Series de Tiempo. Una Introducción

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Series de Tiempo. Una Introducción"

Transcripción

1 Series de Tiempo. Una Introducción

2 Series de Tiempo Muchas veces, sobretodo para realizar pronósticos, resulta conveniente no suponer un modelo explícito para que explique la variables de interés, sino utilizar una estrategia alternativa: utilizar la información en el pasado de la misma serie. Las series de tiempo son un modelo ateórico en ese sentido y parten explicítamente del supuesto de que la historia sirve como guía para realizar inferencia sobre el futuro. Herramientas Modernas para el Manejo del Riesgo Financiero 2

3 100,00 90,00 80,00 70,00 60,00 50,00 40,00 PIB trimestral de Colombia (millones de USD) Herramientas Modernas para el Manejo del Riesgo Financiero

4 Algunas Condiciones para trabajar con series de tiempo El valor de una variable aleatoria depende de sus propios valores pasados o de una suma ponderada de perturbaciones aleatorias. es estacionario y ergódico sí: = (i) (ii) La distribución de, + 1, + 2,, + es igual a la de, + 1, + 2,, +. Para cualquier par de funciones acotadas y, +1,, + +, + +1,, + + =, +1,, + +, + +1,, + + Herramientas Modernas para el Manejo del Riesgo Financiero 4

5 En palabras: Estacionariedad: Tome n observaciones y las copara con otras n observaciones tomadas de otra parte, lo que importa es cuántas tomó y no en dónde las tomó, como distribución generadora de momentos es idéntica una implicación es que la media y la varianza son constantes. Ergodicidad: El valor esperado se puede expresar como el producto de los valores esperados para dos pedazos de distribuciones en el límite cuando N se hace infinito. También se podría entender como que las covarianzas se van a cero lo suficientemente rápido cuando N se hace infinito, tan rápido como para que el proceso sea estacionario(ergódicamente). Herramientas Modernas para el Manejo del Riesgo Financiero 5

6 Medias Móviles (MA) Con Ruido Blanco o sea de media cero y estacionario en covarianza. =0, 2 2 = >0, =0con =0, 1, 2, Se puede entender como un proceso que comenzó hace tanto tiempo que su media y covariaza se han estabilizado en valores constantes. MA (q): = con 0 =1 Herramientas Modernas para el Manejo del Riesgo Financiero 6

7 Medias Móviles (MA) Es estacionario en covarianza porque: Media: = Autocovarianza j: = = 2 + para =0,1,, =0 para > ( el proceso tiene memoria finita) =0 Herramientas Modernas para el Manejo del Riesgo Financiero 7

8 Medias Móviles (MA) 1,0 =2+ +0,6 1 0,3 2 1,0 =2+ +0,8 1 0,5 0, k k Herramientas Modernas para el Manejo del Riesgo Financiero 8

9 Procesos Autoregresivos AR (p): = Media: si el proceso es estacionario = 1 = =. = = Nótese que la condición de estacionariedad implica (aunque no se reduce a) que: 1 2 <1 Herramientas Modernas para el Manejo del Riesgo Financiero 9

10 Unapruebade la estacionariedad: pruebade Raícesunitariasde Dickey-Fuller Aumentada La prueba de raíces unitarias se basa en la estimación de dos modelos, uno restringido y otro no restringido: 1 = Y un modelo restringido: 1 = + =1 Si las restricciones se cumple, lo cual podemos probarlo a través de una prueba F, =1; =0. Se dice que la serie tiene una raíz unitaria. Es =1 decir que es NO estacionaria y entonces habrá que diferenciarla. Herramientas Modernas para el Manejo del Riesgo Financiero 10

11 Procesos Autoregresivos Un caso específico AR(1): = Media: = 1 1 con 1 <1 Haciendo =0, como desviaciones alrededor de la media para que no estorbe. Varianza: 0 = = = = Herramientas Modernas para el Manejo del Riesgo Financiero 11

12 Algunas Fórmulas Útiles Teóricamente Covarianzas: (alrededor de la media): = 1 0 = Correlación: = = 1 Este proceso tiene memoria infinita. 0 Herramientas Modernas para el Manejo del Riesgo Financiero 12

13 Función de Autocorrelación parcial: Covarianza con desplazamiento k para un proceso AR(p) = Ahora hagamos =0,1,2,,. Estas correlaciones equivalen a la estimación por MCO. = Herramientas Modernas para el Manejo del Riesgo Financiero 13

14 Función de Autocorrelación parcial: Si el orden del proceso es p, entonces 0 con > 1,0 =0, ,0 =0, ,5 0, k k Función de autocorrelación simple y parcial Herramientas Modernas para el Manejo del Riesgo Financiero 14

