Estudio Frecuencial de Sistemas Continuos de 1 er y 2º Orden

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estudio Frecuencial de Sistemas Continuos de 1 er y 2º Orden"

Transcripción

1 Uiversidad Carlos III de Madrid Departameto de Igeiería de Sistemas y Automática SEÑALES Y SISTEMAS Práctica Estudio Frecuecial de Sistemas Cotiuos de 1 er y º Orde

2 Estudio frecuecial de sistemas cotiuos de primer y segudo orde 1 Itroducció Teórica Se cooce como respuesta frecuecial de u sistema a la respuesta del mismo, e régime permaete, cuado se utiliza como señal de etrada ua seoide. La respuesta de u sistema lieal estable a ua señal de excitació de tipo seoidal, es otra señal seoidal de la misma frecuecia que la de etrada, pero que difiere de ella e los valores de su amplitud y de su águlo de fase. La amplitud de la señal de salida y su águlo de fase so fució de la frecuecia. La señal seoidal que aplicaremos a uestro sistema vedrá dada por: r(t)= A* se(ωt) (1) siedo A la amplitud y ω (rad/s) la pulsació de la señal. La señal de salida es tambié seoidal e la medida e que el sistema es lieal. La represetamos por: y(t)= B* se(ωt+φ) () siedo B la amplitud y φ el desfase e radiaes. A B r(t) y(t) t Figura 1.- Represetació de la salida de u sistema lieal frete a ua etrada seoidal. La represetació gráfica de la respuesta e frecuecia se deomia diagrama de Bode. La fució de trasferecia seoidal G(jω) es ua fució compleja que puede ser represetada por sus curvas de módulo (gaacia) y de argumeto (águlo de fase). E los diagramas de Bode se represeta la fució de trasferecia G(jω) mediate dos curvas separadas. E ua de ellas se muestra la gaacia e escala logarítmica G(jω) db, respecto de la frecuecia, tambié e escala logarítmica; y e la otra el águlo de fase ψ(jω), e grados e escala atural, respecto de la frecuecia e escala logarítmica. E u papel semilogarítmico (como el que se icluye al fial de la práctica) la propia subdivisió del papel realiza la escala logarítmica de la frecuecia. Para escala de gaacias (módulos) se suele utilizar como uidad de medida el decibelio: [ db] 0log G( jω) 0log A( ω) G( jω) = (3) Págia

3 Objetivo de la Práctica Estudio frecuecial de sistemas cotiuos de primer y segudo orde Se pretede realizar u aálisis frecuecial de dos sistemas distitos mediate aálisis de su respuesta () ate ua etrada seoidal de amplitud A y frecuecia variable ω, (1) es decir mediate sus respuestas e frecuecia. Así mismo, se pretede utilizar dichos aálisis para adaptar los dos sistemas reales a u modelo de Sistema de Primer Orde y otro modelo de Sistema de Segudo Orde, respectivamete. El objetivo pricipal de esta práctica es que el alumo apreda a sacar el máximo de iformació de u sistema a partir de su respuesta e frecuecia. Ambos sistemas que se va a aalizar costa de u motor de corriete cotiua que gira a ua velocidad depediete de la tesió de alimetació. La maqueta empleada es la misma que e la práctica 1; e el guió de dicha práctica aparece las características del motor y u esquema del pael de coexioes. E dicha práctica, este sistema se ha modelado como u sistema de primer orde cuyo diagrama de bloques del modelo viee represetado por la figura. E esta práctica queremos comprobar e qué medida el motor se comporta como u sistema de primer orde (modelo) U K 1i K m 1 + Ts ω K Amplificador Tacodiamo Motor i = 1,, 3 Figura.- Diagrama de bloques de la maqueta de la práctica. E la figura aterior K 1i represeta cada ua de las gaacias del amplificador y K es la costate de la tacodiamo. El sistema a cosiderar tiee por gaacia estática K i que es igual al producto K 1i K m K, y la fució de trasferecia es: G ( s) K' i = Ts + 1 (4) E la práctica 1 tambié aalizábamos el sistema realimetado (figura3), al que asociamos u modelo de sistema de segudo orde cuya Fució de Trasferecia, e relació al sistema de primer orde es: M ( s) dode K i =K li K m K 3 s ' Ki T 1 K + s + T T = (5) ' i Págia 3

