Tema 3: Técnicas de contar

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3: Técnicas de contar"

Transcripción

1 Tema 3: Técicas de cotar Objetivo específico: Dado u cojuto fiito podemos cotar sus elemetos si hacer la lista de dichos elemetos? Aplicacioes: Probabilidades (se cueta casos favorables y casos posibles) Cálculo de la complejidad o tiempo de ejecució de u algoritmo (úmero de operacioes medio o esperado que realiza u algoritmo)

2 Qué vamos a cotar? Todos los subcojutos de u cojuto de 10 elemetos. Los aagramas de la palabra CONTAR (CORNAT, CARNOT, ) Si 5 iños comparte 12 caicas idéticas. De cuátas maeras puede repartirse las caicas? Cuátos úmeros de 16 bits tiee exactamete cuatro 1?

3 Propiedades del cardial de u cojuto fiito Cardial de u cojuto fiito A es el úmero de elemetos de A y lo otamos por A Sea Ø,el cardial del cojuto vacio, Ø =0 Cardial de la diferecia: A B = A A B SiB A, A B = A B Pricipio de adició Pricipio del producto

4 Pricipio de adició Si A y B so cojutos fiitos, o vacíos y disjutos, (es decir, A B = ), etoces A B = A + B A B E ua clase se sabe que hay 6 persoas de o más de 18 años ( cojuto A) y 7 persoas de etre 19 y 22 años (cojuto B). cuátas persoas hay de o más de 22 años? Aplicado el pricipio de adició podemos cocluir que hay 6+7=13 persoas de o más de 22 años.

5 Ejemplos: Si sólo sabemos que hay 6 persoas de o más de 18 años (coj. A) y 7 persoas de etre 17 y 22 años (co. B), o somos capaces de dar el úmero exacto de persoas de meos de 22 años (porque A y B o so ahora disjutos) E la platilla de u equipo de fútbol, todos los jugadores so españoles o argetios. Diez so españoles, 5 so argetios. Cuátos jugadores so e total? Y qué pasa si hay 3 jugadores que tiee la doble acioalidad? (Pricipio Iclusió-Exclusió)

6 Pricipio de adició Decimos que los cojutos A 1,A 2,..,A so disjutos dos a dos, si cada par de estos cojutos so disjutos. Pricipio de la suma: Si los cojutos A 1,A 2,..,A so disjutos dos a dos, etoces el cardial de la uió de todos ellos es igual a la suma de los cardiales de cada uo de ellos.

7 Pricipio del producto Si u procedimieto se puede separar e dos etapas y si hay m posibles resultados para la primera etapa y para la seguda, etoces el úmero de formas distitas de realizar el procedimieto es el producto m Cuátas palabras de logitud 4 se puede formar co las letras a,c,s? E ua promoció de 50 estudiates, se reparte tres premios. Cuáles so todas las posibles reparticioes?

8 Pricipios de la suma y el producto E ocasioes hay que combiar ambos pricipios para resolver u problema: E cierto sistema iformático, ua cotraseña válida tiee etre 6 y 8 caracteres válidos. El primero tiee que ser u carácter alfabético, los siguietes so alfabéticos o uméricos. Hay 52 caracteres alfabéticos posibles A={a,b,c,d..z,A,B,C,D, Z} y 10 caracteres uméricos posibles N={0,1,2,3,4,.9}. Cuátas cotraseñas válidas hay?

9 Producto cartesiao. Cardial. Dados dos cojutos A y B, AxB es el cojuto de todos los pares ordeados (a,b) dode a perteece a A y b perteece a B. (a,b)=(c,d) si y sólo si a=c y b=d. Si A y B so fiitos, se tiee que AxB = A B U experimeto cosiste e lazar u solo dado y aotar el resultado; a cotiuació se laza ua moeda al aire y se aota el resultado. Determiar cuátos y cuáles so todos los posibles resultados del experimeto.

