Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor:"

Transcripción

1 CAPÍULO - 8 Problem El estdo de tensiones de un punto de un sólido viene definido por el siguiente tensor: 7 6 ( ) 6 8 N / m XYZ 76 Hllr: ) ensiones direcciones principles sí como l mtri de pso entre el sistem OXYZ el sistem principl ) Aplicndo el método de Mohr hllr l tensión tngencil máim el plno en que se produce ) Obtener el vector tensión ls componentes intrínsecs pr un plno cu norml es en el sistem OXYZ en sistem principl ) Relir el prtdo nterior plicndo el método de Mohr ) l vist de l form del tensor se infiere que es un tensión principl Luego: > λ 76 consecuentemente l dirección () es principl El cálculo de un de ls otrs dos tensiones sigue los psos vistos en teorí es decir: ) se rest un prámetro ( λ en este cso) l digonl principl Se hll el determinnte se igul cero 7 λ λ λ λ b) Un ve resuelto hllds ls tres ríces se ordenn de mor menor resultndo: 76 N / m CALCULO DE LAS DRECCONES PRNCPALES Puesto que l dirección principl es dto se hll l dirección principl Pr ello: ) se rest l digonl del tensor de tensiones el vlor de l tensión principl

2 CAPÍULO - 9 b) L mtri resultnte se multiplic por el vector incógnit de l dirección principl 7 6 l m n l m n c) Se ñde un tercer ecución fruto de plnter que el módulo del vestor unitrio es l unidd d) eligiendo de ls tres posibles ecuciones del sistem l ecución de cosenos se hll ls dirección principl resultndo: ( 68) El cálculo de l dirección principl se hrá medinte el producto vectoril: i j D ) 6 8 ( P ) ( 86 Z Dirección principl D P (Contenid en el plno XY) (D P Contenid en el plno XY) L mtri de pso se construe colocndo en cd fil los cosenos directores de cd dirección:

3 CAPÍULO - L ) Los círculos de Mohr serán: τ m τ 8 θ El plno en que se produce l tensión tngencil máim es quel cu norml form º con el eje principl º con el eje principl Por tnto: l cos º m n l m Resultndo: ) El vector tensión en el sistem OXYZ pr hllr el vector tensión en el sistem se h de epresr en primer lugr el vector norml l plno en el sistem : * n i Ln j Estndo hor en condiciones de hllr el vector tensión en el sistem sí:

4 CAPÍULO - * i ls componentes intrínsecs pueden hllrse indistintmente en el sistem principl o en el OXYZ (son cntiddes esclres) resultndo: τ ( 78) 99 N / m 9 78 N / m ) Se hlln los ángulos correspondientes los cosenos directores de l norml epresd en el sistem principl resultndo: 9º (rccos 99 9 º ( ) 9º) ) Se levnt un perpendiculr por A prtir de ell se mide un ángulo tl que su coseno se º Se tr un segmento se prolong el etremo hst que corte l circunferenci etern: En este cso 9º con l dirección principl cortrá l circunferenci etern de Mohr en el punto ) Con centro en O rdio O se tr un troo de rco (en este cso se ve que dicho troo coincide con un de ls circunferencis de Mohr) por tnto l solución se encuentr sobre dich circunferenci ) Se levnt un perpendiculr por prtir de ell se mide un ángulo cuo coseno se 9 > º se tr un segmento hst que corte l circunferenci eterior de Mohr en P ) Con centro en O rdio O P se tr un rco hst que l rco trdo en el punto (en este cso el primer troo de rco coincide con un circunferenci de Mohr) ) L intersección de mbos troos de rco es el punto solución (M)