15 Función de Autocorrelación parcial: 1,0 =0,9 1 0, ,5 =0,9 1 0, k k Función de autocorrelación simple y parcial. Herramientas Modernas para el Manejo del Riesgo Financiero 15

16 Modelos Autorrgresivosde Medias Móviles ARMA (p,q) = Ojo que le cambié los signos al coeficiente de la parte MA para que tengan en cuenta que da la misma cosa. Si el proceso es estacionario: = Nótese que la condición de estacionariedad implica (aunque no se reduce a que: 1 2 <1 Herramientas Modernas para el Manejo del Riesgo Financiero 16

17 Consideremos un ARMA (1,1) = Con =0. 0 = = = 1 1 para 2 Correlación: 1 = 1 0 = Herramientas Modernas para el Manejo del Riesgo Financiero 17

18 Consideremos un ARMA (1,1) 1,0 = 0, ,9 1 0,5 k Herramientas Modernas para el Manejo del Riesgo Financiero 18

19 Procesos no estacionarios homogéneos ARIMA. Se pueden transformar en procesos estacionarios diferenciándolas una o más veces. Decimos que es no estacionaria homogéna de orden d si: = Δ d Es una serie estacionaria. Δ denota diferenciación Δ = 1 Δ 2 = Δ Δ 1 Herramientas Modernas para el Manejo del Riesgo Financiero 19

20 Procesos no estacionarios homogéneos ARIMA. ARIMA (p,d,q): Δ d = + es el operador autoregresivo y el operador de promedio móvil. o proceso D también me indica el orden de integracón de la serie. Existen los procesos: ARI (p,d) autoregresivo integrado de orden p,d IMA(d,q) o proceso de promedio móvil integrado de orden d,q. Herramientas Modernas para el Manejo del Riesgo Financiero 20

21 Condiciones necesarias y suficientes para la estacionariedad en un ARMA (p,q) = Con = (así nos ahorramos el = 1 Para que el proceso sea estacionario: 1 denbe converger, lo que implica que las raíces de la ecuación característica del polinomio asociado =0 deben estar todas por fuera del círculo unitario. Herramientas Modernas para el Manejo del Riesgo Financiero 21

22 Estimación: LaestimaciónserealizaparalosMAporMCO,paralosARa través de mínimos cuadrados no lineales o Máxima Verosimilitud una vez identificado el orden del proceso. Se requiere modificar un poco el supuesto de exogeneidad estricta (es decir que el término de perturbación es ortogonal al pasado, presente y futuro de los regresores), por uno de exogeneidad débil que requiere demostraciones de teoría asintótica para usar MCO cuando se tenga una muestra más grande. Herramientas Modernas para el Manejo del Riesgo Financiero 22

23 Algoritmo de estimación Análisis de la estanilidad del mundo: Grafique la serie y analícela. Haga pruebas de Raíz Unitaria del Tipo Dickey Fuller para probar al estacionariedad de la serie (recuerde que la hipótesis nula es que la serie tiene una raíz unitaria, es decir que no es estacionaria) Diferencia la serie el número de veces que sea necesario Análisis de los residuales: Analice la función de autocorrelación simple y parcial. Determine el orden del proceso AR, MA, ARMA. Recuerde: el número de barras por fuera de la banda de confianza del Función de Autocorrelación simple le indica el orden del proceso MA, el número de barras por fuera de las bandas de confianza le indican el orden del proceso AR. La otra función debe decrecer exponencialmente. Herramientas Modernas para el Manejo del Riesgo Financiero 23

24 Algoritmo de estimación Una recomendación práctica es comenzar con un modelo AR(1) o MA(1) e irlo mejorando hasta lograr un modelo cuyo resultado sea satisfactorio en términos de predicción o en términos de las funciones de autocorrelación. Como las series de tiempo son ateóricas, lo más recomendables es que usted estime varios modelos y luego los compare entre sí, haciendo uso de los criterios de selección de modelos vistos, más el criterio de Hannan-Quinn. Recuerde ajustar la muestra para que los grados de libertad de todos los modelosseanlosmismoydeestaformapodercompararlosentresí. Herramientas Modernas para el Manejo del Riesgo Financiero 24

25 Taller en Clase Herramientas Modernas para el Manejo del Riesgo Financiero 25

Procesos de Media Móvil y ARMA

Procesos de Media Móvil y ARMA Capítulo 4 Procesos de Media Móvil y ARMA Los procesos AR no pueden representar series de memoria muy corta, donde el valor actual de la serie sólo está correlado con un número pequeño de valores anteriores

Más detalles

Métodos y Modelos Cuantitativos para la toma de Decisiones

Métodos y Modelos Cuantitativos para la toma de Decisiones Métodos y Modelos Cuantitativos para la toma de Decisiones David Giuliodori Universidad Empresarial Siglo 21 David Giuliodori (UE-Siglo 21) MMC 1 / 98 Índice: 1 Conceptos Generales 2 Enfoque Clásico Tendencia