10 Aplicació. Tipos de aplicacioes. Ua correspodecia etre los cojutos A y B es cualquier subcojuto del producto cartesiao AxB. Ua aplicació etre los cojutos A y B es ua correspodecia tal que a cada elemeto del cojuto de partida A le correspode uo y sólo u elemeto del cojuto de llegada B y se deota por b=f(a).

11 Tipos de aplicacioes Ua aplicació f: A-->B se dice iyectiva cuado cada elemeto del cojuto de llegada B es image de cómo mucho u elemeto del cojuto de partida A.(A cada elemeto de B le llega como máximo ua flecha) Ua aplicació f: A-->B se dice sobreyectiva cuado cada elemeto del cojuto de llegada B es image de, al meos u elemeto del cojuto de partida A (A cada elemeto de B le llega como míimo ua flecha).

12 Biyecció y aplicació a técicas de cotar Ua aplicació se dice biyectiva cuado es iyectiva y sobreyectiva a la vez (cuado todo elemeto del cojuto de llegada B es image de uo y sólo u elemeto de A) Cotar los elemetos de u cojuto fiito A es establecer ua biyecció f de A e u cojuto de la forma {1,2,,}. Pricipio de la biyecció: si existe ua biyecció etre dos cojutos fiitos A y B etoces ambos tiee el mismo cardial (úmero de elemetos).

13 Ejemplos Sea los dos problemas siguietes: Cotar las maeras de repartir 12 caicas idéticas etre 5 iños. Cotar los úmeros de 16 bits co exactamete cuatro 1. A={maeras posibles de repartir 12 caicas etre 5 iños} B={ úmeros de 16 bits co exactamete cuatro 1}

14 Aplicació a técicas de cotar Cuátos subcojutos tiee el cojuto {1,2,3,4,5,6,7,8,9,10}? Teorema: U cojuto de elemetos tiee exactamete dos elevado a elemetos. Cuátas aplicacioes hay de {1,2,3} e {1,2,3,4,5,6}?= Cuátas sucesioes de logitud 3 hay cuyos térmios puede valer {1,2,3,4,5,6}? Teorema: El úmero de aplicacioes de u cojuto fiito Y e u cojuto fiito X es X elevado a Y

15 Variacioes Variacioes: Sea Nm={1,2,,m} cojuto co m elemetos. El úmero de aplicacioes iyectivas de Nm e X recibe el ombre de variacioes (si repetició) de los elemetos del cojuto X co logitud m y se deota por V,m. Teorema: Si X =, el úmero de variacioes de elemetos de logitud m (tomadas de m e m) es x(-1)x(-2)x..x(-m+1) Ejemplo: Cuátos úmeros de tres cifras existe si cifras repetidas? V10,3=10x9x8=720

16 Variacioes co repetició Si se permite repetició, las aplicacioes que cosideramos so todas (o sólo las iyectivas), las otaremos por VR,m y su úmero es elevado a m. Ejemplo: Cuátos úmeros de cuatro cifras existe? De ellos, cuátos hay que sea múltiplos de 5?

17 Permutacioes Las permutacioes so u caso extremo de las variacioes e el que podemos escoger todos los elemetos del cojuto X, es decir, P=V,=! Cuátos úmeros de 3 cifras distitos se puede escribir co los dígitos {1,3,5}?

18 Pricipio del palomar Si 100 palomas vuela hacia los 99 idos de u palomar, etoces por lo meos e uo de los idos habrá dos o más palomas. Pricipio del palomar: Si A > B, etoces igua aplicació f de A e B es iyectiva, es decir, para toda aplicació f de A e B existe dos elemetos distitos del cojuto de partida A co la misma image por f.

