Métodos de promedios. Diplomado en Gestión Estratégica de las Finanzas Públicas MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Métodos de promedios. Diplomado en Gestión Estratégica de las Finanzas Públicas MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS"

Transcripción

1 MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS La estimación o proyección de ingresos futuros puede llevarse a cabo mediante diferentes métodos estadísticos de extrapolación, entre ellos: sistema automático, promedios móviles y de suavización exponencial, de aumento, econométricos (e.g., método de mínimos cuadrados, modelo de regresión lineal, modelo de correlación no lineal) y directo. Métodos de extrapolación Estiman la recaudación con base en su evolución en el tiempo. Es decir, mantienen la premisa de que la recaudación está determinada por el incremento o decremento de ella en el tiempo. Los cálculos de estimación se proyectan con base en información histórica de los ingresos obtenidos en distintos periodos (trimestres, semestres, años, etc.). Sistema automático Estima los rendimientos más probables del ejercicio futuro con base en resultados conocidos del año anterior. En este método hay que tomar en cuenta que el presupuesto de ingresos se encuentra en ejecución, por lo cual, no se conoce la recaudación final del último periodo anterior al que se presupuestará; entonces, se tomará como base los ingresos del penúltimo ejercicio fiscal para el periodo que se pretende presupuestar. Cabe señalar que este método fue el primero que se utilizó en la estimación de ingresos públicos, aunque en la actualidad no se utiliza, ya que no considera el cambio en las condiciones económicas que afectan la captación de ingresos. Métodos de promedios Aunque existen más métodos para pronosticar, por simplicidad presentamos solamente dos, que consideramos los más usuales y sencillos de llevar a cabo. Promedios Móviles Suavización Exponencial Estos métodos pueden utilizarse cuando: a) Hay información disponible de la variable(s) que se está pronosticando. b) La información puede ser cuantificada. c) Si se considera razonable que el patrón de comportamiento del pasado continuará en el

2 futuro. Si se cuenta con una base de datos histórica y se quiere pronosticar una variable considerando su comportamiento pasado, entonces podemos utilizar el método de promedios móviles o el método de suavización exponencial, que son conocidos también como métodos de series de tiempo 1. Método de Promedios Móviles La utilización de esta técnica supone que la serie de tiempo es estable, esto es, que los datos que la componen se generan sin variaciones importantes entre un dato y otro (error aleatorio=0) 2, esto es, que el comportamiento de los datos aunque muestren un crecimiento o un decrecimiento lo hagan con una tendencia constante. Comment [u1]: Serie cronológica Cuando se usa el método de promedios móviles se está suponiendo que todas las observaciones de la serie de tiempo son igualmente importantes para la estimación del parámetro a pronosticar (en este caso los ingresos). De esta manera, se utiliza como pronóstico para el siguiente periodo el promedio de los n valores de los datos más recientes de la serie de tiempo. Utilizando una expresión matemática, tenemos: El término móvil indica que conforme se tienen una nueva observación de la serie de Promedio Móvil = Σ (n valores de datos más recientes) tiempo, se reemplaza la observación más antigua de la ecuación y se calcula un nuevo promedio. El resultado es que el promedio se moverá, esto es, conforme se tengan nuevos datos y se vayan sustituyendo en la fórmula, el valor del promedio irá modificándose. No existe una regla específica que nos indique cómo seleccionar la base del promedio móvil n. Si la variable que se va a pronosticar no presenta variaciones considerables, esto es, si su comportamiento es relativamente estable en el tiempo, se recomienda que el valor de n sea grande. Por el contrario, es aconsejable un valor de n pequeño si la variable muestra patrones cambiantes. En la práctica, los valores de n oscilan entre 2 y 10. El método de promedios móviles es muy útil cuando se tiene información no desagregada y cuando no se conoce otro método más sofisticado y que permita predecir con mayor confianza. n (1) Este método permite suavizar la serie de tiempo aunque existen otros métodos que son más eficientes en la predicción. 1 Una serie de tiempo es un conjunto de observaciones respecto a una variable, medidas en puntos sucesivos en el tiempo o a lo largo de periodos sucesivos de tiempo. Un análisis de una secuencia de datos se conoce como análisis de series de tiempo de una variable. 2 El error aleatorio muestra el grado de confiabilidad con que se van a comportar los datos. La variación del error puede ser de 0 a 1, en donde, un error aleatorio=0 muestra una total confiabilidad del comportamiento de los datos y un error aleatorio=1 muestra que los datos no son confiables en su comportamiento.

3 Suavización Exponencial Otro método para realizar un pronóstcico es el método de suavización exponencial. A diferencia de los promedios móviles, este método pronostica otorgando una ponderación a los datos dependiendo del peso que tengan dentro del cálculo del pronóstico. Esta ponderación se lleva a cabo a través de otorgarle un valor a la constante de suavización, α, que puede ser mayor que cero y menor que uno. Para nuestro ejemplo, utilizamos un valor de α = 0.8, por ser éste el que mejor ajusta al pronóstico a los datos reales. El método de suavización exponencial supone que el proceso es constante, al igual que el método de promedios móviles. Esta técnica está diseñada para atenuar una desventaja del método de promedios móviles, en donde los datos para calcular el promedio tienen la misma ponderación. De manera particular, esta técnica considera que las observaciones recientes tienen más valor, por lo que le otorga mayor peso dentro del promedio. La suavización exponencial utiliza un promedio móvil ponderado de los datos históricos de la serie de tiempo como pronóstico; es un caso especial de promedio móvil en donde se selecciona un solo valor de ponderación 3. El modelo básico de suavización exponencial se presenta a continuación: Ft+1 = αyt + (1 - α)ft (2) Donde: Ft+1 = Pronóstico de la serie de tiempo para el periodo de t + 1. Yt = Valor real del periodo anterior al año a pronosticar. Ft = Valor real del periodo anteanterior al año a pronosticar. α = Constante de suavización (0 α 1). La utilización de esta ecuación implica algunas especificaciones. El cálculo de Ft+1 está ligado con los 2 periodos anteriores. En otras palabras, el pronóstico de suavización exponencial en determinado periodo es (Ft+1) = al valor real de la serie de tiempo en el periodo anterior (Yt) X la constante de suavización (α), la constante de suavización (α) X el periodo anteanterior (Ft). Ft+1 = αyt + (1 - α)ft (2) A pesar de que la suavización exponencial nos da un pronóstico que es un promedio ponderado de todas las operaciones pasadas, no es necesario guardar todos los datos del pasado a fin de calcular el pronóstico para el periodo siguiente. De hecho, una vez seleccionada la 3 La ponderación se determina considerando el peso que se le asigna al valor más reciente de la serie. Los pesos o ponderaciones para los demás valores se determinan automáticamente, haciéndose más pequeños conforme las observaciones se alejan del presente.