4 Estudio frecuecial de sistemas cotiuos de primer y segudo orde + - K1i Amplificador K m ω K 3 1+ Ts s Motor Ecoder θ Figura 3.- Sistema realimetado. Vamos a utilizar como señal de excitació del motor ua seoide de frecuecia variable que obtedremos a través de u geerador de señal. Para ajustar las posibles gaacias del amplificador se dispoe de u poteciómetro ubicado e la caja de boras juto co el resto de coectores, que os permitirá coectar las etradas y salidas de los diferetes módulos, así como ver mediate el osciloscopio la respuesta del sistema. E la parte izquierda del pael de coexioes hay u selector de modo de fucioamieto. Para esta práctica debe seleccioarse ±5 V como rago de etrada. Para realizar el aálisis de ambos sistemas se deberá dibujar sus diagramas de Bode de amplitud y fase, cosiderado que la salida del sistema, cuado a la etrada se la preseta ua señal seoidal, es otra seoide de la misma frecuecia y desfasada u cierto águlo respecto de la primera, fució de la frecuecia. Es acosejable medir las tesioes e el osciloscopio de pico a pico, para así poder filtrar posibles asimetrías del motor e cuato a su setido de giro. Así mismo, se acoseja tambié medir los desfases temporales etre los máximos de las dos señales. 3 Sistema de Primer Orde A.- Represetar e papel semilogarítmico los putos experimetales referidos a la Gaacia e db y Fase e grados frete frecuecia agular (G db vs. w(rad/s) ; Φ(º) vs. w(rad/s)) B.- Sobre los putos experimetales represetados dibujar los diagramas asitóticos de Bode tato e gaacia como e fase. Obteer gráficamete, los parámetros del sistema (costate de tiempo T y gaacia K) C.- Comprobar los resultados obteidos e los apartados ateriores utilizado MATLAB. Ejemplo de aplicació: Sea el sistema de fució de trasferecia: G(s) = K/(Ts+1) - defiimos los poliomios del umerador y deomiador (MATLAB):» um=[k]» de=[t 1]» bode(um,de) Págia 4

5 4 Sistema de Segudo Orde Estudio frecuecial de sistemas cotiuos de primer y segudo orde A.- Represetar e papel semilogarítmico los putos experimetales referidos a la Gaacia e db y Fase e grados frete frecuecia agular (G db vs. w(rad/s) ; Φ(º) vs. w(rad/s)) para las posicioes de la gaacia del amplificador K 1 y K 3 B.- Sobre los putos experimetales represetados dibujar los diagramas asitóticos de Bode tato e gaacia como e fase. Aalizar las figuras obteidas para cocluir qué tipo de sistema de segudo orde se ajusta mejor a los datos empíricos: polos reales distitos, polo doble, o polos complejos cojugados. A partir de este aálisis obteer uos valores de los parámetros del modelo Sistema de Segudo Orde: w y ζ (frecuecia atural del sistema y coeficiete de amortiguamieto) C.- Comprobar los resultados obteidos e los apartados ateriores utilizado MATLAB. Ejemplo:» um=[w^]» de=[1 *d*w w^]» bode(um,de) NOTAS Para realizar el diagrama de Bode, comezar co ua frecuecia de 0.1 Hz, e ir aumetado. Seleccioar ua amplitud suficiete para que el motor gire co soltura, pero si llegar a la velocidad máxima. Esta amplitud será distita para las posicioes 1 y 3 del poteciómetro, ya que varía la gaacia total del sistema (co la misma tesió de etrada, el motor gira mucho más deprisa e la posició 3 que e la 1). 5 Coclusió Realizar ua coclusió fial relacioada a los resultados obteidos e la práctica. 6 Visió Geeral del Alumo Cometarios persoales relativos a la práctica. Págia 5