Más detalles

Análisis de los datos del robo de vehículos asegurados: una aplicación de las series de tiempo. Alejandro Román Vásquez

Análisis de los datos del robo de vehículos asegurados: una aplicación de las series de tiempo. Alejandro Román Vásquez Análisis de los datos del robo de vehículos asegurados: una aplicación de las series de tiempo Alejandro Román Vásquez 2 de mayo del 2012 Índice general 1. Introducción 5 1.1. Contexto, motivación y propósito

Más detalles

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7) Caracterización de las fuentes y formación de escalas de tiempo Rec. UIT-R TF.538-3 1 RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo Estacionarias (Univariadas) Carlos Capistrán Carmona ITAM Serie de tiempo Una serie de tiempo es una sequencia de valores

Más detalles

Análisis de procesos estocásticos en el dominio del tiempo

Análisis de procesos estocásticos en el dominio del tiempo Análisis de procesos estocásticos en el dominio del tiempo F. Javier Cara ETSII-UPM Curso 2012-2013 1 Contenido Introducción Procesos estocásticos Variables aleatorias Una variable aleatoria Dos variables

Más detalles

ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960

ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960 ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960 Verón, Juan Antonio* ; Herrera, Carlos Gabriel*; Rodríguez, Norma Leonor** * Facultad de Tecnología y Ciencias Aplicada de la UNCa.

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelación con ARMA

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelación con ARMA ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Modelación con ARMA Método Box-Jenkins: Un libro que ha tenido una gran influencia es el de Box y Jenkins (1976): Time Series Analysis: Forecasting and

Más detalles

Vectores Autorregresivos (VAR)

Vectores Autorregresivos (VAR) Vectores Autorregresivos (VAR) 1 Procesos estocasticos multivariados Y t = [Y 1t, Y 2t,, Y Nt ], t = 1, 2,..., T Estamos interesados en el comportamiento temporal de N variables simultaneamente. E(Y t

Más detalles

Breve Introducción a las Series Temporales

Breve Introducción a las Series Temporales Breve Introducción a las Series Temporales 1 Series Temporales Colección de observaciones tomadas de forma secuencial en el tiempo {X t } t T. La hipótesis de independencia entre las observaciones puede

Más detalles

TEMA 5. PROCESOS ESTOCÁSTICOS

TEMA 5. PROCESOS ESTOCÁSTICOS TEMA 5. PROCESOS ESTOCÁSTICOS En el estudio de las variables aleatorias realizado hasta ahora se han explorado las características aleatorias del fenómeno pero se ha mantenido una premisa por defecto,

Más detalles

Modelos vectoriales autoregresivos (VAR)

Modelos vectoriales autoregresivos (VAR) Modelos vectoriales autoregresivos (VAR) Alfonso Novales Universidad Complutense Noviembre 24 Preliminary version No citar sin permiso del autor @Copyright A.Novales 24 Contents Modelos VAR 2. Un modelo

Más detalles

UNIVERSIDAD NACIONAL DEL ALTIPLANO - PUNO FACULTAD DE INGENIERÍA ESTADÍSTICA E INFORMÁTICA

UNIVERSIDAD NACIONAL DEL ALTIPLANO - PUNO FACULTAD DE INGENIERÍA ESTADÍSTICA E INFORMÁTICA UNIVERSIDAD NACIONAL DEL ALTIPLANO - PUNO FACULTAD DE INGENIERÍA ESTADÍSTICA E INFORMÁTICA ESCUELA PROFESIONAL DE INGENIERÍA ESTADÍSTICA E INFORMÁTICA MODELO UNIVARIANTE DE PRONÓSTICO DEL NÚMERO DE UNIDADES

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ

Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ Estacionalidad Qué es la estacionalidad? La estacionalidad es una componente que se presenta en series de frecuencia inferior a la anual (mensual, trimestral,...), y supone oscilaciones a corto plazo de

Más detalles

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ester Simó Mezquita Matemática Aplicada IV 1 1. Transformada de Laplace de una función admisible 2. Propiedades básicas de la transformada de Laplace

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Grado en Finanzas y Contabilidad

Grado en Finanzas y Contabilidad Econometría Grado en Finanzas y Contabilidad Apuntes basados en el libro Introduction to Econometrics: A modern Approach de Wooldridge 5.2 Estimadores de Variables Instrumentales La endogeneidad aparece

Más detalles

DESCRIPCIÓN DEL EXAMEN

DESCRIPCIÓN DEL EXAMEN DESCRIPCIÓN DEL La duración del eamen es de horas y 0 minutos. Con preguntas de teoría (8 preguntas) donde debemos de demostrar la respuesta y práctica (3 problemas). TEORÍA. Señale la respuesta correcta:

Más detalles

2.2 Transformada de Laplace y Transformada. 2.2.1 Definiciones. 2.2.1.1 Transformada de Laplace

2.2 Transformada de Laplace y Transformada. 2.2.1 Definiciones. 2.2.1.1 Transformada de Laplace 2.2 Transformada de Laplace y Transformada 2.2.1 Definiciones 2.2.1.1 Transformada de Laplace Dada una función de los reales en los reales, Existe una función denominada Transformada de Laplace que toma

Más detalles

EVOLUCIÓN DE DOS ÍNDICES BURSÁTILES Y DEL PRECIO DEL PETÓLEO EN ECONOMÍAS ABIERTAS EN CICLOS DE EXPANSIÓN-CRISIS EN EL PERÍODO 2003:1-2010:5.

EVOLUCIÓN DE DOS ÍNDICES BURSÁTILES Y DEL PRECIO DEL PETÓLEO EN ECONOMÍAS ABIERTAS EN CICLOS DE EXPANSIÓN-CRISIS EN EL PERÍODO 2003:1-2010:5. EVOLUCIÓN DE DOS ÍNDICES BURSÁTILES Y DEL PRECIO DEL PETÓLEO EN ECONOMÍAS ABIERTAS EN CICLOS DE EXPANSIÓN-CRISIS EN EL PERÍODO 2003:1-2010:5. En este trabajo realizo un estudio entre las variables, con

Más detalles

Curso Práctico de Bioestadística Con Herramientas De Excel

Curso Práctico de Bioestadística Con Herramientas De Excel Curso Práctico de Bioestadística Con Herramientas De Excel Fabrizio Marcillo Morla MBA barcillo@gmail.com (593-9) 4194239 Fabrizio Marcillo Morla Guayaquil, 1966. BSc. Acuicultura. (ESPOL 1991). Magister

Más detalles

Medición de la atención en un call center usando box-jenkins

Medición de la atención en un call center usando box-jenkins Revista de la Facultad de Ingeniería Industrial 15(1): 100-109 (2012) UNMSM ISSN: 1560-9146 (Impreso) / ISSN: 1810-9993 (Electrónico) Medición de la atención en un call center usando box-jenkins Recibido:

Más detalles

Modelos de Pronóstico para el PIB de los establecimientos financieros, seguros, inmuebles y servicios a las empresas

Modelos de Pronóstico para el PIB de los establecimientos financieros, seguros, inmuebles y servicios a las empresas Modelos de Pronóstico para el PIB de los establecimientos financieros, seguros, inmuebles y servicios a las empresas Victor Germán Hernández Ruíz Departamento Nacional de Planeación Agosto 13, 2004 Contenido

Más detalles

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral Enero 2005 1.- INTRODUCCIÓN En múltiples ocasiones el analista o investigador se enfrenta al problema de determinar

Más detalles

DESCRIPCIÓN ESPECÍFICA

DESCRIPCIÓN ESPECÍFICA DESCRIPCIÓN ESPECÍFICA NÚCLEO: COMERCIO Y SERVICIO SUBSECTOR: PRODUCCION Y SALUD OCUPACIONAL Nombre del Módulo: Análisis estadístico de datos. total: 45 HORAS. Objetivo General: Analizar la conformidad

Más detalles

CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL

CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL Contextualización En la primera parte del curso hemos estudiado el análisis clásico de series temporales en el que se asume que una serie temporal resulta de la

Más detalles

Política y Cultura ISSN: 0188-7742 politicaycultura@gmail.com. Universidad Autónoma Metropolitana Unidad Xochimilco. México

Política y Cultura ISSN: 0188-7742 politicaycultura@gmail.com. Universidad Autónoma Metropolitana Unidad Xochimilco. México Política y Cultura ISSN: 0188-7742 politicaycultura@gmail.com Universidad Autónoma Metropolitana Unidad Xochimilco México Morales Alquicira, Andrés; Rendón Trejo, Raúl La bolsa mexicana de valores realidad

Más detalles

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO Estadística Superior CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. REGRESIÓN LINEAL SIMPLE Y MÚLTIPLE 1.1. Regresión lineal simple 1.2. Estimación y predicción por intervalo en regresión lineal

Más detalles

TEMA 6: Gráficos de Control por Variables

TEMA 6: Gráficos de Control por Variables TEMA 6: Gráficos de Control por Variables 1 Introducción 2 Gráficos de control de la media y el rango Función característica de operación 3 Gráficos de control de la media y la desviación típica 4 Gráficos

Más detalles

Econometría de Económicas

Econometría de Económicas Econometría de Económicas Apuntes para el tema 6 Curso 2004-2005 Profesoras Amparo Sancho Guadalupe Serrano Modelos de panel de datos Datos de Panel son aquellos que surgen de la observación de una misma

Más detalles

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.)