4 constante de suavización α, sólo se requiere de dos elementos de información para calcular el pronóstico. La ecuación (2) muestra que con un α dado, podemos calcular el pronóstico para el periodo t + 1 simplemente conociendo los valores reales y pronosticados de la serie de tiempo para el periodo t, es decir, Yt y Ft. La elección de la constante de suavización α es crucial en la estimación de pronósticos futuros. Si la serie de tiempo contiene una variabilidad aleatoria sustancial, se preferirá un valor pequeño como constante de suavización. La razón de esta aseveración es que gran parte del error del pronóstico es provocado por la variabilidad aleatoria, por lo que un valor pequeño de α permite un pronóstico mejor. Por el contrario, para una serie de tiempo con una variabilidad aleatoria relativamente pequeña, valores más elevados de la constante de suavización tienen la ventaja de ajustar con rapidez los pronósticos cuando ocurren errores de pronóstico y permitiendo, por lo tanto, que el pronóstico reaccione con mayor rapidez a las condiciones cambiantes. En la práctica, el valor de α está entre.01 y.90. A Ñ O IN GRESO S TO T A L ES EGRESO S TO T A LES PRO N Ó S T ICO D E S U A VIZ ACIÓ N EXPO N EN CIA L D E LO S IN G RES O PRO N Ó S T ICO D E S U AVIZ A CIÓ N EX PO N E N CIA L D E LO S EG RES O S N IVEL D E A H O RRO CUADRO 2 Utilizando la ecuación 2, sustituimos los valores correpondientes para hacer el pronóstico para el año Sutituyendo valores nos quedaría: Fingresos 1992 = 0.8 (201986) + (1 0.8)(163305) Fegresos 1992 = 0.8 (189498) + (1 0.8)(162370) El mismo procedimiento se realiza para el resto de los años y obtenemos los resultados que aparecen en el cuadro 2. Una vez que se calculan los

5 pronósticos de ingresos y egresos, la diferencia entre éstos nos da el ahorro, que aparece en la última columna del mismo cuadro. Podemos observar que el pronóstico se ajusta más a los datos reales que en el caso de los promedios móviles. Este método nos permite realizar un pronóstico más confiable que el caso anterior. Claramente se observa que el pronóstico tiene mejor ajuste y la diferencia entre los valores reales y los pronosticados es mínima. Por lo tanto, este método es una mejor opción que los promedios móviles para predecir el comportamiento futuro de los ingresos y egresos. Método de aumento En este método se aplica la tasa de variación observada en los últimos periodos fiscales sobre sus recaudaciones respectivas. La estimación se puede realizar de las siguientes maneras: a) El promedio de las diferencias resultantes entre las recaudaciones de un año y otro, se agrega a la recaudación del último año. b) Estima la recaudación para un próximo ejercicio fiscal en función de la tasa de variación observada en los últimos años. Media Geométrica. c) Estimación a través de la tasa media de variación, la cual se aplica cuando no se tenga la información sobre los montos de ingresos de algún periodo intermedio, dentro del número de ejercicios fiscales considerados. a) Estimación con base en el promedio de las diferencias resultantes entre las recaudaciones de distintos periodos. Años Recaudación Diferencia Anual en la Recaudación 1995 $13 000, $22 500, = $ ,000 - $ ,000 = $ 9 500, $29 500, = , ,000 = 7 000, $50 500, = , ,000 = , $53 720, = , ,000 = 3 220,000 Σ$ ,000 Promediando el total de diferencias entre el número de ellas $ ,000 /4 = $ ,000

6 Si este incremento lo agregamos a la recaudación de 1999, podemos obtener la estimación de la recaudación para el año 2000 $ , ,000 = $63 900,000 Recaudación esperada para el año b) Estimación en base a la tasa de variación en el tiempo. Media Geométrica AÑOS RECAUDACIÓN TASA DE VARIACION $ , , = , ,000 X 100 / ,000 = 73.07% , = , ,000 X 100 / ,000 = 31.11% , = , ,000 X 100 / ,000 = 71.18% , = , ,000 X 100 / ,000 = 6.37% MG. = n ( x1)( x2)( x3 )( xi) M.G = Media Geométrica n = Número de Periodos x n = Tasas de Variación. 4 MG.. = ( )( )( )( 637. ) 4 MG.. = ',. MG.. = 3186%. Aplicando esta tasa a la recaudación de 1994, obtenemos el incremento esperado en la recaudación para el año 2000 $ ,000 x.3186 = $ $ ,000 + $ = $ , Recaudación estimada para el año c) Estimación a través de la tasa media de variación En el caso de que se carezca de información sobre la recaudación específica de un periodo intermedio de los considerados se puede obtener una tasa de cambio promedio, aplicando la siguiente formula. Pn r = n 1 Po r = Tasa de cambio porcentual observada en la recaudación en un período de

