MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R"

Transcripción

1 MOVIMIENTO CIRCULAR Es un ipo de movimieno en el plno, en el cul l pícul gi un disnci fij lededo de un puno llmdo ceno. El movimieno cicul puede se de dos ipos: Movimieno cicul unifome Movimieno cicul unifomemene vido. CANTIDADES CINEMÁTICAS ANGULARES S Φ R Rdio de gio ( R ): Es l disnci consne desde l pícul hs el ceno de gio. Veco posición ( ) : Es el veco que ubic l pícul en culquie puno de su yecoi. Desplzmieno ngul ( Φ) : Es el cmbio de posición ngul de l pícul dune el movimieno. Se mide en dines. Longiud linel ( S) : Es el cmbio de posición linel de l pícul dune el movimieno. Se mide en meos. El desplzmieno linel se elcion con el desplzmieno ngul con l ecución S = R θ Velocidd ngul medi: Mide el desplzmieno ngul po unidd de iempo. Se mide en d/s. L velocidd ngul se clcul con: ω m = Φ / = Φ Φ 1 / 1 ω Velocidd ngencil medi: Mide el desplzmieno po unidd de iempo. Se mide en m/s. L velocidd se clcul con: v m = / = - 1 / 1 El veco velocidd ngencil se puede expes con l siguiene ecución L velocidd linel o ngencil se elcion con l velocidd ngul con l ecución Aceleción cenípe: Como puede obsevse en l figu l velocidd cmbi de diección, debido l celeción c, L celeción cenípe es noml l veco velocidd y poduce el cmbio de diección del veco velocidd L mgniud de l celeción cenípe se clcul con: o v / R v = R ω ω R v T = w R ( - Sen Φ i + Cos Φ j ) v T R c

2 El veco celeción cenípe se puede expes con l siguiene ecución C = w R ( - Cos Φ i - Sen Φ j ) L figu mues ls diecciones de l velocidd y celeción en disinos punos del movimieno cicul unifome de un pícul. L velocidd ngencil insnáne se puede clcul omndo el límie l v v1 velocidd ngul medi v T = lim x 1 Aceleción ngencil: Se poduce cundo ví l mgniud de l pidez de l pícul. En el movimieno cicul unifome es de modulo consne. L celeción ngencil medi es el cmbio de mgniud de l velocidd ngencil po unidd de iempo Tm = v v1 / 1 V T T v T R El veco celeción ngencil se puede expes con l siguiene ecución T = α R ( - Sen Φ i + Cos Φ j ) L celeción ngencil insnáne se puede clcul omndo el límie l T 1 celeción ngencil medi T = lim x 1 Veco celeción Ls celeciones cenípe y ngencil son componenes del veco celeción El veco celeción se puede expes con l ecución = T + C

3 Velocidd ngul y celeción ngul Un pícul en movimieno cicul de dio, gene un co s y un ángulo θ siendo s = R θ. O mne de descibi el movimieno cicul es nlizndo ls vibles ngules: el desplzmieno ngul θ, l velocidd ngul y l celeción ngul. En l figu se mues el ángulo bido θ = θ θ 1, en un inevlo de iempo = 1. L velocidd ngul ω es un veco pependicul l plno del movimieno, epesendo en el eje del movimieno cicul. Po convención el senido de ω se deemin po l egl de l mno deech, los cuo dedos siguen el senido de gio de l pícul y el dedo pulg indic el senido de ω. Si l velocidd ngul insnáne de un móvil cmbi de ω 1 ω en el inevlo de iempo, el móvil iene un celeción ngul. Aceleción ngul ( α): Mide el cmbio de velocidd ngul po unidd de iempo en d/s, puede se medi o insnáne. Es un veco colinel con el veco velocidd ngul. En el movimieno cicul unifomemene vido es consne L celeción ngul medi se puede clcul con l expesión α α m = ω / en d/s α L celeción ngul insnáne se puede clcul omndo el límie l celeción ngul medi 1 α = lim ω ω x 1

4 El modulo de l celeción ngul insnáne se puede clcul con l expesión : α = T / R en d/s L celeción ngul en el MCUV es consne y su gfic se epesen en l figu MOVIMIENTO CIRCULAR UNIFORME L pícul ecoe cos igules en iempos igules. Sus cceísics son: L pidez ngencil es consne L celeción es pependicul l velocidd y su modulo es consne Ls velociddes ngules medi e insnáne son igules L celeción ngul es ceo L celeción ngencil es ceo Ecuciones L mgniud de ω = v / R en d/s L mgniud de = v El veco velocidd v = ω x טּ π El peiodo T = π / ω y ω = El desplzmieno ngul Gáfics C / R = ω R en m/s θ = θo + ω θ θ o.