19 Ejemplos Cualquier subcojuto de tamaño seis del cojuto S={1,2,3,4,5,6,7,8,9,10} debe coteer dos elemetos que sume 11. Si e ua oficia hay 13 empleados, etoces al meos dos de ellos debe cumplir años e el mismo mes. Lorezo vuelve de la lavadería co 12 pares de calceties (cada par de distito color) e ua bolsa. Si sacamos calceties al azar de la bolsa, etoces debemos extraer a lo sumo 13 para obteer u par del mismo color.

20 Pricipio de distribució (del palomar geeralizado) Si A =>k B =km, etoces para toda aplicació f de A e B existe k+1 elemetos de A que tiee la misma image por f, o bie, si queremos repartir objetos e m cajas y >km, etoces al meos ua caja ha de recibir más de k objetos (k+1 objetos como míimo). Ejemplo: E Sevilla capital hay persoas y más de o so calvas. Si se sabe que adie tiee más de pelos, etoces etre las persoas o calvas hay por lo meos cuatro persoas que tiee el mismo úmero de cabellos.

21 Ejercicio Si A es u cojuto de 101 eteros positivos diferetes o superiores a 200 y elegidos al azar, existe al meos dos elemetos de A tales que uo de ellos divide al otro.

22 Pricipio de divisió Ua aplicació f:aà B es de grado combiatorio k, si todo elemeto de B tiee exactamete k atecedetes e A (i.e. para todo b de B existe a1, ak de a tales que f(a1)=f(a2)=.=f(ak)=b). Pricipio de divisió: Si f:aà B es de grado combiatorio k, etoces A =k B Ejemplo: cuátas maos de póker puede ser obteidas e u juego de 52 cartas?

23 Combiacioes Los subcojutos de k elemetos de u cojuto dado A ( A =) de maera que dos de ellos se cosidera distitos cuado cotiee algú elemeto distito, se llama combiacioes de elemetos tomadas de k e k. Los úmeros de combiacioes de elemetos tomados de k e k es el úmero combiatorio o biómico! C(, k) = C, k = C k = k = k! ( k)!

24 Permutacioes co repetició Teorema: el úmero de permutacioes co repetició de u cojuto de elemetos dode existe u grupo de 1 elemetos repetidos, otro de 2 elemetos repetidos, etc viee dado por PR;1,2,..k=! 1! 2! k! So otra aplicació del pricipio de divisió: De cuátas formas se puede permutar las letras de la palabra CASCARA?

25 Propiedades de los úmeros combiatorios o biómicos Propiedades: + = = = = k k k k k k para k para

26 Triágulo de Tartaglia o Pascal La última propiedad aterior os permite calcular los úmeros combiatorios de maera recursiva costruyedo: Cada fila i coicide co los coeficietes de los térmios del desarrollo del biomio de Newto de grado i.

27 Teorema del biomio de Newto ) ( y x y x k y x y x y x y x k k = + 0 1) ( = + + = Corolario Forma simplificada: el úmero combiatorio es el coeficiete de x^k e el desarrollo de (x+1)^ k

28 Combiacioes co repetició So las combiacioes e el caso de permitir que cualquiera de los elemetos aparezca e la selecció más de ua vez CR, k = + k 1 ( + k 1)! = k k! ( 1)! Ejemplo: Palabras de 5 letras co el alfabeto {a,b,c}, podemos represetarlas co ua cadea biaria co 5 (k) uos y 2 ceros (-1), que represeta la alteracia etre las 3 () letras que dispoemos. Así, aabcc se represetaría por

29 Combiacioes co repetició Luego las combiacioes co repetició so las maeras de distribuir k uos e ua cadea biaria de logitud +k-1, es decir, combiacioes de +k-1 tomadas de k e k. Ejemplo: De camio a casa, 7 estudiates se detiee e u restaurate de servicio rápido dode cada uo puede escoger etre: ua hamburguesa co queso, u perrito caliete, u bocadillo o u emparedado de pescado. Cuátos pedidos diferetes se puede hacer?

Técnicas de contar MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Técnicas de contar F. Informática.