7 Diplomado en Finanzas públicas para la competitividad y el desarrollo tiempo determinado. n = número de años comprendidos en el periodo observado. Po = Ingresos esperados al finalizar el periodo. Pn = Ingresos obtenidos al inicio del periodo total a analizar r= r= '720, '000, r= r =.4257 = Tasa de variación promedio $ ,000 x.4257 = ,133 $ , ,133 = 76,592,133 Recaudación estimada para el año Métodos econométricos Mediante el uso de este método es factible medir el grado de confiabilidad de la relación existente entre variables tributarias, económicas y administrativas. Así por ejemplo, si se aplicara un aumento en un impuesto, se produciría una transferencia de recursos del sector privado al sector público. Con la aplicación de métodos econométricos es factible medir, con base en datos para un período de tiempo, la relación existente entre la recaudación y las modificaciones en la estructura del impuesto. El cálculo de la recaudación estará en función del nivel de las tasas que se apliquen; de la base imponible del tributo; y del efecto conjunto de ambos, sobre las variables tributarias que se estén afectando. De igual forma, es factible medir futuros niveles de recaudación con base en cambios en variables, tales como cambios en el Producto Interno Bruto, Consumo Privado, Sueldos y Salarios, etc. Igualmente, podrían realizarse estimaciones vinculando el monto de las recaudaciones a variables representativas del grado de eficiencia de la administración tributaria, como por ejemplo porcentajes de evasión, estructura administrativa dedicada a la recaudación, número de empleados, etc. Comment [u2]: Indica cuán seguros podemos estar de que el proceso seguido resulte en valores que representen verdaderamente la población. Se usa más comúnmente con intervalos de confianza. En sentido probabilístico, si tuviéramos una confiabilidad del 95%, decimos que si repitiéramos el proceso muchas veces, en cerca del 95% de las veces obtendríamos resultados que reflejan verdaderamente la realidad. Cerca del 95% de los intervalos así construidos contendrían el valor desconocido del parámetro. Comment [u3]: Base gravable

8 Diplomado en Finanzas públicas para la competitividad y el desarrollo Algunos modelos econométricos que se pueden aplicar son los siguientes: Modelo de Regresión Lineal Método de Mínimos Cuadrados Modelos de Correlación no Lineal. Análisis de Regresión El análisis de regresión implica que se determine una relación entre una variable dependiente (ingresos) y una variable independiente (por ejemplo impuestos). Este método implica la verificación de la relación de las variables asociadas con la teoría económica. El esquema 1 muestra el proceso que debe seguirse cuando se utiliza una regresión. Figura 1. Descripción Esquemática de los pasos que supone la utilización del Análisis de Regresión Teoría o modelo económico Información previa Modelo econométrico o enunciado de la teoría económica en forma verificable empíricamente Datos Prueba de cualesquiera de las hipótesis sugeridas por el modelo Uso del modelo para predicciones y políticas Estimación del modelo La fórmula general de regresión entre la variable dependiente y y la variable independiente x está dada como Y = b0 + b1x + b2x²+...+ bnxⁿ + ε donde b0, b1... bn son parámetros desconocidos. El error aleatorio ε tiene una media cero y una desviación estándar constante. La forma más simples del modelo de regresión supone que la variable dependiente varía linealmente con el tiempo, es decir Y* = a + bx (3) La constante a y b se determinan de los datos de la serie de tiempo con base en el criterio de los mínimos cuadrados ordinarios (MCO), que busca minimizar la suma del cuadrado de las

9 Diplomado en Finanzas públicas para la competitividad y el desarrollo diferencias entre los valores observados y estimados 4. Esto quiere decir que utilizando MCO obtenemos la función lineal óptima que garantiza la mejor estimación de las variables que queremos pronosticar. Haciendo las manipulaciones algebraicas, se obtiene la siguiente solución: Y b Σ a = Σ X (5) n n b = n Σ X Y - Σ X Σ Y n Σ X ² - ( Σ X ) ² ( 4 ) En estas ecuaciones se muestra que primero tenemos que calcular el valor de b para después poder calcular el valor de a. Una vez que se tienen calculados los valores de a y b, tenemos que establecer si los valores encontrados son válidos 5. Para hacerlo, necesitamos calcular el coeficiente de correlación, r, que nos ayudará a establecer la validez de las variables estimadas. El índice r se calcula de acuerdo con la siguiente ecuación: r = b Σ Σ Σ Σ n x² ( x) ² n y² ( y) ² Donde 1 r. Si r = ± 1, entonces ocurre un ajuste lineal perfecto entre x y y. En general, entre más cercano sea el valor de r a 1, mejor será el ajuste lineal. Si r = 0, entonces y y x pueden ser independientes. Realmente, r = 0 es sólo una condición necesaria pero no suficiente para la independencia, ya que es posible que dos variables dependientes arrojen una resultado r = 0. Cualquiera de las opciones que presentamos anteriormente, nos ayuda a elaborar un pronóstico confiable de las variables que vamos a considerar para determinar el pronóstico de los ingresos futuros de un municipio. La elección dependerá, como ya lo señalamos, de las condiciones de cada ayuntamiento. Sea cual sea el método que se elija, se podrá establecer un pronóstico adecuado de las variables que se consideren. 4 La suma del cuadrado de las desviaciones entre los valores observados y los valores estimados está dado por: S = (yi a bxi)² Los valores de a y b se determinan al resolver las siguientes condiciones necesarias para la minimización de S, es decir, S/ a = -2 (yi a bxi) = 0 S/ b = -2 (yi a bxi)xi = 0 5 Cuando utilizamos el método de mínimos cuadrados ordinarios, decimos que los valores de a y b son válidos para cualquier distribución probabilística de yi.

10 Diplomado en Finanzas públicas para la competitividad y el desarrollo Sin embargo, una limitación para la aplicación de este método es la falta de información estadística adecuada, y el costo de obtenerla, por parte de las Tesorerías Municipales, para la aplicación de modelos econométricos. Análisis del método directo Existe un modelo intermedio que vincula en cierta medida al modelo del método de aumento, el cual pretende incorporar en forma directa, el análisis de la recaudación en el tiempo y el comportamiento esperado de las variables que afectan la base impositiva de los ingresos. Este método demanda un conocimiento de la estructura de cada ingreso, en lo que hace a la base imponible y sus tasas.