5 MOVIMIENTO CIRCULAR UNIFORMEMENTE ACELERADO Consideemos ho un móvil en un yecoi cicul en l que su velocidd cmbi no en diección como en mgniud, como se puede ve en l figu = = L velocidd siempe es ngene l yecoi, Se puede obsev que demás de celeción dil o cenípe,, hy celeción ngencil,, po lo que l celeción ol hce un ángulo especo l yecoi. L celeción dil (noml o cenípe) se debe l cmbio en l diección de l v velocidd v y iene mgniud c = donde es el dio de l yecoi. L mgniud de l celeción dil no es consne, como en el cso de movimieno cicul unifome, pues l velocidd cmbi de mgniud. L celeción ngencil, es oigind po el cmbio en l pidez de l pícul En el movimieno cicul unifomemene celedo (MCUA) l es de mgniud consne. En l figu se obsev clmene que el veco celeción ol es el esuldo de sum l componene dil c y l componene ngencil, = Ls componenes y son vecoes pependicules ene sí El módulo del veco celeción ol es = + + v

6 En el movimieno cicul unifomemene celedo (MCUA) l celeción ngul es de mgniud consne y su gfic se obsev en l figu L velocidd ngul ω se elcion con el desplzmieno ngul, θ pi de l definición ω = ω 0 + α donde ω0 es l velocidd ngul inicil en el iempo 0 = 0. Cundo ω es vible en el iempo, l velocidd ngul medi ω m es l semi sum de ls velociddes inicil y finl en un inevlo : ω+ ω ω m = o Desplzmieno ngul ( θ) Del áe bjo l cuv de l velocidd ngul obenemos l expesión del desplzmieno ngul θ θ = θ 0 + ω0 + ½ α Eliminndo en ls dos úlims ecuciones, se lleg ω = ω 0 + α ( θ - θ 0 ) Relciones ene ls cniddes ngules y lineles El movimieno cicul se descibe se con ls llmds cniddes lineles como desplzmieno s, velocidd v, celeciones dil y ngencil. o con ls cniddes ngules definids en los páfos neioes. Veemos enseguid ls elciones ene sí. Recodemos que el co s descio po un móvil es : s = θ, l velocidd ngencil o linel v se define s θ v = = = ω En és úlim expesión se obsev que en el movimieno cicul l velocidd ngencil depende diecmene de l disnci del móvil especo del eje de gio, ddo po. A myo disnci, myo velocidd linel.

7 En el movimieno cicul unifomemene celedo l celeción ngencil es dd po v ( ω ) ω = = = = α Po ulimo l celeción dil o noml sbemos es definid po: v = ( ω) = = Ls ecuciones usds no con mgniudes lineles o ngules se muesn en l bl ω

8 En el movimieno cicul de l figu hy que conside los siguienes csos

9 Ejemplo 1 Un pícul se mueve en un yecoi cicul de 4m de dio y el módulo de su velocidd es v = 1 + 3, donde se expes en segundos y v en m/s. Deemine en qué insne l mgniud de l celeción ngencil es 3/5 de l celeción ol. Solución = 5 3 = 3, =, = + elevndo l cuddo 5 16 ( 1+ ) = + c, = [ 9 9 Reemplzndo 3 ] T = 1,0 s = 3 y despejndo

Figura 7. Práctica de movimiento circular Sistema general.