5 CAPÍULO - τ π θ rccos θ rccos ( 9) º τ 7 º π O O M P

6 CAPÍULO - Problem Se el tensor de tensiones de un punto elástico referido un sistem XYZ: N/m Hllr: ) ensión cortnte máim plno en que se produce b) ensor esférico desvidor ) Es necesrio hllr ls tensiones direcciones principles: Pr ello puede obsérvese que l componente es principl consecuentemente l dirección () es principl Resultndo: λ λ λ 99 λ 8 Ordenndo de mor menor: 8 99 N / m Pr hllr ls direcciones principles: En este cso se opt por hllr l dirección principl medinte el procedimiento norml l dirección principl trvés del producto vectoril resultndo: 99 l m n 99 l m 99 n Eligiendo dos ecuciones del sistem (l º l º) ms l ecución de cosenos result: Consecuentemente: D P ( 8 8 ) ( D P ) ( D P ) ( 8 8 ) D P El tensor de tensiones epresdo en el sistem principl es:

7 CAPÍULO L tensión tngencil máim puede hllrse prtir del círculo de Mohr: τ º º Resultndo: 8 τ N / m m l dirección de l tensión tngencil máim es tl que l norml form º con el eje principl º con el eje principl Resultndo: b) ensor esférico desvidor: En primer lugr h que clculr l tensión intrínsec octédric Luego el tensor esférico será: ( ) N / m oct el desvidor: oct ( ) ( δ ) N / m

8 CAPÍULO - D oct ( ) ( δ ) N / m El tensor desvidor tmbién puede epresrse en el sistem principl Repitiendo el proceso de hllr ls tensiones principles se lleg: D ( ) 8 N / m 8 Que (como se puede observr continución) debe coincidir con el clculdo prtir del tensor de tensiones epresdo en el sistem principl: Siendo el tensor esférico el mismo en mbos sistems pues es un invrinte

9 CAPÍULO - 6 Problem Se un cilindro de rdio R genertri prlel l eje Z tl que ls crs superior e inferior están sometids un cierto estdo de crgs l superficie lterl del mismo está libre de crgs Se sbe que el tensor de tensiones es de l form: ( ) N / m XYZ Donde el término es un incógnit ls fuers por unidd de volumen son desprecibles es un prámetro conocido Se pide: ) Determinr el tensor de tensiones b) ensiones direcciones principles Mtri de pso R ) El único dto que se dispone es l form del tensor de tensiones pero independientemente de cul se se sbe que ls ecuciones de equilibrio interno siempre hn de cumplirse: j F Vi de l primer de l segund L conclusión que se etre es que: F( ) El otro dto disponible es l condición de contorno que en este cso dice que l cr lterl está libre de crgs es decir:

10 CAPÍULO - 7 Norml n (cos θ senθ ) R θ L condición de que no eiste crg lgun en l superficie lterl se trduce en: ( ) F cosθ n j F( ) senθ Resultndo: F( )cosθ F( ) senθ ( senθ cosθ ) Puesto que est iguldd h de cumplirse pr todo ángulo θ implic que: F() Luego Por tnto el tensor de tensiones qued de l form siguiente: ( ) N / m XYZ b) tensiones direcciones principles mtri de pso: Relindo el proceso costumbrdo:

11 CAPÍULO - 8 λ λ λ obteniendo: Pr clculr ls direcciones principles: n m l n m l cuo resultdo es: ( ) ( ) P D Y repitiendo pr ls otrs dos direcciones result: ( ) ( ) ( ) ( ) D P D P L mtri de pso se construe colocndo en fils ls direcciones principles:

12 CAPÍULO - 9 Problem El estdo de tensiones de un punto de un sólido elástico es el siguiente Se pide: ) ensiones direcciones principles b) Vector tensión componentes intrínsecs respecto un plno cu norml form ángulos igules con los tres ejes coordendos c) Plno octédrico tensor esférico desvidor ensiones intrínsecs octédrics ) Pr hllr ls tensiones direcciones principles seguimos el procedimiento hbitul nd más que observndo que es principl consecuentemente l dirección () es dirección principl resultndo: λ λ Resolviendo ordenndo de mor menor result: 6 Pr clculr l dirección principl : n m l n m l Del sistem de ecuciones: 8 l m m n l Resultndo: P D Del nálisis del tensor de tensiones se sbe que:

13 CAPÍULO - 6 D P > ( ) Relindo el producto vectoril pr hllr l dirección principl result: b) El plno cu norml form ángulos igules con los tres ejes: n m l n m l El vector tensión será: 6 Ls componentes intrínsecs: τ c) El plno octédrico es quel cu norml está igulmente inclindo respecto los tres ejes principles Resultndo: oct n El vector tensión octédrico es:

14 CAPÍULO oct Ls tensiones intrínsecs serán: 9 6 τ oct oct El tensor esférico es: esf δ Y el desvidor: desv δ

15 CAPÍULO - 6 Problem Se un cuerpo de ltur m sometido l estdo de crgs que se indic Hllr: ) tensor de tensiones b) vlor del ángulo α que form un plno π (el plno π es perpendiculr l plno contiene l eje X) con el eje Y pr que l tensión intrínsec norml se nul N/m m 6 N/m (tensión tngencil ) N/m N/m El cuerpo se encuentr sometido ls siguientes crgs: Un compresión vrible desde hst en ls crs lterles Un trcción de en l cr superior e inferior Un tensión rsnte en ls crs superior e inferior Un tensión rsnte de 6 en l cr frontl trser Ls crgs se epresn en KN/m ls medids del cuerpo en metros ) el tensor de tensiones será: 6 6 KN / m Donde el origen de coordends se h situdo en el centro del cubo El tensor de tensiones pr el origen de coordends será:

16 CAPÍULO KN / m b) Plno Z n α n Y τ L norml l plno será: n ( senα cosα ) Luego el vector tensión: 6 6 6cosα senα senα cosα cosα Y l condición pedid se epres como ( 6cosα senαcosα ) cos α sen α senα cos α α º ; º ; º etc

17 CAPÍULO - 6 Problem 6 Se el tensor de tensiones correspondiente un punto de un sólido elástico: 8 ) XYZ Hllr: ) ensor de tensiones referido ls siguientes direcciones: ( ) b) dem siendo hor ls direcciones: ( ) c) Hllr en el círculo de Mohr ls tensiones intrínsecs correspondientes l dirección epresd est en el sistem XYZ ) L mtri de trnsformción de coordends es: L Y el tensor de tensiones en los nuevos ejes será: ] [ ][ ][ ] Z Y X L L b) L dirección que flt por determinr un dirección se hll trvés del producto vectoril resultndo:

18 CAPÍULO - 6 Luego l nuev mtri de trnsformción de coordends es: L relindo l mism operción nterior se obtiene: ] [ L][ ][ L] X Y Z c) L dirección propuest est en el sistem XYZ que su ve coincide con el principl (es importnte puntr que en el plno de Mohr siempre se trbj en el sistem principl) Antes es necesrio ordenr ls tensiones principles resultndo: ; 8 ; Levntndo un perpendiculr por se tr un rco tl que cuo coseno se ½ 6º este rco cort l circunferenci eterior en el punto N luego con centro en O rdio O N se tr un troo de rco De igul form levntndo un perpendiculr por trndo un rco cuo coseno se / 6º hst que corte l circunferenci eterior ( en M ) Luego con centro en O rdio O M se tr otro troo de rco L intersección de mbos troos de rco es el punto solución que midiendo escl proporcion el vlor de : τ

19 CAPÍULO - 66 τ Punto solución N M 6º A O O B Que se puede comprobr numéricmente

20 CAPÍULO - 67 Problem 7 Se el siguiente estdo tensionl de un sólido de dimensiones 7 ) Hllr ls fuers por unidd de volumen b) Resultnte de fuers momentos respecto l origen de ls tensiones que ctún en l cr suponiendo que los ejes se sitún en el centro del cubo Aplicndo ls ecuciones de equilibrio interno: ( ) i V j F Result: 6 V V V Z Y X Resultndo finlmente: ( ) 6 F i V b) Se entiende por resultnte l sum de tods fuers que ctún sobre cd uno de los infinitos puntos de un cr del sólido Por tnto en primer será necesrio epresr el tensor de tensiones pr es cr sunto que se consigue sustituendo por : 7 7 A continución se clcul el vector tensión pr l cr cu norml es ( ) Resultndo:

21 CAPÍULO i Ls componentes e de l resultnte son: ( ) ( ) d d R d d R Pr clculr los momentos l figur siguiente puede servir de ud resultndo: Y X O El momento respecto l origen O de ls tensiones es igul l producto vectoril de l fuer por l distnci l origen resultndo: ( ) ( ) ( ) ( ) ( ) j d d d d j d d i da da j da i da da j da i da j i M

22 CAPÍULO - 69 Problem 8 Se el tensor de tensiones siguiente correspondiente un punto de un sólido elástico: ) Clculr dibujr dos posibles triedros de referenci del sistem principl b) ls mtrices de pso c) dibujr el vector en cd uno de los triedros Como se sbe el sistem de referenci no es único pues depende del signo que se dopte pr ls ríces En nuestro cso: ) Se clcul en primer lugr ls tensiones principles resultndo: ] 6 L dirección principl es dto resultndo ( ) P D Supóngse que se clcul l dirección principl : Siguiendo el procedimiento hbitul de restr l tensión principl (en este cso l ) l digonl principl multiplicr por el vector correspondiente result: n m l n m l Operndo result: P D Y l dirección principl se puede hllr medinte el producto vectoril siguiente: j i P D

23 CAPÍULO - 7 L mtri de pso result ser: L Supóngse que se siguen los siguientes psos: Se clcul en primer lugr l dirección principl luego l dirección principl medinte el producto vectoril resultndo en este cso: P D j i P D l mtri de pso: L Que no coincide con l nterior Los triedros en mbos csos quedn:

24 CAPÍULO - 7 CASO º Dirección principl (contenid en el plno XY) Y Dirección principl (contenid en el plno XY) X CASO º Dirección principl (contenid en el plno XY) Dirección principl (contenid en el plno XY) Y X c) Epresemos un vector culquier por ejemplo referenci: en cd triedro de CASO ª Vector 7

25 CAPÍULO - 7 Cso º : Vector 7 Dibujndo el Vector Vector en cd triedro se obtiene: Vector º Dirección principl (contenid en el plno XY) X Y Dirección principl (contenid en el plno XY) Dirección principl Dirección principl (contenid en el (contenid en el plno plno XY) XY) Vector º Y X Y como puede observrse mbos vectores tienen igul representción Conclusión: Aunque los triedros mtrices de trnsformción no coinciden los resultdos son idénticos pues ls direcciones en mbos csos son ls misms

vectores Componentes de un vector

vectores Componentes de un vector Vectores Un vector es un segmento orientdo. Está formdo por se representn: - con un flech encim v - en un eje de coordends - el módulo: es l longitud del origen l extremo - l dirección: es l rect que contiene

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

04) Vectores. 0402) Operaciones Vectoriales

04) Vectores. 0402) Operaciones Vectoriales Págin 1 04) Vectores 040) Operciones Vectoriles Desrrolldo por el Profesor Rodrigo Vergr Rojs Octubre 007 Octubre 007 Págin A) Notción Vectoril El vector cero o nulo (0 ) es quel vector cuy mgnitud es

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

60º L = 5 cm. q 1. q 2. b = 6 cm. q 4. q 3

60º L = 5 cm. q 1. q 2. b = 6 cm. q 4. q 3 UNIVERSIDAD NACIONAL EXERIMENTAL FRANCISCO DE MIRANDA COMLEJO DOCENTE EL SABINO DEARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II ROFESORA CARMEN ADRIANA CONCECIÓN 1 Considere tres crgs en

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

SEPTIEMBRE " ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

SEPTIEMBRE  ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. SEPTIEMBRE 99 OPCIÓN A EJERCICIO. Otener ls mtrices A y B tles que cumplen ls siguientes condiciones: B A B A Se trt de un sistem de ecuciones mtriciles, que se puede resolver por culquier método. Pr este

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006 Resolución del emen de Mtemátics II de Selectividd Andlucí Junio de 6 Antonio Frncisco Roldán López de Hierro * de junio de 6 Opción A Ejercicio [ 5 puntos] Determin un punto de l curv de ecución y e pendiente

Más detalles

4. PRUEBA DE SELECTIVIDAD-MODELO

4. PRUEBA DE SELECTIVIDAD-MODELO Pruebs de Selectividd de Ciencis PRUEB DE SELECTIVIDD-MODELO-- OPCIÓN : ) Hll l longitud de los ldos del triángulo isósceles de áre máim cuo perímetro se m Perímetro b h h re h ( ) Derivmos : bse crece

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1.