Pronósticos Por Lic. Gabriel Leandro, MBA http://www.auladeeconomia.com

Pronósticos Por Lic. Gabriel Leandro, MBA http://www.auladeeconomia.com Pronósticos Por Lic. Gabriel Leandro, MBA http:// 1.1. Necesidad de pronosticar Entorno altamente incierto La intuición no necesariamente da los mejores resultados Mejorar la planeación Competitividad

Más detalles

Los pronósticos pueden ser utilizados para conocer el comportamiento futuros en muchas fenómenos, tales como:

Los pronósticos pueden ser utilizados para conocer el comportamiento futuros en muchas fenómenos, tales como: TEMA 1: PRONÓSTICOS 1.1. Introducción Pronostico es un método mediante el cual se intenta conocer el comportamiento futuro de alguna variable con algún grado de certeza. Existen disponibles tres grupos

Más detalles

Series de Tiempo. Series de Tiempo

Series de Tiempo. Series de Tiempo Series de Tiempo 1. Requisitos de Estadística Descriptiva: a. Media, Mediana b. Desviación estándar c. Regresión lineal 2. Qué es una serie de tiempo a. Componentes de la Serie de Tiempo (tipos de variación):

Más detalles

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009 Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis

Más detalles

SERIES DE TIEMPO EMPLEANDO EXCEL Y GRAPH

SERIES DE TIEMPO EMPLEANDO EXCEL Y GRAPH SERIES DE TIEMPO EMPLEANDO EXCEL Y GRAPH 1) DEFINICIÓN Las series de tiempo llamadas también series cronológicas o series históricas son un conjunto de datos numéricos que se obtienen en períodos regulares

Más detalles

CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL

CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL Contextualización En la primera parte del curso hemos estudiado el análisis clásico de series temporales en el que se asume que una serie temporal resulta de la

Más detalles

Dr. Carlos L. Jave Gutiérrez

Dr. Carlos L. Jave Gutiérrez PLANIFICACION DE LA PRODUCCION: PRONOSTICOS Dr. Carlos L. Jave Gutiérrez Universidad San Martín de Porras 2010-2 PLANIFICACION DE LA PRODUCCION Son variados y similares los enfoques que con respecto al

Más detalles

PLANIFICACION Y CONTROL DE LA PRODUCCION I: PROFESOR: ARIEL LINARTE

PLANIFICACION Y CONTROL DE LA PRODUCCION I: PROFESOR: ARIEL LINARTE PLANIFICACION Y CONTROL DE LA PRODUCCION I: PROFESOR: ARIEL LINARTE PRONOSTICOS DE DEMANDA Objetivos: Aplicar los elementos prácticos de la proyección de la demanda, tales como el método de los mínimos

Más detalles

Pronósticos. Pronósticos y gráficos Diapositiva 1

Pronósticos. Pronósticos y gráficos Diapositiva 1 Pronósticos Pronósticos Información de base Media móvil Pronóstico lineal - Tendencia Pronóstico no lineal - Crecimiento Suavización exponencial Regresiones mediante líneas de tendencia en gráficos Gráficos:

Más detalles

UN MODELO DE PRONÓSTICO PARA LAS PRIMAS DE SEGUROS DE VIDA Y PERSONAS

UN MODELO DE PRONÓSTICO PARA LAS PRIMAS DE SEGUROS DE VIDA Y PERSONAS UN MODELO DE PRONÓSTICO PARA LAS PRIMAS DE SEGUROS DE VIDA Y PERSONAS Wilson Mayorga M. Director de Cámara de Vida y Personas y Actuaría Con base en modelos de regresión que explican la evolución de las

Más detalles

Contenido. Horizontes temporales de la previsión La influencia del ciclo de vida del producto

Contenido. Horizontes temporales de la previsión La influencia del ciclo de vida del producto Previsión Contenido Qué es la previsión? Horizontes temporales de la previsión La influencia del ciclo de vida del producto Tipos de previsiones La importancia estratégica de la previsión Recursos humanos

Más detalles

Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ

Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ Estacionalidad Qué es la estacionalidad? La estacionalidad es una componente que se presenta en series de frecuencia inferior a la anual (mensual, trimestral,...), y supone oscilaciones a corto plazo de

Más detalles

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables. Se

Más detalles

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas INDICE Prefacio 1 Introducción 1-1 Preámbulo 1-2 Reseña histórica 1-3 Subdivisiones de la estadística 1-4 Estrategia, suposiciones y enfoque 2 Organizaciones de los datos para que transmitan un significado:

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas

Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas Videoconferencias semana de estadística Universidad Latina, Campus Heredia Costa Rica Universidad del Valle

Más detalles

Capítulo 4. Inventarios

Capítulo 4. Inventarios apítulo 4 Inventarios En este capítulo se mencionarán los conceptos más importantes necesarios para la comprensión y elaboración de la clasificación de productos, pronósticos y sistema de inventarios,

Más detalles

Técnicas Cuantitativas para el Management y los Negocios

Técnicas Cuantitativas para el Management y los Negocios Segundo cuatrimestre - 4 Técnicas Cuantitativas para el Management y los Negocios Mag. María del Carmen Romero 4 romero@econ.unicen.edu.ar Módulo III: APLICACIONES Contenidos Módulo III Unidad 9. Análisis

Más detalles

CURSO: INTRODUCCION A PRONOSTICOS

CURSO: INTRODUCCION A PRONOSTICOS MANAGEMENT CONSULTORES CURSO: INTRODUCCION A PRONOSTICOS Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-11-15-5468-3369 Fax: 054-11-4433-4202 Mail:mgm_consultas@mgmconsultores.com.ar

Más detalles

HERRAMIENTAS Y TECNICAS DE LA PLANEACIÓN

HERRAMIENTAS Y TECNICAS DE LA PLANEACIÓN HERRAMIENTAS Y TECNICAS DE LA PLANEACIÓN Análisis del Entorno. Es el análisis de grandes cantidades de información del medio ambiente para detectar tendencias emergentes y crear escenarios. Análisis del