6 Estudio frecuecial de sistemas cotiuos de primer y segudo orde APENDICE Diagrama de Bode de u sistema de primer orde Dado u sistema de primer orde, cuya fució de trasferecia viee dada por la fórmula (4) operamos para obteer ua expresió de su módulo y de su fase: G ( j ) K' G( jω) = 0log K i 0log( Tω + 1) i db = jωt + 1 arg( G( jω)) = arctg( ωt) ω (6) El diagrama de Bode de u sistema de primer orde para el caso de K = y T=0. es como sigue: 0 log K i 0 logk i 0 log(tw) -0 db/dc w c =1/T Figura 4.- Diagrama de Bode de u sistema de Primer Orde Observado la gráfica, se observa que existe dos comportamietos lieales, uo para frecuecias bajas y otro para frecuecias altas. E ambos casos la curva tiede a ua asítota. Para verlo aalíticamete operamos e la expresió (6) aplicado límites e la expresió de la amplitud: 1 << G( jω) 0log K T ω (7.1) ω 1 G( jω) 0log K 0log( Tω) T >> (7.) Estas expresioes so dos asítotas. (7.1) es ua recta paralela al eje de abcisas y (7.) es otra recta de pediete -0 db/dc Págia 6

7 Estudio frecuecial de sistemas cotiuos de primer y segudo orde Diagrama de Bode de u sistema de segudo orde La forma caóica de u sistema de segudo orde es la siguiete: K G( s) = ω s + ξω s + ω (8) Como sistema de segudo orde tiee dos polos: ω 1, Kω1ω = ξω ± jω 1 ξ G( s) = (9) ( s + ω )( s + ω ) 1 Atediedo a la forma de estos polos distiguimos dos casos: A. Polos reales: Ocurre para ξ 1. a) Polos reales distitos: Cuato mayor sea ξ, más separados estará los polos etre sí. Para polos suficietemete separados, e el diagrama de Bode podemos etoces establecer tres asítotas, tal y como se muestra e la figura 5, para el caso de K=1, d=0 y w = rad/s -0dB/dc -40dB/dc w 1 w Figura 5.- Diagrama de Bode para u sistema de Segudo Orde co polos reales distitos Págia 7

8 Estudio frecuecial de sistemas cotiuos de primer y segudo orde E este caso, al idetificar los polos w 1 y w queda idetificada la Fució de Trasferecia del sistema. b) Polo doble: Cuado, e la práctica, los polos está suficietemete jutos, e ua primera aproximació se les puede cosiderar iguales. Gráficamete o se puede establecer más que dos asítotas, tal y como se muestra e la figura 6, ua paralela al eje de abcisas y otra de -40dB/dc Aalíticamete, dos polos reales iguales (polo doble) ocurre para el caso límite ξ = 1 E la figura 6 se escogió para la represetació w = rad/s w Figura 6.- Diagrama de Bode para u sistema de Segudo Orde co polos reales iguales B. Polos complejos cojugados: para 0 < ξ < 1 Este caso resulta de especial iterés, pues e el diagrama de Bode aparece u feómeo de resoacia, que se maifiesta como u pico G db e el diagrama de amplitud. Aalíticamete se puede ver que dicho pico ocurre cuado: w = w (10) K 1 G( jω) ω ω = G = 0log = db ξ ξ (11) De lo que se deduce que el coeficiete de amortiguamieto ξ se puede obteer gráficamete. Obsérvese la figura 7, para u sistema co ξ = 0.1 K = 1 w = rad/s Págia 8

9 Estudio frecuecial de sistemas cotiuos de primer y segudo orde 0log 1/ξ -40 db/dc w Figura 7.- Diagrama de Bode para u sistema de Segudo Orde co polos complejos cojugados. Págia 9

1. Diagramas Frecuenciales Respuesta en Frecuencia 2

1. Diagramas Frecuenciales Respuesta en Frecuencia 2 04 a Diagramas Frecueciales.doc 1 1. Diagramas Frecueciales 1. Diagramas Frecueciales 1 1.1.1. Respuesta e Frecuecia 1.. Presetació de la Respuesta e Frecuecia - Diagramas de Bode 8 1..1. Caso Particular:

Más detalles

Nota: es indiferente utilizar la pulsación o la frecuencia en abscisas: puesto que ω =2 π f, la representación es semejante

Nota: es indiferente utilizar la pulsación o la frecuencia en abscisas: puesto que ω =2 π f, la representación es semejante Respuesta e frecuecia Se puede represetar completamete el comportamieto e frecuecia que tiee u circuito (o sistema cualquiera de fució de trasferecia coocida mediate dos diagramas: a Uo que represete la

