidad de Los Andes Bogoá I. INTRODUCCION: LA DEFINICION DE

Más detalles

MODELOS DE VECTORES AUTOREGRESIVOS (VAR) DR. LUIS MIGUEL GALINDO

MODELOS DE VECTORES AUTOREGRESIVOS (VAR) DR. LUIS MIGUEL GALINDO MODELOS DE VECTORES AUTOREGRESIVOS (VAR) DR. LUIS MIGUEL GALINDO VAR: GENERAL Represenación del modelo VAR: () + + = e e A A A A w w c c c c L L L L L L L L ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( Selección:.

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

Conceptos teóricos. Revisión de la literatura sobre pobreza, desigualdad y crecimiento. Contexto económico.

Conceptos teóricos. Revisión de la literatura sobre pobreza, desigualdad y crecimiento. Contexto económico. Relación enre crecimieno, desigualdad y pobreza: Un análisis aplicado a las regiones españolas. CAPÍTULO Concepos eóricos. Revisión de la lieraura sobre pobreza, desigualdad y crecimieno. Conexo económico..

Más detalles

Tema 3. El modelo neoclásico de crecimiento: el modelo de Solow-Swan

Tema 3. El modelo neoclásico de crecimiento: el modelo de Solow-Swan Tema 3. El modelo neoclásico de crecimieno: el modelo de Solow-Swan Inroducción Esquema El modelo neoclásico SIN progreso ecnológico a ecuación fundamenal del modelo neoclásico El esado esacionario Transición

Más detalles

MODELOS PARA SERIES DE TIEMPO CON ESTACIONALIDAD COMPLEJA

MODELOS PARA SERIES DE TIEMPO CON ESTACIONALIDAD COMPLEJA Decimocavas Jornadas "Invesigaciones en la Faculad" de Ciencias Económicas y Esadísica. Noviembre de 2013. Blaconá, María Teresa Andreozzi, Lucía Insiuo de Invesigaciones Teóricas y Aplicadas de la Escuela

Más detalles

4.7. Integración de Word y Excel

4.7. Integración de Word y Excel 47 Inegración de Word y Excel 471 Combinar correspondencia Qué procedimieno seguiría para hacer las siguienes areas? Generar una cara de soliciud de permiso de los padres de familia para cada uno de sus

Más detalles

Tema 5 El Transistor MOS

Tema 5 El Transistor MOS FUNAMENTO FÍCO Y TECNOLÓGCO E LA NFORMÁTCA Tema 5 El Transisor MO Agusín Álvarez Marquina Esrucura física y polarización del ransisor nmo de acumulación (ource= Fuene) G (Gae= Puera) (rain= renador) (+)

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

Métodos de Previsión de la Demanda Pronóstico para Series Temporales Niveladas Representación Gráfica

Métodos de Previsión de la Demanda Pronóstico para Series Temporales Niveladas Representación Gráfica Méodos de Previsión de la Demanda Pronósico para Series Temporales Niveladas Represenación Gráfica REPRESENTACIÓN GRÁFICA DE LA SERIE DE DATOS Período i Demanda Di 25 2 2 3 225 4 24 5 22 Para resolver

Más detalles

Las derivadas de los instrumentos de renta fija

Las derivadas de los instrumentos de renta fija Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa

Más detalles

Hechos Estilizados del Sistema Bancario Peruano

Hechos Estilizados del Sistema Bancario Peruano BANCO CENTRAL DE RESERVA DEL PERÚ Hechos Esilizados del Sisema Bancario Peruano Freddy Espino* * Banco Cenral de Reserva del Perú DT. N 2013-005 Serie de Documenos de Trabajo Working Paper series Abril

Más detalles

Construcción de señales usando escalones y rampas

Construcción de señales usando escalones y rampas Consrucción de señales usando escalones y rampas J. I. Huircán Universidad de La Fronera March 3, 24 bsrac Se planean méodos para componer y descomponer señales basadas en escalones y rampas. Se de ne

Más detalles

Práctica 2: Análisis en el tiempo de circuitos RL y RC

Práctica 2: Análisis en el tiempo de circuitos RL y RC Prácica 2: Análisis en el iempo de circuios RL y RC Objeivo Esudiar la respuesa ransioria en circuios serie RL y RC. Se preende ambién que el alumno comprenda el concepo de filro y su uilidad. 1.- INTRODUCCIÓN

Más detalles

LA BASE TÉCNICA FINANCIERA DEL MODELO INMUNIZADOR DE SEGUROS DE VIDA EN ESPAÑA. J. Iñaki de La Peña (1) Profesor Titular de Universidad

LA BASE TÉCNICA FINANCIERA DEL MODELO INMUNIZADOR DE SEGUROS DE VIDA EN ESPAÑA. J. Iñaki de La Peña (1) Profesor Titular de Universidad LA BASE TÉCNICA FINANCIERA DEL MODELO INMUNIZADOR DE SEGUROS DE VIDA EN ESPAÑA J. Iñaki de La Peña () Profesor Tiular de Universidad RESUMEN La exisencia de una normaiva amplia y específica, ano a nivel

Más detalles

HIPÓTESIS DE MERCADO EFICIENTE, CAOS Y MERCADO DE CAPITALES

HIPÓTESIS DE MERCADO EFICIENTE, CAOS Y MERCADO DE CAPITALES HIPÓTESIS DE MERCADO EFICIENTE, CAOS Y MERCADO DE CAPITALES Andrés Fernández Díaz Caedráico de la Universidad Compluense Consejero Emério del Tribunal de Cuenas Pilar Grau Carles Profesora Tiular de la

Más detalles