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida Por: Prof. Elena del C. Coba Encuestas y estudios aplicados al VIH/sida Definir la fuente de los datos: Datos

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

Las Matemáticas En Ingeniería

Las Matemáticas En Ingeniería Las Matemáticas En Ingeniería 1.1. Referentes Nacionales A nivel nacional se considera que el conocimiento matemático y de ciencias naturales, sus conceptos y estructuras, constituyen una herramienta para

Más detalles

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti ANÁLISIS DE DATOS CONTROL DE CALIDAD Ing. Carlos Brunatti Montevideo, ROU, junio 2015 Control de calidad No resulta sorprendente que el hormigón sea un material variable, pues hay muchos factores involucrados

Más detalles

La Curva Spot (Cero Cupón) Estimación con Splines Cúbicos Suavizados: Programa en Excel *

La Curva Spot (Cero Cupón) Estimación con Splines Cúbicos Suavizados: Programa en Excel * La Curva Spot (Cero Cupón) Estimación con Splines Cúbicos Suavizados: Programa en Excel * Introducción. Este documento describe el uso del programa para la estimación de la curva spot (Cero Cupón) que

Más detalles

T R A B A J O D E I N V E S T I G A C I O N D E O P E R A C I O N E S I

T R A B A J O D E I N V E S T I G A C I O N D E O P E R A C I O N E S I UNIVERSIDAD SAN MARTIN DE PORRES FACULTAD DE INGENIERIA Y ARQUITECTURA T R A B A J O D E I N V E S T I G A C I O N D E O P E R A C I O N E S I A N A L I S I S D E P R O N Ó S T I C O S F O R E C A S T

Más detalles

Indicadores matemáticos para el análisis técnico de precios

Indicadores matemáticos para el análisis técnico de precios ANÁLISIS TÉCNICO DE PRECIOS Nota técnica Joaquín Arias Segura Ph.D i Especialista Regional en Políticas y Negociaciones Comerciales para la Región Andina Instituto Interamericano de Cooperación para la

Más detalles

Estimación de parámetros, validación de modelos y análisis de sensibilidad

Estimación de parámetros, validación de modelos y análisis de sensibilidad Tema 6 Estimación de parámetros, validación de modelos y análisis de sensibilidad 6.1 Calibración Una vez que se ha identificado el modelo y se ha programado, necesitamos aplicarlo al problema concreto

Más detalles

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................

Más detalles

SERIES DE TIEMPO INTRODUCCIÓN

SERIES DE TIEMPO INTRODUCCIÓN Clase Nº 5 SERIES DE TIEMPO INTRODUCCIÓN La forma más utilizada para el análisis de las tendencias futuras es realizar pronósticos. La función de un pronóstico de demanda de un bien, por ejemplo ventas

Más detalles

Tema 3: El modelo de regresión lineal múltiple

Tema 3: El modelo de regresión lineal múltiple Econometría 1 curso 2009-2010 Tema 3: El modelo de regresión lineal múltiple Genaro Sucarrat (Departamento de Economía, UC3M) http://www.eco.uc3m.es/sucarrat/ Recordamos: El modelo de regresión lineal

Más detalles

10 FORMULACION DE PROYECCIONES FINANCIERAS

10 FORMULACION DE PROYECCIONES FINANCIERAS Ricardo A. Fornero ANALISIS FINANCIERO CON INFORMACION CONTABLE Manual de Estudio Programado 10 FORMULACION DE PROYECCIONES FINANCIERAS SE ESTUDIAN ESTOS TEMAS La utilización de proyecciones en el análisis

Más detalles

Métodos y Diseños utilizados en Psicología

Métodos y Diseños utilizados en Psicología Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN CIENCIAS EMPRESARIALES ESTADÍSTICA

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN CIENCIAS EMPRESARIALES ESTADÍSTICA ESCUELA UIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA E CIECIAS EMPRESARIALES ESTADÍSTICA Ejercicios Resueltos AÁLISIS ESTADÍSTICO DE DOS VARIABLES Y RE- GRESIÓ LIEAL SIMPLE Curso 6-7 Curso 6-7 1)

Más detalles

5. SISTEMA DE COSTOS ESTÁNDAR

5. SISTEMA DE COSTOS ESTÁNDAR 5. SISTEMA DE COSTOS ESTÁNDAR Entre los diversos procedimientos técnicos que los ejecutivos y funcionarios de las organizaciones privadas, públicas o no gubernamentales, tienen que utilizar para administrar

Más detalles

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA 5.1 Introducción En este capítulo nos ocuparemos de la estimación de caracteristicas de la población a partir de datos. Las caracteristicas poblacionales

Más detalles

CAPÍTULO 4 ESTUDIO DE MERCADO. en el mercado. Por medio de la ley de la demanda, se determina que al subir el precio de un

CAPÍTULO 4 ESTUDIO DE MERCADO. en el mercado. Por medio de la ley de la demanda, se determina que al subir el precio de un CAPÍTULO 4 ESTUDIO DE MERCADO 4.1. DEMANDA DEL PROYECTO La demanda es la cantidad de bienes o servicios que los compradores intentan adquirir en el mercado. Por medio de la ley de la demanda, se determina

Más detalles

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO Unidad 1 Números Reales Utilizar los números enteros, racionales e irracionales para cuantificar situaciones de la vida cotidiana. Aplicar adecuadamente

Más detalles

METODOS ELEMENTALES DE PROCESAMIENTO DE SERIES DE TIEMPO

METODOS ELEMENTALES DE PROCESAMIENTO DE SERIES DE TIEMPO METODOS ELEMENTALES DE PROCESAMIENTO DE SERIES DE TIEMPO Jorge Galbiati Riesco En este apunte se da una visión general sobre algunos procedimientos en el análisis en series de tiempo. Inicialmente presentamos