Técnicas de contar MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Técnicas de contar F. Informática. Técicas de cotar MATEMÁTICA DISCRETA I F. Iformática. UPM MATEMÁTICA DISCRETA I () Técicas de cotar F. Iformática. UPM 1 / 18 Pricipios básicos de recueto Pricipios básicos Cardial de u cojuto Cotar los

Más detalles

Combinatoria. Tema Principios básicos de recuento

Combinatoria. Tema Principios básicos de recuento Tema 4 Combiatoria La combiatoria, el estudio de las posibles distribucioes de objetos, es ua parte importate de la matemática discreta, que ya era estudiada e el siglo XVII, época e la que se platearo

Más detalles

Tenemos k objetos distintos para distribuir en n cajas distintas con

Tenemos k objetos distintos para distribuir en n cajas distintas con Departameto de Matemática Aplicada. ETSIIf. UPM. SELECCIONES ORDENADAS Teemos objetos distitos para distribuir e cajas distitas co de cuátas formas distitas se puede itroducir los objetos e las cajas,

Más detalles

1.3 Introducción a la combinatoria

1.3 Introducción a la combinatoria .3 Itroducció a la combiatoria Aprederemos e esta secció técicas básicas para cotar, aplicadas a diferetes aspectos: Cotar los elemetos de u cojuto, como por ejemplo los elemetos de A B o los de A B, co

Más detalles

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n NÚMEROS COMBINATORIOS Def:Dado u úmero etero o egativo, se defie el factorial de (! como el producto! = ( 1...1 Def: Dados dos úmeros,k eteros o egativos tales que k, se defie el úmero combiatorio sobre

Más detalles

4. TÉCNICAS PARA CONTAR Cardinal de un conjunto. Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM.

4. TÉCNICAS PARA CONTAR Cardinal de un conjunto. Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. .1. Cardial de u cojuto. TÉCNICAS PARA CONTAR Fucioes etre cojutos Se llama fució o aplicació del cojuto A e el cojuto B a cualquier relació f : A B que a cada elemeto a A le hace correspoder u úico elemeto

Más detalles

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k)

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k) Permutacioes. E Matemáticas, dado u cojuto fiito co todos sus elemetos diferetes, llamamos permutació a cada ua de las posibles ordeacioes de los elemetos de dicho cojuto. Por ejemplo, e el cojuto 1, 2,

Más detalles

Carlos González y Dulcinea Raboso 4 de Noviembre, 2017

Carlos González y Dulcinea Raboso 4 de Noviembre, 2017 Carlos Gozález y Dulciea Raboso 4 de Noviembre, 207 Combiatoria Problema Cuátas formas hay de elegir u capitá y u capitá suplete e u equipo de fútbol de dieciocho compoetes? Problema 2 Llamamos palabra

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de:

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de: ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si u suceso puede teer lugar de m maeras distitas y cuado ocurre ua de ellas se puede realizar otro suceso imediatamete de formas diferetes, ambos sucesos, sucesivamete,

Más detalles

Capítulo VARIABLES ALEATORIAS

Capítulo VARIABLES ALEATORIAS Capítulo VI VARIALES ALEATORIAS. Itroducció Detro de la estadística se puede cosiderar dos ramas perfectamete difereciadas por sus objetivos y por los métodos que utiliza: Estadística Descriptiva o Deductiva

Más detalles

Matemática Discreta. Una (muy breve) introducción a la Combinatoria.

Matemática Discreta. Una (muy breve) introducción a la Combinatoria. Matemática Discreta Ua (muy breve itroducció a la Combiatoria El objetivo pricipal de la Combiatoria es determiar el úmero de objetos perteecietes a u cojuto dado y que verifica cierta codició o propiedad

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles

TEMA 3: TÉCNICAS DE RECUENTO. COMBINATORIA OMBINATORIA.