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) 1.1 Definiciones Se llama ecuación diferencial a toda ecuación que contiene las derivadas de una o más variables dependientes respecto

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

Pruebas de. Hipótesis

Pruebas de. Hipótesis Pruebas de ipótesis Pruebas de ipótesis Otra manera de hacer inferencia es haciendo una afirmación acerca del valor que el parámetro de la población bajo estudio puede tomar. Esta afirmación puede estar

Más detalles

REGRESION simple. Correlación Lineal:

REGRESION simple. Correlación Lineal: REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente)

Más detalles

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2. PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.

Más detalles

Modelos de elección binaria

Modelos de elección binaria Modelos de elección binaria Prof.: Begoña Álvarez García Econometría II 2007-2008 Estamos interesados en la ocurrencia o no-ocurrencia de un cierto evento (ej: participación en el mercado laboral; inversión

Más detalles

Tema 3: El modelo de regresión lineal múltiple

Tema 3: El modelo de regresión lineal múltiple Econometría 1 curso 2009-2010 Tema 3: El modelo de regresión lineal múltiple Genaro Sucarrat (Departamento de Economía, UC3M) http://www.eco.uc3m.es/sucarrat/ Recordamos: El modelo de regresión lineal

Más detalles

Econometría Financiera

Econometría Financiera Econometría Financiera El objetivo de este curso es desarrollar en forma didáctica y sencilla, los fundamentos del análisis econométrico de los mercados financieros. Al mismo tiempo que, guiamos al alumno

Más detalles

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales.

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales. Series Temporales Introducción Una serie temporal se define como una colección de observaciones de una variable recogidas secuencialmente en el tiempo. Estas observaciones se suelen recoger en instantes

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Metodología Box-Jenkins Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es un resumen/modificación de la documentación elaborada

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

Aplicación 3: Rendimiento y riesgo de los activos financieros: el modelo CAPM

Aplicación 3: Rendimiento y riesgo de los activos financieros: el modelo CAPM Aplicación 3: Rendimiento y riesgo de los activos financieros: el modelo CAPM Idea de las modernas t as de finanzas: Relacionar el riesgo y el rdto (esperado) de un activo Más concretamente: explicar el

Más detalles

METODOS ESTADISTICOS.

METODOS ESTADISTICOS. AREA DE ESTADISTICA E INVESTIGACION DE OPERACIONES PROGRAMA: METODOS ESTADISTICOS. PROYECTO: SERVICIO DE CONSULTORIA ESTADISTICA. SERVICIO DE CONSULTORIA ESTADISTICA. Diseño con propósitos de un posterior

Más detalles

Estructura no lineal de una serie temporal

Estructura no lineal de una serie temporal Capítulo 3 Estructura no lineal de una serie temporal La volatilidad asociada a la rentabilidad de un activo no puede ser observada de forma directa y su estimación, gracias a la medida de volatilidad

Más detalles

5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON

5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON 5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON 5.1.1 OBJETIVOS: Comprender los aspectos fundamentales de un interferómetro de Michelson.

Más detalles

MODELOS DE CÁLCULO DE LA VOLATILIDAD *

MODELOS DE CÁLCULO DE LA VOLATILIDAD * MODELOS DE CÁLCULO DE LA VOLATILIDAD * Uno de los objetivos principales perseguidos en el análisis de series temporales es poder predecir de la manera más aproximada el comportamiento futuro que pueden

Más detalles

FACTORES COMUNES EN LA VOLATILIDAD DE LOS TIPOS DE INTERÉS DEL MERCADO INTERBANCARIO

FACTORES COMUNES EN LA VOLATILIDAD DE LOS TIPOS DE INTERÉS DEL MERCADO INTERBANCARIO "FACTORES COMUNES EN LA VOLATILIDAD DE LOS TIPOS DE INTERÉS DEL MERCADO INTERBANCARIO" José Miguel Navarro Azorín Dpto. de Métodos Cuantitativos para la Economía Universidad de Murcia (versión preliminar)

Más detalles

- se puede formular de la siguiente forma:

- se puede formular de la siguiente forma: Multicolinealidad 1 Planteamiento Una de las hipótesis del modelo de regresión lineal múltiple establece que no existe relación lineal exacta entre los regresores, o, en otras palabras, establece que no

Más detalles

Métodos de promedios. Diplomado en Gestión Estratégica de las Finanzas Públicas MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS

Métodos de promedios. Diplomado en Gestión Estratégica de las Finanzas Públicas MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS La estimación o proyección de ingresos futuros puede llevarse a cabo mediante diferentes métodos estadísticos de extrapolación, entre ellos: sistema