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

Grado en Finanzas y Contabilidad

Grado en Finanzas y Contabilidad Econometría Grado en Finanzas y Contabilidad Apuntes basados en el libro Introduction to Econometrics: A modern Approach de Wooldridge 5.2 Estimadores de Variables Instrumentales La endogeneidad aparece

Más detalles

El impulso. y el PBI. en el Perú: 1992 2009. crediticio

El impulso. y el PBI. en el Perú: 1992 2009. crediticio análisis El impulso crediticio y el PBI en el Perú: 1992 2009 Erick Lahura* y Hugo Vega* *Especialistas en Investigación Económica del BCRP. erick.lahura@bcrp.gob.pe hugo.vega@bcrp.gob.pe La literatura

Más detalles

Tema 3. Series de Tiempo

Tema 3. Series de Tiempo Tema 3. Series de Tiempo 3.3.1. Definición En Estadística se le llama así a un conjunto de valores observados durante una serie de períodos temporales secuencialmente ordenada, tales períodos pueden ser

Más detalles

Análisis de riesgo e incertidumbre

Análisis de riesgo e incertidumbre Análisis de riesgo e incertidumbre Eduardo Contreras Enero 2009 Introducción a riesgo e incertidumbre Dos Conceptos: Riesgo:» Información de naturaleza aleatórea, las probabilidades de ocurrencia de eventos

Más detalles

VICERRECTORADO DE CALIDAD E INNOVACIÓN EDUCATIVA

VICERRECTORADO DE CALIDAD E INNOVACIÓN EDUCATIVA VICERRECTORADO DE CALIDAD E INNOVACIÓN EDUCATIVA Título del Informe: Análisis de validez y fiabilidad del cuestionario de encuesta a los estudiantes para la evaluación de la calidad de la docencia Fecha:

Más detalles

La Curva Spot (Cero Cupón) Estimación con Splines Cúbicos Suavizados: Programa en Excel *

La Curva Spot (Cero Cupón) Estimación con Splines Cúbicos Suavizados: Programa en Excel * La Curva Spot (Cero Cupón) Estimación con Splines Cúbicos Suavizados: Programa en Excel * Introducción. Este documento describe el uso del programa para la estimación de la curva spot (Cero Cupón) que

Más detalles

Econometría I. Carlos Velasco 1. Universidad Carlos III de Madrid

Econometría I. Carlos Velasco 1. Universidad Carlos III de Madrid Econometría I Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco (MEI, UC3M)

Más detalles

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA Eva Medina Moral (Febrero 2002) EXPRESIÓN DEL MODELO BASICO DE REGRESIÓN LINEAL La expresión formal del modelo

Más detalles

1.1. Conceptualización y Objetivos

1.1. Conceptualización y Objetivos UNIDAD I Sistemas de Producción y Pronóstico 1.1. Conceptualización y Objetivos El sistema de producción es el proceso físico o instalación que se utiliza para generar el producto o servicio. Incluyen

Más detalles

4 Varianza y desviación típica. 6 Covarianza y correlación. 9 Regresión lineal mínimo cuadrática. 22 Riesgo

4 Varianza y desviación típica. 6 Covarianza y correlación. 9 Regresión lineal mínimo cuadrática. 22 Riesgo MÓDULO 1: GESTIÓN DE CARTERAS Índice Conceptos estadísticos Media aritmética y esperanza matemática 4 Varianza y desviación típica 6 Covarianza y correlación 9 Regresión lineal mínimo cuadrática Rentabilidad

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales.

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales. Series Temporales Introducción Una serie temporal se define como una colección de observaciones de una variable recogidas secuencialmente en el tiempo. Estas observaciones se suelen recoger en instantes

Más detalles

ECONOMETRÍA FINANCIERA

ECONOMETRÍA FINANCIERA ECONOMETRÍA FINANCIERA CONTENIDO 1 2 3 4 5 6 7 Objetivo Introducción Las betas Financieras Capital Asset Pricing Model CAPM Arbitrage Princing Model APT Predicción con el Método de Montecarlo Solución

Más detalles

CAPÍTULO IV METODOLOGÍA PARA EL CONTROL DE INVENTARIOS. En este capítulo se presenta los pasos que se siguieron para la elaboración de un sistema de

CAPÍTULO IV METODOLOGÍA PARA EL CONTROL DE INVENTARIOS. En este capítulo se presenta los pasos que se siguieron para la elaboración de un sistema de CAPÍTULO IV METODOLOGÍA PARA EL CONTROL DE INVENTARIOS En este capítulo se presenta los pasos que se siguieron para la elaboración de un sistema de inventarios para lograr un control de los productos.

Más detalles

Programación General Anual Curso 2011/12 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÍNDICE

Programación General Anual Curso 2011/12 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÍNDICE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÍNDICE ÍNDICE...1 CONTENIDOS... 2 CRITERIOS DE EVALUACIÓN... 4 TEMPORALIZACIÓN... 5 METODOLOGÍA DIDÁCTICA... 6 PROCEDIMIENTOS DE EVALUACIÓN... 7 ACTIVIDADES

Más detalles

(2) CICLO: QUINTO CUATRIMESTRE (3) CLAVE DE LA ASIGNATURA: LCO0520

(2) CICLO: QUINTO CUATRIMESTRE (3) CLAVE DE LA ASIGNATURA: LCO0520 1 (1)NOMBRE DE LA ASIGNATURA O UNIDAD DE APRENDIZAJE: CONTABILIDAD DE COSTOS II (2) CICLO: QUINTO CUATRIMESTRE (3) CLAVE DE LA ASIGNATURA: LCO0520 (4) OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA AL TÉRMINO

Más detalles

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD.