Más detalles

TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE

TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE Supogamos teer ua plata de trasferecia G(s) (ver la figura), que es estable y a la cual le igresamos ua señal siusoidal r(t) = a. se(ω.t). Se demuestra que

Más detalles

AUTÓMATAS Y SISTEMAS DE CONTROL

AUTÓMATAS Y SISTEMAS DE CONTROL º ITT SISTEMAS ELECTRÓNICOS º ITT SISTEMAS DE TELECOMUNICACIÓN º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL PRÁCTICA 7: SISTEMAS DE SEGUNDO ORDEN. FUNCIÓN DE TRANSFERENCIA La fució

Más detalles

Diagramas de Bode. Respuesta En Frecuencia

Diagramas de Bode. Respuesta En Frecuencia Diagramas de Bode Respuesta E Frecuecia Ig. William Marí Moreo Geeralidades Es u diagrama asitótico: se puede aproximar fácilmete trazado líeas rectas (asítotas). Preseta la respuesta de Magitud y Fase

Más detalles

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE Determiació de la fució de trasferecia de lazo abierto de u sistema a partir de la curva asitótica de magitud del Diagrama de Bode.

Más detalles

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia Aálisis e el Domiio de la Frecuecia Sistemas de Cotrol El desempeño se mide por características e el domiio del tiempo Respuesta e el tiempo es díficil de determiar aalíticamete, sobretodo e sistemas de

Más detalles

ANÁLISIS FRECUENCIAL

ANÁLISIS FRECUENCIAL Uiversidad Carlos III de Madrid ANÁLISIS FRECUENCIAL Diagrama de Bode asitótico.. Diagrama asitótico de Bode de térmios costates.. Diagrama asitótico de Bode de polos/ceros e el orige. 3. Diagrama asitótico

Más detalles

El circuito NE565 un PLL de propósito general. Su diagrama de bloques y patillado se muestra en la siguiente figura.

El circuito NE565 un PLL de propósito general. Su diagrama de bloques y patillado se muestra en la siguiente figura. Práctica : PLL. Itroducció E esta práctica se utilizará el circuito NE565. Es u bucle de egache e fase moolítico co márgees de fucioamieto que llega hasta los 5 Khz. para el NE565. El PLL respode a u diagrama

Más detalles

Sistemas de Segundo Orden

Sistemas de Segundo Orden Apute I Departameto de Igeiería Eléctrica Uiversidad de Magallaes Aputes del curso de Cotrol Automático Roberto Cárdeas Dobso Igeiero Electricista Msc. Ph.D. Profesor de la asigatura Este apute se ecuetra

Más detalles

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2.

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2. Guía de Ejercicios Ejercicio El circuito RC de la figura es excitado por ua señal de ruido blaco co desidad espectral de potecia costate e igual a N /. R w(t) C v(t) Calcule y grafique la desidad espectral

Más detalles

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante Fució POLARMÓNCAS ENSONES Y CORRENES POLARMÓNCAS 7. troducció E los aálisis ateriores, hemos trabajado co geeració de tesioes alteras del tipo seoidal, y circuitos co características lieales, lo cual se

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

APROXIMACIÓN DE FILTROS CAPÍTULO 2

APROXIMACIÓN DE FILTROS CAPÍTULO 2 APROXIMACIÓN DE FILTROS CAPÍTULO . Aproximacioes de Filtros E el capítulo se mecioaro los filtros ideales, e la realidad o se puede lograr ua aproximació ideal, por lo que los filtros reales sólo puede

Más detalles

Series de Fourier Aplicación: Análisis de Señales

Series de Fourier Aplicación: Análisis de Señales Series de Fourier Aplicació: Aálisis de Señales Jua E Dombald Estudiate de Igeiería Electróica Uiversidad Nacioal del Sur, Avda Alem 53, B8CPB Bahía Blaca, Argetia Juae_ce@hotmailcom Agosto Resume: E este

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz 3. AMPIFICADORES Y MEZCADORES 1. E el circuito de la figura: a) Determiar el puto de trabajo de ambos BJT. b) Represetar el circuito e pequeña señal idicado los valores de cada elemeto. c) Hallar la gaacia

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

Práctica de Laboratorio. Respuesta de los Instrumentos de Medida ante Distintas Señales de Tensión y Frecuencia.