TEMA 3: TÉCNICAS DE RECUENTO. COMBINATORIA OMBINATORIA. TEMA : TÉCNICAS DE RECUENTO. COMBINATORIA OMBINATORIA.. Itroducció...... Itroducció histórica...... Defiició de factorial.... Técicas de recueto...... Pricipio del producto...... Pricipio de adició o regla

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 2

ÁLGEBRA Algunas soluciones a la Práctica 2 ÁLGEBRA Alguas solucioes a la Práctica 2 Combiatoria (Curso 2004 2005). Sea A u cojuto co elemetos. Cuátos subcojutos tiee el cojuto A?. Probar que el úmero de subcojutos de cardial par y el úmero de subcojutos

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

CONTEO. 1. Principios básicos

CONTEO. 1. Principios básicos CONTEO BASADO EN EL LIBRO NOTAS DE ÁLGEBRA DE ENZO GENTILE. Pricipios básicos El Pricipio de Adició Si se puede realizar ua acció A de formas distitas, y se puede realizar ua acció B de m formas distitas,

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 2

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 2 ÁLGEBRA LINEAL I Alguas solucioes a la Práctica 2 Combiatoria (Curso 2012 2013) 1. De cuátas formas puede colocarse e fila las 16 piezas blacas de u ajedrez?. Las 16 fichas so: ocho peoes, dos torres,

Más detalles

Combinatoria y definiciones básicas de probabilidad

Combinatoria y definiciones básicas de probabilidad Combiatoria y defiicioes básicas de probabilidad Defiicioes de probabilidad Probabilidad como ituició Probabilidad como la razó de resultados favorables Probabilidad como medida de la frecuecia de ocurrecia

Más detalles

Matemáticas Discretas Principios fundamentales de conteo

Matemáticas Discretas Principios fundamentales de conteo Coordiació de Ciecias Computacioales - INAOE Matemáticas Discretas Pricipios fudametales de coteo Cursos Propedéuticos 00 Ciecias Computacioales INAOE Coteido Itroducció Reglas de la suma el producto Permutacioes

Más detalles

1 El conjunto de los números enteros

1 El conjunto de los números enteros El cojuto de los úmeros eteros El cojuto de los úmeros eteros, que represetamos como Z, es el cojuto formado por los úmeros 0, ±, ±, ±3, El cojuto Z goza de ua serie de propiedades que podemos dividir

Más detalles

Pregunta Notas algún patrón al construir esta tabla? Puedes expresar esta tabla como un árbol binario?

Pregunta Notas algún patrón al construir esta tabla? Puedes expresar esta tabla como un árbol binario? Técicas de Coteo El Pricipio Básico de Coteo Vamos a ua cafetería que vede hamburguesas. U aucio os dice que co los igredietes lechuga, tomate, salsa de tomate y cebolla, podemos preparar ua hamburguesa

Más detalles

Rudimentos 5: Teorema del Binomio Profesor Ricardo Santander

Rudimentos 5: Teorema del Binomio Profesor Ricardo Santander Rudimetos 5: Teorema del Biomio Profesor Ricardo Satader Este capitulo esta destiado a presetar coteidos y actividades que permitirá al estudiate: Operar co simbología matemática, desarrollar expresioes

Más detalles

1. El teorema del binomio

1. El teorema del binomio El teorema del biomio. El teorema del biomio.. Producto El producto de úmeros aparece e todas las situacioes e que queremos cotar cosas u opcioes. Imagiaquequeremoscotarel úmerode camiosdistitosque podemostomarparairde

Más detalles

CÁLCULO DE PROBABILIDADES :

CÁLCULO DE PROBABILIDADES : CÁLCULO DE PROBBILIDDES : Experimeto aleatorio. Espacio muestral. Sucesos. Álgebra de sucesos. Frecuecias. Propiedades. Probabilidad. Resume de Combiatoria. Probabilidad codicioada. Teoremas. PROBBILIDD