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD. Experimentos con un solo factor: El análisis de varianza Jhon Jairo Padilla Aguilar, PhD. Experimentación en sistemas aleatorios: Factores Controlables Entradas proceso Salidas Factores No controlables

Más detalles

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7) Caracterización de las fuentes y formación de escalas de tiempo Rec. UIT-R TF.538-3 1 RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

Más detalles

Capitulo 3. Primer Año de Operaciones

Capitulo 3. Primer Año de Operaciones Capitulo 3 Primer Año de Operaciones Área de producción La empresa, como se había mencionado anteriormente, contaba hasta antes de asumir la administración de ella con cinco períodos de operación. La información

Más detalles

Una serie temporal o cronológica es en una sucesión de valores que adopta una variable (Y):

Una serie temporal o cronológica es en una sucesión de valores que adopta una variable (Y): INTRODUCCIÓN Nos vamos a ocupar ahora de estudiar un fenómeno desde la perspectiva temporal, observando su evolución a través del tiempo, lo que se denomina investigación diacrónica o longitudinal, en

Más detalles

TABLAS DINAMICAS DE MORTALIDAD Y SUPERVIVENCIA

TABLAS DINAMICAS DE MORTALIDAD Y SUPERVIVENCIA TABLAS DINAMICAS DE MORTALIDAD Y SUPERVIVENCIA Ana Debón 1 Ramón Sala 2 Universitat de Valencia Resumen: Es una realidad que la esperanza de vida está aumentando en todos los países desarrollados. Así

Más detalles

PLANEACIÒN FINANCIERA

PLANEACIÒN FINANCIERA PLANEACIÒN FINANCIERA CLAVE: LII 301 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. PLANEACIÒN. 1.1 Concepto de Planeación. 1.2 Importancia de la Planeación. 1.3 Tipos de Planeación. 1.3.1 Planes de Recursos

Más detalles

CÁLCULO DE CICLOS DE CONSUMO Y ROTACIÓN DE INVENTARIOS

CÁLCULO DE CICLOS DE CONSUMO Y ROTACIÓN DE INVENTARIOS 4 CÁLCULO DE CICLOS DE CONSUMO Y ROTACIÓN DE INVENTARIOS Al finalizar el capítulo, el alumno calculará los ciclos de consumo y rotación de inventarios de acuerdo con los métodos de valuación, para la determinación

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN ADMINISTRACIÓN ÁREA ADMINISTRACIÓN Y EVALUACIÓN DE PROYECTOS EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ESTADÍSTICA

TÉCNICO SUPERIOR UNIVERSITARIO EN ADMINISTRACIÓN ÁREA ADMINISTRACIÓN Y EVALUACIÓN DE PROYECTOS EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ESTADÍSTICA TÉCNICO SUPERIOR UNIVERSITARIO EN ADMINISTRACIÓN ÁREA ADMINISTRACIÓN Y EVALUACIÓN DE PROYECTOS EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ESTADÍSTICA UNIDADES DE APRENDIZAJE 1. Competencias Evaluar la

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Utilizamos el fichero importado

Utilizamos el fichero importado TEMA 5: Análisis estadísticoexploratorio de datos en Eviews Área de Comandos Menú Principal Ventana Workfile y de Objetos Línea de estado EVIEWS, Econometric Views, para la gestión econométrica de datos

Más detalles

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO Estadística Superior CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. REGRESIÓN LINEAL SIMPLE Y MÚLTIPLE 1.1. Regresión lineal simple 1.2. Estimación y predicción por intervalo en regresión lineal

Más detalles

Planificación agregada

Planificación agregada Planificación agregada 17 Planificación agregada La planificación agregada de la producción se sitúa en los niveles superiores del prisma de la planificación presentado. El objetivo de esta planificación

Más detalles

7. Conclusiones. 7.1 Resultados

7. Conclusiones. 7.1 Resultados 7. Conclusiones Una de las preguntas iniciales de este proyecto fue : Cuál es la importancia de resolver problemas NP-Completos?. Puede concluirse que el PAV como problema NP- Completo permite comprobar

Más detalles

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Aniel Nieves-González Abril 2013 Aniel Nieves-González () Time Series Abril 2013 1 / 15 Considere el ejemplo en cual queremos modelar las ventas en una cadena de tiendas por

Más detalles

METODOLOGIA DE SUPERFICIES DE RESPUESTA. Esto se logra al determinar las condiciones óptimas de operación del sistema.

METODOLOGIA DE SUPERFICIES DE RESPUESTA. Esto se logra al determinar las condiciones óptimas de operación del sistema. 37 CAPITULO METODOLOGIA DE SUPERFICIES DE RESPUESTA En este capítulo hablaremos de qué es la Metodología de Superficies de Respuesta, su representación gráfica, el procedimiento a seguir hasta encontrar

Más detalles

Introducción a la Macroeconomía Práctica 1

Introducción a la Macroeconomía Práctica 1 Práctica 1 1) Hemos obtenidos en el INE los siguientes datos, a precios de mercado, para la economía española en 1999. Completa la tabla que se presenta a continuación: - gasto realizado por los hogares

Más detalles

Universidad del CEMA Master en Finanzas 2006

Universidad del CEMA Master en Finanzas 2006 Universidad del CEMA Master en Finanzas 2006 La Simulación como una herramienta para el manejo de la incertidumbre Fabián Fiorito ffiorito@invertironline.com Tel.: 4000-1400 Hoy en día la simulación es

Más detalles

LOS INDICADORES HERRAMIENTA ESTADISTICA

LOS INDICADORES HERRAMIENTA ESTADISTICA LOS INDICADORES HERRAMIENTA ESTADISTICA INTRODUCCION Para evaluar los servicios de salud se requiere inicialmente tener una descripción orientada de tres elementos generales: La población con sus necesidades;

Más detalles

Empresarial y Financiero

Empresarial y Financiero Curso de Excel Empresarial y Financiero SESIÓN : REGRESIÓN Rosa Rodríguez Relación con el Mercado Descargue de yahoo.com los Datos de precio ajustado de cierre de las acciones de General Electric (GE),

Más detalles

MODELOS DE CÁLCULO DE LA VOLATILIDAD *

MODELOS DE CÁLCULO DE LA VOLATILIDAD * MODELOS DE CÁLCULO DE LA VOLATILIDAD * Uno de los objetivos principales perseguidos en el análisis de series temporales es poder predecir de la manera más aproximada el comportamiento futuro que pueden

Más detalles

REGRESION simple. Correlación Lineal:

REGRESION simple. Correlación Lineal: REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente)

Más detalles

Tutorial - Parte 2: Scoring

Tutorial - Parte 2: Scoring Introducción Tutorial - Parte 2: Scoring En este segundo tutorial aprenderá lo que significa un modelo de Scoring, verá cómo crear uno utilizando Powerhouse Analytics y finalmente a interpretar sus resultados.