Práctica de Laboratorio. Respuesta de los Instrumentos de Medida ante Distintas Señales de Tensión y Frecuencia. Uiversidad Nacioal de Mar del lata. ráctica de Laboratorio ema: Respuesta de los Istrumetos de Medida ate Distitas Señales de esió y Frecuecia. Cátedra: Medidas Eléctricas I 3º año de la carrera de Igeiería

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano (VSHFLILFDFLRQHVHQHOGRPLQLRGHOWLHPSR E capítulos ateriores se ha estudiado la respuesta de estado estable de los sistemas lieales ( cuado tæ ), estudiaremos ahora la respuesta trasitoria. La respuesta

Más detalles

Identificación experimental de sistemas

Identificación experimental de sistemas Sistemas de Cotrol Automático Idetificació experimetal de sistemas Agel Martíez Bueo GITE IEA - - ÍNDICE. Itroducció.. Tipos de respuestas.. Métodos de idetificació experimetal.. Idetificació mediate respuesta

Más detalles

LECTURA 3 GENERACIÓN DE SEÑALES

LECTURA 3 GENERACIÓN DE SEÑALES UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE ELECTRÓNICA LECTURA 3 GENERACIÓN DE SEÑALES CURSO SIGLA LABORATORIO DE PROCESAMIENTO DIGITAL DE SEÑALES ELO 385 PROFESOR RODRIGO HUERTA CORTÉS AYUDANTE

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Autoáca Capítulo6.LugardelasRaíces JoséRaóLlataGarcía EstherGozálezSarabia DáasoFerádezPérez CarlosToreFerero MaríaSadraRoblaGóez DepartaetodeTecologíaElectróica eigeieríadesisteasyautoáca Lugar de las

Más detalles

ANÁLISIS FRECUENCIAL DE SIST. REALIMENTADOS. NYQUIST

ANÁLISIS FRECUENCIAL DE SIST. REALIMENTADOS. NYQUIST ANÁLISIS FRECUENCIAL DE SIST. REALIMENTADOS. NYQUIST ANÁLISIS FRECUENCIAL Aálisis Frecuecial de Sistemas Realimetados. Nyquist 1. Aálisis Frecuecial de los sistemas realimetados. 2. Pricipio del arumeto

Más detalles

Análisis de respuesta en frecuencia

Análisis de respuesta en frecuencia Aálisis de respuesta e freueia Co el térmio respuesta e freueia, os referimos a la respuesta de u sistema e estado estable a ua etrada seoidal. E los métodos de la respuesta e freueia, la freueia de la

Más detalles

1b percusión CÁLCULOS Y DIAGRAMAS 15%

1b percusión CÁLCULOS Y DIAGRAMAS 15% Laboratorio de Vibracioes Mecáicas Departameto de geiería Mecáica Práctica Determiació de mometos de iercia y PARTCPACON 5% 1b localizació del cetro PRESENTACÓN 1% de gravedad y de NVESTGACONES 1% percusió

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula,

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

TRABAJO PRÁCTICO N O 1. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS

TRABAJO PRÁCTICO N O 1. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS TRABAJO PRÁCTICO N O. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS PARTE : SEÑALES Recomedacioes geerales: Utilice el comado stem para el graficado de las señales discretas. El uso de plot o se ajusta al

Más detalles

Transformada Z. Ejemplos. Ejemplos de cálculo [ ] = [ ] ( ) ( ) 1. Transformada Z. α = α α α si α. α α α

Transformada Z. Ejemplos. Ejemplos de cálculo [ ] = [ ] ( ) ( ) 1. Transformada Z. α = α α α si α. α α α Trasformada Ejemplos Ejemplos de cálculo. Trasformada... Calcular la trasformada, por defiició, idicado la regió de coergecia p u [ ] h h p u cos u Solució: Para calcular la Trasformada por defiició, resulta

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

La primera y más importante secuencia de números es la de los números naturales: 1, 2, 3, 4, 5, 6,