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

Curso Iberoamericano de formación permanente de profesores de matemática

Curso Iberoamericano de formación permanente de profesores de matemática Cetro de Altos Estudios Uiversitarios de la OEI Curso Iberoamericao de formació permaete de profesores de matemática Tema 9: Combiatoria - - Curso Iberoamericao de formació permaete de profesores de matemática

Más detalles

Coeficientes binomiales

Coeficientes binomiales Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO TÉCNICAS DE CONTEO

INSTITUTO TECNOLÓGICO DE APIZACO TÉCNICAS DE CONTEO TÉNIS DE ONTEO Para determiar el espacio muestral o el tamaño del espacio muestral, es ecesario desarrollar alguas técicas de eumeració las cuales so: El Diagrama de Árbol álisis ombiatorio. DIGRMS DE

Más detalles

Notas de Combinatoria Daniel Penazzi

Notas de Combinatoria Daniel Penazzi Notas de Combiatoria Daiel Peazzi El Pricipio de Adició: Si se puede realizar ua acció A de formas distitas, y se puede realizar ua acció B de m formas distitas, y A y B so excluyetes, etoces el úmero

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

TEMA 3 RECURRENCIA. FUNCIONES GENERATRICES

TEMA 3 RECURRENCIA. FUNCIONES GENERATRICES Gregorio Herádez Peñalver Departameto de Matemática Aplicada, Facultad de Iformática, UPM TEMA 3 RECURRENCIA. FUNCIONES GENERATRICES RELACIONES DE RECURRENCIA Ua relació de recurrecia para ua sucesió A=(a

Más detalles

Álgebra I Práctica 2 - Números naturales e inducción

Álgebra I Práctica 2 - Números naturales e inducción FCEyN - UBA - Segudo Cuatrimestre 203 Álgebra I Práctica 2 - Números aturales e iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + 2 + 3 + 4 + + 00, (b) + 2 + 4 + 8

Más detalles

SEMANA 01. CLASE 01. MARTES 04/10/16

SEMANA 01. CLASE 01. MARTES 04/10/16 EMANA 0. CLAE 0. MARTE 04/0/6. Experimeto aleatorio.. Defiició. Experimeto e el cual o se puede predecir el resultado ates de realizarlo. Para que u experimeto sea aleatorio debe teer al meos dos resultados

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

Combinatoria. Capítulo Métodos elementales de conteo Principio de inclusión-exclusión

Combinatoria. Capítulo Métodos elementales de conteo Principio de inclusión-exclusión Capítulo 4 Combiatoria La combiatoria trata del estudio de las posibles agrupacioes de objetos. Cotar el úmero de objetos que verifica ciertas propiedades es uo de los objetivos de la combiatoria. Problemas

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

1. Relaciones de recurrencia homogéneas con coeficiente

1. Relaciones de recurrencia homogéneas con coeficiente 1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

TALLER DE MATEMÁTICAS DESIGUALDADES

TALLER DE MATEMÁTICAS DESIGUALDADES TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto

Más detalles

CAPITULO 1. Teorema del Binomio

CAPITULO 1. Teorema del Binomio CAPITULO 1 Teorema del Biomio Este capitulo esta destiado a presetar coteidos y actividades que permitirá al estudiate: Operar co simbología matemática, desarrollar expresioes que ivolucre u úmero fiito

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

3.8. Ejercicios resueltos

3.8. Ejercicios resueltos 3.8 Ejercicios resueltos 101 3.8. Ejercicios resueltos 3.8.1 Ua sucesió a ) se dice que es cotractiva si existe 0

Más detalles

bc (b) a b + c d = ad+bc a b = b a

bc (b) a b + c d = ad+bc a b = b a 1 Cojutos 1 Describa los elemetos de los siguietes cojutos A = { x x 1 = 0 } D = { x x 3 x + x = } B = { x x 1 = 0 } E = { x x + 8 = 9 } C = {x x + 8 = 9} F = { x x + 16x = 17 } Para los cojutos del ejercicio

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

PROBLEMAS DE COMPETICIÓN SOBRE COMBINATORIA

PROBLEMAS DE COMPETICIÓN SOBRE COMBINATORIA UNIVERSIDAD DE GRANADA TRABAJO FIN DE MÁSTER PROBLEMAS DE COMPETICIÓN SOBRE COMBINATORIA Araceli Arjoa Muñoz Máster e Matemáticas Departameto de Álgebra Curso 203 204 Problemas de competició sobre combiatoria

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N.

Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N. Iducció matemática A meudo deseamos probar proposicioes de la forma N, p. Por ejemplo: 1 N, 1 + + 3 + + 1 + 1. N, + 4. 3 N, par implica par. Proposicioes y 3 se puede probar usado la técica de variable

Más detalles

Teoría Combinatoria. Capítulo 2. 2.1. Dos Principios Básicos.

Teoría Combinatoria. Capítulo 2. 2.1. Dos Principios Básicos. Capítulo 2 Teoría Combiatoria La Teoría Combiatoria es la rama de las matemáticas que se ocupa del estudio de las formas de cotar Aparte del iterés que tiee e sí misma, la combiatoria tiee aplicacioes

Más detalles

TEMAS DE MATEMÁTICAS (OPOSICIONES DE SECUNDARIA) TEMA 3

TEMAS DE MATEMÁTICAS (OPOSICIONES DE SECUNDARIA) TEMA 3 TEMAS DE MATEMÁTICAS OPOSICIONES DE SECUNDARIA) TEMA 3 TÉCNICAS DE RECUENTO. COMBINATORIA.. Itroducció.. Técicas de Recueto. 3. Variacioes. 3.. Variacioes Ordiarias. 3.. Variacioes co Repetició. 4. Permutacioes.

Más detalles

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad.

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad. Slide 1 Uiversidad Diego Portales Facultad de Ecoomía y Negocios Martes 13 de Abril, 2010 Slide 1 Slide 2 Capítulo 4 Itroducció a la Probabilidad Temas Pricipales: Experimetos, Reglas de Coteo, y Asigació

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

CI2612: Algoritmos y Estructuras de Datos II. Espacio de probabilidad. Objetivos. Blai Bonet

CI2612: Algoritmos y Estructuras de Datos II. Espacio de probabilidad. Objetivos. Blai Bonet CI2612: Algoritmos y Estructuras de Datos II Blai Boet Aálisis probabiĺıstico Uiversidad Simó Boĺıvar, Caracas, Veezuela Objetivos Espacio de probabilidad Ituitivamete, utilizamos la idea de probabilidad

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

PROBABILIDAD. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles que pueden producirse.

PROBABILIDAD. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles que pueden producirse. PROAILIDAD 1.- EXPERIMENTOS ALEATORIOS De forma geeral podemos distiguir etre experimetos determiistas y experimetos aleatorios. Las leyes de la física, de la química y de otras ciecias os provee de ecuacioes

Más detalles

CS. de la COMPUTACION II 1 VERIFICACION DE PROGRAMAS

CS. de la COMPUTACION II 1 VERIFICACION DE PROGRAMAS CS. de la COMPUTACION II 1 VERIFICACION DE PROGRAMAS Uo de los efoques para determiar si u programa es correcto es establecer ua actividad de testig. Esta cosiste e seleccioar u cojuto de datos de etrada

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión Sucesioes de úmeros reales Sucesioes covergetes: límite de ua sucesió Tato e la educació secudaria obligatoria como e el bachillerato se habla poco de las sucesioes de úmeros reales. Si acaso se dedica

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles

Para obtener el número total de los resultados, es necesario desarrollar algunas técnicas de conteo, las cuales son: Permutaciones. Combinaciones.