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1. DETERINNTES DETERINNTE DE UN TRIZ CUDRD socido cd mtri cudrd h un número llmdo determinnte de, denotdo como det. Los determinntes nos proporcionn un método pr el cálculo de l mtri invers (en cso de eistir)

Más detalles

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como: Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... Deprtmento de Mtemátics TEM : MTRICES Un mtriz de orden mxn es un conjunto de m n números reles dispuestos en m fils y n columns... n... n... m m m... mn los números reles ij se les llm elementos de l

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

Transformaciones en 2D. Sistemas de coordenadas. 2 dimensiones: traslación. 2 dimensiones: escalado

Transformaciones en 2D. Sistemas de coordenadas. 2 dimensiones: traslación. 2 dimensiones: escalado Trnsformciones Contenido Sistems de coordends Trnsformciones en D Trnsformciones en 3 dimensiones Composición de trnsformciones Rotción lrededor de un pivot Rotción lrededor de un eje Agrdecimientos: A

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS Definición: Cónic es el lugr geométrico de los puntos de un plno cu rzón de distncis un punto fijo (que llmremos foco) un rect fij (que llmremos directriz) es constnte.

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería Resolución de Triángulos - Soluciones 1. Un rectángulo circunscribe simétricmente un sector circulr tl como muestr el dibujo djunto. Si el ángulo del sector es de 1 rdián y su áre es de 7 ², hll en milímetros

Más detalles

Semana 1: Tema 1: Vectores. 1.1 Vectores y adición de vectores 1.2 Componentes de vectores 1.3 Vectores unitarios 1.4 Multiplicación de vectores

Semana 1: Tema 1: Vectores. 1.1 Vectores y adición de vectores 1.2 Componentes de vectores 1.3 Vectores unitarios 1.4 Multiplicación de vectores Semn 1: Tem 1: Vectores 1.1 Vectores dición de vectores 1.2 Componentes de vectores 1.3 Vectores unitrios 1.4 Multiplicción de vectores Vectores Los vectores son cntiddes que tienen tnto mgnitud como dirección

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

Unidad 10. Sistemas de ecuaciones lineales

Unidad 10. Sistemas de ecuaciones lineales Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems

Más detalles

TEMA 1. CÁLCULO VECTORIAL.

TEMA 1. CÁLCULO VECTORIAL. TEMA 1. CÁLCUL VECTRIAL. MAGNITUDES FÍSICAS ESCALARES Son quells que quedn determinds por su vlor numérico y l unidd de medid. Ejemplos: ms, energí, tiempo, tempertur, etc. MAGNITUDES FÍSICAS VECTRIALES

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

JUNIO 95. Solución Se pide calcular la resultante de tres fuerzas conocidos sus módulos y sus direcciones. Para ello!!! se buscan tres vectores u1,

JUNIO 95. Solución Se pide calcular la resultante de tres fuerzas conocidos sus módulos y sus direcciones. Para ello!!! se buscan tres vectores u1, OPIÓN A JUNIO 95 UESTIÓN En un vértice de un cubo se plicn tres fuerzs dirigids según los digonles de ls tres crs que psn por dichos vértices. Los módulos o mgnitudes de ests fuerzs son, y. Hllr el módulo

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS ELECTROMGNETISMO PR INGENIERÍ ELECTRÓNIC. CMPOS Y ONDS Fundmentos de Cálculo Vectoril Introducción Cpítulo 1 El Cálculo Vectoril es un herrmient fundmentl pr el modeldo de ls intercciones de nturle electromgnétic,

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

04) Vectores. 0403) Componentes Vectoriales

04) Vectores. 0403) Componentes Vectoriales Págin 1 04) Vectores 0403) Componentes Vectoriles Desrrolldo por el Profesor Rodrigo Vergr Rojs Octubre 007 Octubre 007 Págin Un mismo ector se puede epresr como l sum de numerosos conjuntos de dos, tres

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b].