La primera y más importante secuencia de números es la de los números naturales: 1, 2, 3, 4, 5, 6, 3ª Evaluació Parte II Sucesioes uméricas E umerosas ocasioes aparece secuecias de úmeros que sigue ua pauta o regla de formació, como por ejemplo la pauta seguida para la umeració de los diferetes portales

Más detalles

Ecuaciones en Diferencias Recíprocas y Semirrecíprocas

Ecuaciones en Diferencias Recíprocas y Semirrecíprocas Ecuacioes e Diferecias Recíprocas y Gustavo Adolfo Juárez; Silvia Iés Navarro Facultad de Ciecias Exactas y Naturales, Uiversidad Nacioal de Catamarca. E-mail: juarez.catamarca@gmail.com Recepció: 20/05/2014

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos Grados E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Coocimietos previos Para poder seguir adecuadamete este tema, se requiere que el alumo repase y poga al día sus coocimietos e los siguietes

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

Simulación de Sistemas Lineales Utilizando Labview

Simulación de Sistemas Lineales Utilizando Labview 14 Simulació de Sistemas Lieales Utilizado Labview Bruo Vargas Tamai Facultad de Igeiería electróica Eléctrica, Uiversidad Nacioal Mayor de Sa Marcos, Lima, Perú RESUMEN: Mostramos la maera e que se puede

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

LECTURA 5 TRANSFORMADA RÁPIDA DE FOURIER FFT

LECTURA 5 TRANSFORMADA RÁPIDA DE FOURIER FFT UIVERSIDAD TÉCICA FEDERICO SATA MARÍA DEPARTAMETO DE ELECTRÓICA LECTURA 5 TRASFORMADA RÁPIDA DE FOURIER FFT CURSO LABORATORIO DE PROCESAMIETO SIGLA ELO 385 DIGITAL DE SEÑALES PROFESOR PABLO LEZAA ILLESCA

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

Área Electrónica Laboratorio 4º Año TRABAJO PRÁCTICO Nº 1 ASOCIACIÓN DE RESISTENCIAS

Área Electrónica Laboratorio 4º Año TRABAJO PRÁCTICO Nº 1 ASOCIACIÓN DE RESISTENCIAS E.T. Nº 7 - D.E. XIII eg. V ÁCTICAS UNIFICADAS TABAJO ÁCTICO Nº ASOCIACIÓN DE ESISTENCIAS ) Itroducció Teórica a) esistecias Las resistecias está caracterizadas pricipalmete por: esistecia omial: es el

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Introducción a los métodos lineales en dominio de la frecuencia.

Introducción a los métodos lineales en dominio de la frecuencia. Dr. Mario Estévez Báez Capítulo 5 Itroducció a los métodos lieales e domiio de la frecuecia. 1.1 Aálisis armóico. El aálisis armóico surgió y se desarrolló iicialmete como ua útil herramieta para la Física

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

TEORÍA DEL CONTROL III

TEORÍA DEL CONTROL III Igeiería e Cotrol y Atomatizació Formas caóicas Trasformació de similitd TEORÍA DEL CONTROL III 5 de agosto de 5 Ator: M. e C. Rbé Velázqez Cevas Escela Sperior de Igeiería Mecáica y Eléctrica Formas caóicas

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Teorema del Muestreo

Teorema del Muestreo Teorema del Muestreo Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice 1.1. Itroducció 1.2. Coversió aalógico-digital y digital-aalógico 1.3. Proceso

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

RESPUESTA EN FRECUENCIA DE SISTEMAS LINEALES, INVARIANTES EN EL TIEMPO.

RESPUESTA EN FRECUENCIA DE SISTEMAS LINEALES, INVARIANTES EN EL TIEMPO. Uiversidad Nacioal de Sa Jua Facultad de Igeiería Departameto de Electróica y Automática RESPUESTA EN FRECUENCIA DE SISTEMAS LINEALES, INVARIANTES EN EL TIEMPO. Cátedra:. Carreras: Igeiería Electróica

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43 TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a a 8 + ( ); Y fialmete: a 7 8 + (7 ) 86 0 7 + 0. S 0 Págia 7 [ ( 7 + 9 5) ] 95. a) 6 : pero 0 : 6,6 o es PG b) 6 : ( ) : 6 :