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración CAPÍTULO 5 EJERCICIOS RESUELTOS: MÉTODOS ITERATIVOS PARA ECUACIONES LINEALES Ejercicios resueltos 1 1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n cuya inversa existe

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

Temario: Análisis Econométrico con EViews Capacitación

Temario: Análisis Econométrico con EViews Capacitación Objetivo del curso: El objetivo del curso es instruir al participante en el uso de EViews para el análisis de su información y la aplicación de la metodología econométrica idónea para sus datos: Creación

Más detalles

Econometría de las series de tiempo, cointegración y heteroscedasticidad condicional autoregresiva* *

Econometría de las series de tiempo, cointegración y heteroscedasticidad condicional autoregresiva* * Cuestiones Económicas Vol. 20, No 2:3,2004 Econometría de las series de tiempo, cointegración y heteroscedasticidad condicional autoregresiva* * CLIVE GRANGER Y ROBERT ENGLE 1. Introducción La investigación

Más detalles

AGENDA Curso de estadísticas y econometría aplicada al comercio

AGENDA Curso de estadísticas y econometría aplicada al comercio AGENDA Curso de estadísticas y econometría aplicada al comercio Instructores: - José Durán Lima, CEPAL, División de Comercio Internacional e Integración. - Sebastián Castresana, CEPAL, División de Comercio

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

UCM. Autores: Juan E. Tettamanti Xin Jing [ANÁLISIS DE VARIABLES DE POSIBLE INFLUENCIA EN EL PRECIO DE LAS ACCIONES DE ALUAR]

UCM. Autores: Juan E. Tettamanti Xin Jing [ANÁLISIS DE VARIABLES DE POSIBLE INFLUENCIA EN EL PRECIO DE LAS ACCIONES DE ALUAR] UCM Autores: [ANÁLISIS DE VARIABLES DE POSIBLE INFLUENCIA EN EL PRECIO DE LAS ACCIONES DE ALUAR] Madrid, 27 de Abril de 2013 Página1 Í ndice Introducción... 2 Análisis... 2 Contrastación de Hipótesis...

Más detalles

LA DEMANDA DE DINERO EN CHILE: UNA COMPARACION DE METODOS ALTERNATIVOS DE ESTIMACION DE VECTORES DE COINTEGRACION

LA DEMANDA DE DINERO EN CHILE: UNA COMPARACION DE METODOS ALTERNATIVOS DE ESTIMACION DE VECTORES DE COINTEGRACION LA DEMANDA DE DINERO EN CHILE: UNA COMPARACION DE METODOS ALTERNATIVOS DE ESTIMACION DE VECTORES DE COINTEGRACION Ricardo Martner F. Daniel Titelman K.* Documento de Trabajo No. 8 ** Noviembre de 1992

Más detalles

CAPÍTULO 2: MARCO TEÓRICO. El término inversión significa la asignación de fondos para la adquisición de valores o de

CAPÍTULO 2: MARCO TEÓRICO. El término inversión significa la asignación de fondos para la adquisición de valores o de CAPÍTULO 2: MARCO TEÓRICO 2.1. Valores El término inversión significa la asignación de fondos para la adquisición de valores o de bienes reales con el fin de obtener una utilidad o un interés. [2] Los

Más detalles

UN MODELO DE PRONÓSTICO PARA LAS PRIMAS DE SEGUROS DE VIDA Y PERSONAS

UN MODELO DE PRONÓSTICO PARA LAS PRIMAS DE SEGUROS DE VIDA Y PERSONAS UN MODELO DE PRONÓSTICO PARA LAS PRIMAS DE SEGUROS DE VIDA Y PERSONAS Wilson Mayorga M. Director de Cámara de Vida y Personas y Actuaría Con base en modelos de regresión que explican la evolución de las

Más detalles

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA NOTA: en toda esta práctica no se pueden utilizar bucles, para que los tiempos de ejecución se reduzcan. Esto se puede hacer

Más detalles

IDENTIFICACIÓN DE SISTEMAS ASPECTOS PRÁCTICOS EN IDENTIFICACIÓN

IDENTIFICACIÓN DE SISTEMAS ASPECTOS PRÁCTICOS EN IDENTIFICACIÓN IDENTIFICACIÓN DE SISTEMAS ASPECTOS PRÁCTICOS EN IDENTIFICACIÓN Ing. Fredy Ruiz Ph.D. ruizf@javeriana.edu.co Maestría en Ingeniería Electrónica Pontificia Universidad Javeriana 2013 CONSIDERACIONES PRÁCTICAS