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b]. INTEGRALES Curso 9-.- ) Enuncir el Teorem del vlor medio integrl y dr un interpretción del mismo. Cundo f(), cómo puede interpretrse geométricmente? cos si [-, ] ) Se f () = 4 + sen si (, ] ) Hllr I =

Más detalles

Tema 1: Introducción y fundamentos matemáticos. Parte 3/4 Vectores en física I: Definiciones y propiedades

Tema 1: Introducción y fundamentos matemáticos. Parte 3/4 Vectores en física I: Definiciones y propiedades Tem 1: Introducción y fundmentos mtemáticos Antonio González Fernández Deprtmento de Físic Aplicd III Universidd de Sevill Prte 3/4 es en físic I: Definiciones y propieddes Ls mgnitudes se clsificn en

Más detalles

CASTILLA Y LEÓN / JUNIO 01. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO

CASTILLA Y LEÓN / JUNIO 01. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO CSTILL Y LEÓN / JUNIO. LOGSE / MTEMÁTICS II / EXMEN COMPLETO Se proponen dos pruebs, B. Cd un de ells const de dos problems, PR- PR-, de cutro cuestiones, C-, C-, C- C-4. Cd problem tendrá un puntución

Más detalles

geometria proyectiva primer cuatrimestre 2003 Práctica 5

geometria proyectiva primer cuatrimestre 2003 Práctica 5 geometri proyectiv primer cutrimestre 2003 Práctic 5 1. Encontrr un curv prmetrizd α cuy trz se el círculo x 2 + y 2 = 1, que lo recorr en el sentido de ls gujs del reloj y tl que α(0) = (0, 1). 2. Se

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.

Más detalles

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas Fundmentos Físicos de Ingenierí de Telecomunicciones Fuerzs electrostátics 1. Dos crgs igules de 3.0 µc están sobre el eje y, un en el origen y l otr en y = 6 m. Un tercer crg q 3 = 2.0 µc está en el eje

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn TE trices TRICES. DEFINICIÓN. Un mtriz de m fils n columns es un serie ordend de m n números ij, i,,...m; j,,...n, dispuestos en fils columns, tl como se indic continución:... n... n............ m m m...

Más detalles

51 EJERCICIOS DE VECTORES

51 EJERCICIOS DE VECTORES 51 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coorens e los vectores fijos e l

Más detalles

Optimización de funciones

Optimización de funciones Tem 5 Optimizción de funciones 5.1. Extremos de funciones de vris vribles Definición 5.1.1. Sen f : D R n R, x 0 D y el problem de optimizción: mximizr / minimizr f(x 1, x,, x n ), (x 1, x,, x n ) D en

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

Integrales de Superficie y sus Aplicaciones

Integrales de Superficie y sus Aplicaciones iclo Básico Deprtmento de Mtemátic Aplicd álculo Vectoril (054) Junio 01 UNIVERIDAD ENTRAL DE VENEZUELA FAULTAD DE INGENIERÍA Integrles de uperficie y sus Aplicciones José Luis Quintero 1. Encuentre un

Más detalles

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009 E.T.S. DE INGENIERÍ (ICI). TEORÍ DE ESTRUCTURS Y CONSTRUCCIONES INDUSTRIES Exmen Septiembre 009 EE TENTENTE El exmen const de vrios ejercicios, que se reprtirán sucesivmente, con un tiempo máximo pr l

Más detalles

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn TEMA ÁLGEBRA DE MATRICES Mtemátics II º Bchillerto TEMA ÁLGEBRA DE MATRICES. NOMENCLATURA Y DEINICIONES.. - DEINICIÓN Ls mtrices son tbls numérics rectngulres ª column ª fil n n n.......... m m m mn (

Más detalles

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z):

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z): Mtemátics II Álgebr Linel (Junio-96 Considérese el sistem de ecuciones lineles ( b c son dtos; ls incógnits son : b c c b b c Si b c son no nulos el sistem tiene solución únic. Hllr dich solución. (Sol:

Más detalles

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas. . Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto

Más detalles

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 )

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 ) Clse 1: Ecución de l rect Determinr l pendiente del segmento de rect que une dos puntos. Comprender ls distints representciones lgerics de l ecución de l rect. Determinr un ecución pr un rect ddos dos

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES.