Más detalles

Ejercicios Resueltos de Clasificación de Funciones

Ejercicios Resueltos de Clasificación de Funciones Istituto Tecológico de Ciudad Madero Uidad I. Complejidad Computacioal Capitulo. Clasificació de Algoritmos Ejercicios Resueltos de Clasificació de Fucioes.. Determie si f ( ) perteece a la clase idicada

Más detalles

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5 Ezimología Efecto cooperatio 1 EFECTO COOPERATIVO El efecto cooperatio ocurre e ezimas oligoméricas que posee arios sitios para la uió de sustrato y es el feómeo por el cual la uió de u ligado a ua ezima

Más detalles

Electrónica de Potencia (Especialidad de Electricidad)

Electrónica de Potencia (Especialidad de Electricidad) Electróica de Potecia (Especialidad de Electricidad). Itroducció PRÁCICA DEERMINACIÓN DE LA HD Y EL FACOR DE POENCIA MEDIANE PSPICE Y SIMPOWERSYSEM oda fució periódica que cumple ciertas propiedades puede

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Filtro. k k. determinan la respuesta en frecuencia del filtro. Una señal x(n) que pase a través del sistema tendrá una salida Y ( ω)

Filtro. k k. determinan la respuesta en frecuencia del filtro. Una señal x(n) que pase a través del sistema tendrá una salida Y ( ω) Itroducció a los filtros digitales. Itroducció. El térmio FILTRO hace referecia a cualquier sistema que discrimia lo que pasa a su través de acuerdo co alguo de los atributos de la etrada. De acuerdo co

Más detalles

Teoría de la conmutación. Álgebra de Boole

Teoría de la conmutación. Álgebra de Boole Álgebra de Boole Defiicioes y axiomas Propiedades Variables y fucioes booleaas Defiicioes Propiedades Formas de represetació Fucioes booleaas y circuitos combiacioales Puertas lógicas Puertas lógicas fudametales

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

Apellidos y Nombre: Aproximación lineal. dy f x dx

Apellidos y Nombre: Aproximación lineal. dy f x dx INGENIERÍA DE TELECOMUNICACIÓN HOJA 0 Aproximació lieal Defiició (Diferecial).- Sea y = f ( x) ua fució derivable e u itervalo abierto que cotiee al úmero x, - La diferecial de x es igual al icremeto de

Más detalles

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en:

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en: UCEIÓN CPR. JORGE JUAN Xuvia-Naró Ua sucesió, (a ), de úmeros reales es ua fució que hace correspoder a cada úmero atural, excluido el cero, u úmero real, la cual viee defiida segú: f: N* R a a i a Número

Más detalles

Facultad de Ingeniería Sistemas de Control (67.22) Universidad de Buenos Aires INTRODUCCIÓN AL MATLAB CLASE 1

Facultad de Ingeniería Sistemas de Control (67.22) Universidad de Buenos Aires INTRODUCCIÓN AL MATLAB CLASE 1 Facultad de Igeiería Sisteas de Cotrol (67.) Uiversidad de Bueos Aires INTRODUCCIÓN AL CLASE INTRODUCCIÓN DE FUNCIONES DE TRANSFERENCIA Para la itroducció de fucioes de trasferecia polióicas se utiliza

Más detalles

Los números complejos ( )

Los números complejos ( ) Los úmeros complejos (15.06.016) 1. Itroducció Estas otas se propoe u doble objetivo. Co los apartados a 8 se pretede dar uas ocioes básicas sobre los úmeros complejos que ayude a fijar los coceptos expuestos

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles

Práctica 3 Sucesiones y series

Práctica 3 Sucesiones y series Práctica 3 Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y Sum que os permitirá, e la

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS 9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS OBJETIVO El objetivo de la práctica es determiar la desidad de líquidos utilizado la balaza de Möhr y su aplicació a la determiació de la desidad de disolucioes co

Más detalles

MATEMÁTICAS. Nivel Medio

MATEMÁTICAS. Nivel Medio MATME/PF/M11/N11/M12/N12 MATEMÁTICAS Nivel Medio Tareas de la carpeta Para utilizar e 2011 y 2012 Orgaizació del Bachillerato Iteracioal, 2009 10 págias 2 MATME/PF/M11/N11/M12/N12 ÍNDICE Itroducció Tareas