Más detalles

Métodos y Modelos Cuantitativos para la toma de Decisiones

Métodos y Modelos Cuantitativos para la toma de Decisiones Métodos y Modelos Cuantitativos para la toma de Decisiones David Giuliodori Universidad Empresarial Siglo 21 David Giuliodori (UE-Siglo 21) MMC 1 / 98 Índice: 1 Conceptos Generales 2 Enfoque Clásico Tendencia

Más detalles

que tan buen predictor

que tan buen predictor Introducción Las Teorías de Finanzas y las de Economía tratan de describir lo mejor posible situaciones que ocurren en la vida real, como cualquier teoría su fortaleza radica en que tan buen predictor

Más detalles

TEMA 9: Desarrollo de la metodología de Taguchi

TEMA 9: Desarrollo de la metodología de Taguchi TEMA 9: Desarrollo de la metodología de Taguchi 1 La filosofía de la calidad de Taguchi 2 Control de calidad Off Line y On Line Calidad Off Line Calidad On Line 3 Función de pérdida 4 Razones señal-ruido

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las 7 Interpolación Palmas de G.C. de funciones 1 / 42II

Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las 7 Interpolación Palmas de G.C. de funciones 1 / 42II Métodos Numéricos Grado en Ingeniería Informática Tema 7 Interpolación de funciones II Luis Alvarez León Univ. de Las Palmas de G.C. Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las

Más detalles

Apuntes de Metodología de la Investigación en Turismo

Apuntes de Metodología de la Investigación en Turismo Apuntes de Metodología de la Investigación en Turismo DIRECCIÓN Amparo Sancho Perez COLABORACIÓN Bernardí Cabrer Borrás Gregorio Garcia Mesanat Juan Manuel Perez Mira Otras colaboraciones: Pilar González

Más detalles

CONTENIDO ACADEMICO PROGRAMA EN FINANZAS CORPORATIVAS

CONTENIDO ACADEMICO PROGRAMA EN FINANZAS CORPORATIVAS CONTENIDO ACADEMICO PROGRAMA EN FINANZAS CORPORATIVAS ÁREA MANAGEMENT MODULO I: IDEA DE NEGOCIOS Y PROYECTO EMPRESARIAL (MAN-100) Marco conceptual El emprendedorismo Características del emprendedor Creatividad

Más detalles

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS 1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS Primera Evaluación TEMA 1. NÚMEROS REALES Distintos tipos de números. Recta real. Radicales. Logaritmos. Notación científica. Calculadora. TEMA 2.

Más detalles

La demanda de plazas en la licenciatura de Medicina en España

La demanda de plazas en la licenciatura de Medicina en España La demanda de plazas en la licenciatura de Medicina en España Estudio econométrico por Comunidades Autónomas de la demanda de plazas en las facultades de Medicina españolas para el curso 2006/2007 Asignatura:

Más detalles

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras Unidad 6 Distribuciones de probabilidad continua, muestreo y distribución de muestras Introducción La unidad 5 se enfocó en el estudio de las distribuciones de probabilidad discreta, entre las cuales

Más detalles

Manual de términos. Módulo de Análisis Técnico

Manual de términos. Módulo de Análisis Técnico Manual de términos Módulo de Análisis Técnico Disclaimer La información recogida en esta presentación ha sido elaborada por la Bolsa de Valores de Colombia (BVC) y tiene como objetivo ofrecer a los lectores

Más detalles

Estas cuestiones deberán resolverse como parte de la planificación de la capacidad.

Estas cuestiones deberán resolverse como parte de la planificación de la capacidad. Es en relación con la capacidad que deben considerarse las siguientes cuestiones: Cuales son las tendencias del mercado en términos de tamaño y ubicación del mercado e innovaciones tecnológicas? Con cuanta

Más detalles

PRUEBA ESTADÍSTICA DE HIPÓTESIS

PRUEBA ESTADÍSTICA DE HIPÓTESIS PRUEBA ESTADÍSTICA DE HIPÓTESIS Rodrigo PIMIENTA LASTRA* INTRODUCCIÓN En el presente trabajo se pretende destacar el concepto de hipótesis estadística, así como plantear e identificar tanto la hipótesis

Más detalles

Sistema de Presupuestos

Sistema de Presupuestos Sistema de Presupuestos Sistemas de Presupuestos El sistema de presupuesto está conformado por un conjunto de políticas, normas, organismos, recursos y procedimientos, utilizados en las distintas etapas

Más detalles

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:

Más detalles

Ordenanza fiscal Nº16 Tasa por aprovechamiento especial del dominio público local por empresas explotadoras de servicios de telefonía móvil.

Ordenanza fiscal Nº16 Tasa por aprovechamiento especial del dominio público local por empresas explotadoras de servicios de telefonía móvil. Tasa por aprovechamiento especial del dominio público local por empresas explotadoras de servicios de telefonía móvil. ORDENANZA REGULADORA DE LA TASA POR LA UTILIZACIÓN PRIVATIVA O EL APROVECHAMIENTO

Más detalles

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Capítulo 15 Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Los modelos factoriales de análisis de varianza (factorial = más de un factor) sirven para evaluar el efecto

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES Para la valuación de opciones hay dos modelos ampliamente reconocidos como son el modelo binomial y el modelo de Black

Más detalles