Para obtener el número total de los resultados, es necesario desarrollar algunas técnicas de conteo, las cuales son: Permutaciones. Combinaciones. TÉNIAS DE ONTEO. ara obteer el úmero total de los resultados, es ecesario desarrollar alguas técicas de coteo, las cuales so:. ricipio fudametal de coteo. Diagramas de árbol.. Aálisis combiatorio. ermutacioes.

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES ab + cd = 2500, halle el valor de (a + c) a c e g K.

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES ab + cd = 2500, halle el valor de (a + c) a c e g K. SEMANA 1 RAZONES Y PROPORCIONES 1. Si: a b c d y 7 4 1 6 ab + cd = 500, halle el valor de (a + c) A) 75 B) 80 C) 90 D) 95 E) 100 a b ab K K 7 4 8 d e de K K 1 6 7 Luego: 500 100K K = 5 Luego: a = 5, d

Más detalles

2 FUNDAMENTOS DE PROBABILIDAD

2 FUNDAMENTOS DE PROBABILIDAD 2 FUNDAMENTOS DE PROBABILIDAD T al vez el estudio de la probabilidad toma setido cuado se percibe y se acepta la existecia de la aleatoriedad e diversos aspectos de la vida diaria. Si embargo, si cosideramos

Más detalles

Taller de Teoría Combinatoria

Taller de Teoría Combinatoria Taller de Teoría Combiatoria Joaquí Ortega y Adolfo Quiroz CIMAT, AC Marzo 2011 La Teoría Combiatoria se ocupa del estudio de los arreglos que se puede formar co los objetos de u cojuto e patroes que satisfaga

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

ÁLGEBRA: MATEMÁTICA DISCRETA

ÁLGEBRA: MATEMÁTICA DISCRETA ÁLGEBRA: MATEMÁTICA DISCRETA Parte ª: Combiatoria y Recurrecia Profesor: José-Miguel Pacheco Castelao Curso - ESCUELA DE INGENIERÍA INFORMÁTICA DE LA ULPGC Combiatoria Elemetal () La Combiatoria es la

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

Fracciones. Prof. Maria Peiró

Fracciones. Prof. Maria Peiró Fraccioes Prof. Maria Peiró Recordemos Las partes de ua divisió so Dividedo Residuo divisor Cociete Defiició Ua fracció o querado, es ua divisió de la uidad e u determiado úmero de partes, de las cuales

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potecias y raíces Tema : Potecias y raíces ESQUEMA DE LA UNIDAD.- Cocepto de potecia..- Potecias de expoete atural..- Potecias de expoete etero egativo..- Operacioes co potecias..- Notació cietífica...-

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA. Práctica nº 3: Sucesiones y series numéricas.

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA. Práctica nº 3: Sucesiones y series numéricas. INGENIERÍA TÉCNICA INDUSTRIAL - ESP. ELECTRÓNICA INDUSTRIAL CURSO 2003-2004 FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Práctica º 3: Sucesioes y series uméricas. Abordamos e esta práctica el tratamieto co

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) =

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) = TEMA 9: LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN. 9. Cocepto de límite lateral. Límite. 9. Operacioes co fucioes covergetes. 9.3 Cálculo de límites. 9.4 Cotiuidad de ua fució. 9.5 Asítotas: Verticales, horizotales

Más detalles

Existencia. donde R(a) = {b B / (a, b) R} y R 1 denota la relación inversa de R. ({a} R(a)) y esta unión es disjunta entonces se tiene

Existencia. donde R(a) = {b B / (a, b) R} y R 1 denota la relación inversa de R. ({a} R(a)) y esta unión es disjunta entonces se tiene Existecia. El pricipio de los casilleros. Si queremos colocar 3 bolillas e cajas, es evidete que e algua caja deberemos colocar al meos dos bolillas. Lo mismo ocurre si e lugar de 3 bolillas tuviésemos

Más detalles

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES 10.1 EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiecia

Más detalles