Más detalles

FUNCIONES VECTORIALES DE VARIABLE ESCALAR

FUNCIONES VECTORIALES DE VARIABLE ESCALAR CAPITULO II CALCULO II Competecia FUNCIONES VECTORIALES DE VARIABLE ESCALAR Recooce y aplica satisfactoriamete las operacioes, procedimietos, reglas y métodos del cálculo itegral y diferecial e las fucioes

Más detalles

Tema 4: Números Complejos

Tema 4: Números Complejos Tema : Números Complejos 1.- Itroducció.- Forma biómica del úmero Complejo.- Operacioes e forma biómica.- Forma Polar y trigoométrica del úmero Complejo 5.- Operacioes e forma Polar 6.- Radicació de úmeros

Más detalles

INTRODUCCIÓN A LAS PROGRESIONES

INTRODUCCIÓN A LAS PROGRESIONES Apédice A INTRODUCCIÓN A LAS PROGRESIONES A.. A..3 E el Apédice A, los alumos ivestigaro progresioes buscado patroes y reglas. E la primera parte del apédice, se cocetraro e las progresioes aritméticas

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

Análisis de sistemas en el dominio de la frecuencia

Análisis de sistemas en el dominio de la frecuencia Aálisis de sistemas e el domiio de la frecuecia Prof. Mª Jesús de la Fuete Aparicio Dpt. Igeiería de Sistemas y Automática Facultad de Ciecias Uiversidad de Valladolid maria@autom.uva.es Domiio frecuecial

Más detalles

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... }

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... } SEÑALES DE TIEMPO DISCRETO SEÑALES Y SISTEMAS DE TIEMPO DISCRETO Las señales está clasificadas de maera amplia, e señales aalógicas y señales discretas. Ua señal aalógica será deotada por a t e la cual

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

- A h h+1 n-1 n

- A h h+1 n-1 n 1º DMINISTRCIÓN Y FINNZS GESTIÓN FINNCIER. TEM 9 TEM Nº 9: SELECCIÓN DE INVERSIONES 1. DIMENSIÓN FINNCIER DE UN PROYECTO DE INVERSIÓN Desde el puto de vista fiaciero, es decir, moetario, cualquier proyecto

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

Técnicas de supresión de interferencias de banda angosta en sistemas multiusuario de banda ancha.

Técnicas de supresión de interferencias de banda angosta en sistemas multiusuario de banda ancha. Gustavo J. Gozález Uiversidad Nacioal del Sur Departameto de Igeiería Eléctrica y Computadoras Bahía Blaca Becario Agecia Nacioal de Promoció Cietífica y Tecológica (1 er año). Técicas de supresió de iterferecias

Más detalles

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ 06 5.8 Leyedo la salida de u programa estadístico Cada programa estadístico preseta los resultados de la regresió e forma diferete, pero la mayoría provee la misma iformació básica. La tabla muestra la

Más detalles

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA. Práctica nº 3: Sucesiones y series numéricas.

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA. Práctica nº 3: Sucesiones y series numéricas. INGENIERÍA TÉCNICA INDUSTRIAL - ESP. ELECTRÓNICA INDUSTRIAL CURSO 2003-2004 FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Práctica º 3: Sucesioes y series uméricas. Abordamos e esta práctica el tratamieto co

Más detalles

Síntesis de señales periódicas empleando las series trigonométrica y exponencial de Fourier

Síntesis de señales periódicas empleando las series trigonométrica y exponencial de Fourier Sítesis de señales periódicas empleado las series trigoométrica y expoecial de Fourier Propuesta de práctica para el laboratorio de las asigaturas: ANÁLISIS DE SISEMAS Y SEÑALES y SEÑALES Y SISEMAS Hecha

Más detalles

Problemas de Introducción al Procesado digital de Señales. Boletín 1.

Problemas de Introducción al Procesado digital de Señales. Boletín 1. Problemas de Itroducció al Procesado digital de Señales. Boletí. Se tiee la señal aalógica t e segudos t se 5 π t + cos 5 π t se 5 π t se muestrea co ua frecuecia de 5 H. Determia la señal obteida al hacer

Más detalles