Más detalles

Series Temporales Curso 2014 2015

Series Temporales Curso 2014 2015 Universidad del País Vasco Aeman ta zabal zazu Euskal Herriko Unibertsitatea Programa de la asignatura Series Temporales Curso 2014 2015 Profesores: Ana Cebrián (Univ. de Zaragoza) Fernando Tusell (UPV/EHU)

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación EXAMEN RESUELTO DE ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS CONVOCATORIA: ENERO / FECHA: de Enero de Duración del examen: 3 horas Fecha publicación

Más detalles

Números aleatorios. Contenidos

Números aleatorios. Contenidos Números aleatorios. Contenidos 1. Descripción estadística de datos. 2. Generación de números aleatorios Números aleatorios con distribución uniforme. Números aleatorios con otras distribuciones. Método

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

Controladores PID. Virginia Mazzone. Regulador centrífugo de Watt

Controladores PID. Virginia Mazzone. Regulador centrífugo de Watt Controladores PID Virginia Mazzone Regulador centrífugo de Watt Control Automático 1 http://iaci.unq.edu.ar/caut1 Automatización y Control Industrial Universidad Nacional de Quilmes Marzo 2002 Controladores

Más detalles

DISEÑO DE UN MODELO DE APROXIMACIÓN TRIMESTRAL PARA LA ECONOMÍA DE MADRID

DISEÑO DE UN MODELO DE APROXIMACIÓN TRIMESTRAL PARA LA ECONOMÍA DE MADRID DISEÑO DE UN MODELO DE APROXIMACIÓN TRIMESTRAL PARA LA ECONOMÍA DE MADRID Ana López Yigal Montejo Instituto L. R. Klein, UAM Junio 2000 RESUMEN El presente trabajo estudia la economía madrileña basándose

Más detalles

Curso. Análisis Estadístico de Datos Climáticos

Curso. Análisis Estadístico de Datos Climáticos Curso I-1 Análisis Estadístico de Datos Climáticos Distribuciones de Probabilidad Mario Bidegain (FC) Alvaro Diaz (FI) Universidad de la República Montevideo, Uruguay 2011 I-2 DISTRIBUCIONES DE PROBABILIDAD

Más detalles

RELACIONES DE RECURRENCIA

RELACIONES DE RECURRENCIA Unidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo general Conocer en forma introductoria los conceptos propios de la recurrencia en relación con matemática discreta. Objetivos específicos

Más detalles

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo:

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: Escuela Superior Poliécnica del Lioral Faculad de Economía y Negocios 30-11-2011 Examen Parcial de Economería II Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: REGLAMENTO DE EVALUACIONES Y CALIFICACIONES

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.4.2 ED lineales homogéneas con coeficientes constantes de orden n 3 En la sección anterior hemos obtenido las soluciones de la ED lineal homogénea

Más detalles

6 Sexta. 6.1 Parte básica. Unidad Didáctica "REGRESIÓN Y CORRELACIÓN"

6 Sexta. 6.1 Parte básica. Unidad Didáctica REGRESIÓN Y CORRELACIÓN 352 6 Sexta Unidad Didáctica "REGRESIÓN Y CORRELACIÓN" 6.1 Parte básica 353 6.1.1 Introducción Regresión es una palabra un tanto rara. La utilizan los biólogos, los médicos, los psicólogos... y suena como

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Introducción a la Teoría del Procesamiento Digital de Señales de Audio

Introducción a la Teoría del Procesamiento Digital de Señales de Audio Introducción a la Teoría del Procesamiento Digital de Señales de Audio Transformada de Fourier Resumen el análisis de Fourier es un conjunto de técnicas matemáticas basadas en descomponer una señal en

Más detalles

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA 5.1 Introducción En este capítulo nos ocuparemos de la estimación de caracteristicas de la población a partir de datos. Las caracteristicas poblacionales

Más detalles

Curso de Estadística y Matemáticas Farmacéuticas

Curso de Estadística y Matemáticas Farmacéuticas Curso de Estadística y Matemáticas Farmacéuticas Titulación certificada por EUROINNOVA BUSINESS SCHOOL Curso de Estadística y Matemáticas Farmacéuticas Curso de Estadística y Matemáticas Farmacéuticas

Más detalles

METODOLOGIA DE SUPERFICIES DE RESPUESTA. Esto se logra al determinar las condiciones óptimas de operación del sistema.