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES. MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Mtrices 11 Definición Se K un cuerpo y n, m N Un mtriz n m sobre K es un plicción: A : {1,,n} {1,,m} K Si (i, j) {1,,n} {1,,m} denotremos ij

Más detalles

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales Aplicción del Cálculo Integrl pr l Solución de Problemátics Reles Jun S. Fierro Rmírez Universidd Pontifici Bolivrin, Medellín, Antioqui, 050031 En este rtículo se muestr el proceso de solución numéric

Más detalles

Determinantes de una matriz y matrices inversas

Determinantes de una matriz y matrices inversas Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones Definición de Polinomio Epresiones Algerics Epresión lgeric es tod cominción de números letrs ligdos por los signos de ls operciones ritmétics: dición, sustrcción, multiplicción, división potencición.

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I Evlución NMBRE PELLIDS CURS GRUP FECH CLIFICCIÓN 4 L solución de l ecución sen 0,5 es: ) 0 y 50 b) 50 y 0 c) 0 y 0 Si sen 0 0,4, entonces cos 0 será: ) 0,4 b) 0,94 c) 0,4 Un estc de longitud, clvd verticlmente

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por

Más detalles

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE 1 LA ELIPSE DEFINICIÓN L elipse es el lugr geométrico de todos los puntos P del plno cuy sum de distncis dos puntos fijos, F 1 y F, llmdos focos es un constnte positiv. Es decir: L elipse es l curv cerrd

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

AX = B. X es la matriz columna de las variables:

AX = B. X es la matriz columna de las variables: ÁLGEBR MTRICIL PRO. MRIEL SRMIENTO SESIÓN 9: METODO DE ELIMINCIÓN GUSSIN En est sesión, resolvemos sistems de ecuciones lineles de orden x y x. Pr ello escribimos el sistem en término de mtrices, por ejemplo:

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3).

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3). ÁlgebryGeometrí 1. ) Ddos tres puntos A, B y C en el plno demuestr que l circunferenci de diámetro AC ps por B siysólosielánguloâbc es recto. b) Ddos dos puntos A y B del plno y un rect r, determin, cundo

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES

CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE ATERIALES CONCEPTO DE PIEZA PRISÁTICA Centro de grvedd Directriz o eje G C Sección trnsversl ADERTENCIA: Eisten otrs rms de l ecánic de edios Continuos en ls

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Cpítulo 6 Aplicciones de l integrl. 6.. Cálculo del áre de un figur pln. En generl, pr clculr el áre de un región pln:. L dividimos en frnjs, infinitmente estrechs, de mner horizontl o verticl,. Suponemos

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero. DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción

Más detalles

Capítulo 5. Medición de la Distancia por Medio de Triangulación

Capítulo 5. Medición de la Distancia por Medio de Triangulación Cpítulo 5. Medición de l Distnci por Medio de Tringulción 5.1 Introducción Hemos visto cómo medir l distnci de un objeto un cámr cundo dicho objeto es cptdo por un sol cámr; sin embrgo, cundo el objeto

Más detalles

PROBLEMAS DE ÓPTICA INSTRUMENTAL

PROBLEMAS DE ÓPTICA INSTRUMENTAL Grupos A y B Curso 006/007 ROBEMAS DE ÓTICA INSTRUMENTA. Considérese un sistem óptico ilumindo por un hz de luz monocromátic de longitud de ond λ 550nm. El sistem está compuesto por dos lentes delgds que

Más detalles

CAPÍTULO. Aplicaciones

CAPÍTULO. Aplicaciones CAPÍTULO 3 Aplicciones 3.5 Trbjo de un fuerz 1 Se dice que un fuerz reliz un trbjo cundo cmbi el estdo de reposo o estdo de movimiento de un cuerpo. En este sentido, el trbjo que reliz un fuerz pr llevr

Más detalles