METODOLOGIA DE SUPERFICIES DE RESPUESTA. Esto se logra al determinar las condiciones óptimas de operación del sistema. 37 CAPITULO METODOLOGIA DE SUPERFICIES DE RESPUESTA En este capítulo hablaremos de qué es la Metodología de Superficies de Respuesta, su representación gráfica, el procedimiento a seguir hasta encontrar

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

Procesos Estacionarios. Francisco J. González Serrano. Universidad Carlos III de Madrid

Procesos Estacionarios. Francisco J. González Serrano. Universidad Carlos III de Madrid PREDICCIÓN DE SEÑALES Procesos Estacionarios Francisco J. González Serrano Universidad Carlos III de Madrid Procesos Estacionarios A la hora de hacer predicciones parece obvio suponer que algo debe permanecer

Más detalles

MATEMÁTICA NM4 4º EM

MATEMÁTICA NM4 4º EM MATEMÁTICA NM4 4º EM UNIDADES TEMÁTICAS UNIDAD Nº 01: ESTADÍSTICA Y PROBABILIDAD Conceptos generales : Población, muestra, parámetro y estadístico Variables y su clasificación Medición y escalas Organización

Más detalles

Métodos y Diseños utilizados en Psicología

Métodos y Diseños utilizados en Psicología Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos

Más detalles

El Análisis de la Regresión a través de SPSS

El Análisis de la Regresión a través de SPSS El Análisis de la Regresión a través de SPSS M. D olores M artínez M iranda Profesora del D pto. E stadística e I.O. U niversidad de G ranada Referencias bibliográficas. Hair, J.F., Anderson, R.E., Tatham,

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

Regresión lineal múltiple

Regresión lineal múltiple . egresión lineal múltiple egresión lineal múltiple. Introducción. En el tema anterior estudiamos la correlación entre dos variables y las predicciones que pueden hacerse de una de ellas a partir del conocimiento

Más detalles

REGRESIONES QUE APARENTEMENTE NO ESTAN RELACIONADAS (SUR)

REGRESIONES QUE APARENTEMENTE NO ESTAN RELACIONADAS (SUR) BANCO CENTRAL DE COSTA RICA DIVISIÓN ECONÓICA DEPARTAENTO DE INVESTIGACIONES ECONÓICAS NT-06-96 REGRESIONES QUE APARENTEENTE NO ESTAN RELACIONADAS (SUR) Rigoberto Araya onge Juan E. uñoz Giró NOVIEBRE,

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Generación de Números Pseudo-Aleatorios

Generación de Números Pseudo-Aleatorios Números Aleatorios Son un ingrediente básico en la simulación de sistemas Los paquetes de simulación generan números aleatorios para simular eventos de tiempo u otras variables aleatorias Una secuencia

Más detalles

Variable Compleja. José Darío Sánchez Hernández Bogotá -Colombia - abril 2005 danojuanos@hotmail.com danojuanos@tutopia.com

Variable Compleja. José Darío Sánchez Hernández Bogotá -Colombia - abril 2005 danojuanos@hotmail.com danojuanos@tutopia.com Variable Compleja José Darío Sánchez Hernández Bogotá -Colombia - abril 2005 danojuanos@hotmail.com danojuanos@tutopia.com El objeto de estas notas es brindar al lector un modelo de aprendizaje. A continuación

Más detalles

9.1.Análisis de tablas de contingencia

9.1.Análisis de tablas de contingencia 9.1.Análisis de tablas de contingencia Qué es una tabla de contingencia? Observamos datos de frecuencias de sucesos Diseños de cohortes Diseños de casos y controles Diseños transversales Estamos interesados

Más detalles

Generación de números aleatorios

Generación de números aleatorios Generación de números aleatorios Marcos García González (h[e]rtz) Verano 2004 Documento facilitado por la realización de la asignatura Métodos informáticos de la física de segundo curso en la universidad

Más detalles

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA Eva Medina Moral (Febrero 2002) EXPRESIÓN DEL MODELO BASICO DE REGRESIÓN LINEAL La expresión formal del modelo

Más detalles

Límites: tipos de indeterminaciones 6

Límites: tipos de indeterminaciones 6 Índice Páginas Cálculo de límites. Tipos de Indeterminación. Límites cuando tiende a ±. Posibilidades : a) Obtenemos solución directamente. b) Indeterminación c) Indeterminación - d) Indeterminación 5

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

Procesos ARIMA estacionales

Procesos ARIMA estacionales Capítulo 6 Procesos ARIMA estacionales 6.1. INTRODUCCIÓN Otra causa de no estacionaridad es la estacionalidad: En una serie mensual con estacionalidad anual, cada mes tiene una media distinta, con lo cual

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Análisis Estadístico de Datos Climáticos SERIES TEMPORALES 3 (Análisis espectral) 2015 Dominio temporal vs. dominio de frecuencias Son dos enfoques para encarar el análisis de las series temporales, aparentemente

Más detalles

Introducción al Análisis Complejo

Introducción al Análisis Complejo Introducción al Análisis Complejo Aplicado al cálculo de integrales impropias Complementos de Análisis, I.P.A Prof.: Federico De Olivera Leandro Villar 13 de diciembre de 2010 Introducción Este trabajo

Más detalles