Figura 7. Práctica de movimiento circular Sistema general. ECUACIOES DE MOVIMIETO (PRÁCTICA 3: MOVIMIETO CIRCULAR) Ing. Fncisco Fnco Web: hp://gfnciscofnco.blogspo.co/ Fuene de infoción: Tbjo de gdo de Mónic A. Ccho D. y Wilson H. Ibchi M. Ingenieí Elecónic y

Más detalles

CINEMÁTICA DE UNA PARTÍCULA

CINEMÁTICA DE UNA PARTÍCULA Cpíulo IX CINEMÁTICA DE UNA PARTÍCULA 9.1 INTRODUCCIÓN L Cinemáic e ocup del movimieno de lo cuepo in conide l cu que oiginn dicho movimieno. E deci, eudiemo el movimieno de lo cuepo o pícul in conide

Más detalles

FÍSICA I CAPÍTULO 6: CINEMÁTICA III

FÍSICA I CAPÍTULO 6: CINEMÁTICA III FÍSICA I CAPÍTULO 6: CINEMÁTICA III ROTACIÓN DE CUERPOS RÍGIDOS Retomndo el moimiento cicul de un punto: L Figu epeent l dieccione de lo ectoe elocidd y celeción en io punto p un ptícul que e muee en un

Más detalles

ENSAYOS INDUSTRIALES Dpto. de Ingeniería Mecánica y Naval Facultad de Ingeniería Universidad de Buenos Aires TORSION. Luis A. de Vedia Hernán Svoboda

ENSAYOS INDUSTRIALES Dpto. de Ingeniería Mecánica y Naval Facultad de Ingeniería Universidad de Buenos Aires TORSION. Luis A. de Vedia Hernán Svoboda ENSAYOS INDUSTRIAES Dpo. de Ingenieí Mecánic y Nvl Fculd de Ingenieí Univesidd de Buenos Aies TORSION uis A. de Vedi Henán Svobod Buenos Aies 001 6- Ensyos Indusiles Teoí ingenieil de osión 6. TEORIA INGENIERI

Más detalles

FUNCIONES VECTORIALES DE UNA VARIABLE REAL

FUNCIONES VECTORIALES DE UNA VARIABLE REAL FUNCIONES VECTORIALES DE UNA VARIABLE REAL Las funciones con las que se ha abajado hasa el momeno son funciones eales de una vaiable eal (su ango es un subconjuno de los eales. Se esudiaán en ese capíulo

Más detalles

Tema 8. Funciones vectoriales de variable real.

Tema 8. Funciones vectoriales de variable real. Tem 8. Funciones vecoiles de vile el. 8.1 Cuvs ecuciones pméics. Cálculo en pméics. 8. Funciones vecoiles: límie, coninuidd, deivción e inegción. 8.3 Cuvs en coodends poles. Aneo: cónics. E. U. Poliécnic

Más detalles

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y Un mgniud es culquie cos que puede se medid medi no es más que comp un mgniud con o de l mism especie que se om como efeenci. Ls mgniudes se epesn con un númeo uns uniddes. En lguns ocsiones el númeo epes

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y Un mgniud es culquie cos que puede se medid medi no es más que comp un mgniud con o de l mism especie que se om como efeenci. Ls mgniudes se epesn con un númeo uns uniddes. En lguns ocsiones el númeo epes

Más detalles

Velocidad en el movimiento relativo

Velocidad en el movimiento relativo INTRDUCCIÓN AL MIMIENT RELATI elocidd en el movimiento eltivo Fig.1 o Se un punto donde se sitú un S.R. con unos ejes (x,y,z) que vn pemnece fijos (en l páctic no es posible disceni medinte un expeimento,

Más detalles

A B. 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R. 2 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R

A B. 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R. 2 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R Físic Genel I Plelos 5. Pofeso odigoveg 7 Moimiento Cicul Geneliddes Un cuepo efectú un moimiento cicul cundo se muee sobe un cicunfeenci, como se ilust en l figu. Todo moimiento cicul se cteiz po su peíodo

Más detalles

Gráficamente se representan mediante un punto en una escala (de ahí el nombre).

Gráficamente se representan mediante un punto en una escala (de ahí el nombre). 1.- Intoducción. L Cinemátic es l pte de l ísic que descibe los movimientos de los cuepos sin bod ls cuss que los poducen, ls cules son objeto de ot pte de l ísic: l Dinámic. L Cinemátic esponde l necesidd

Más detalles

Fuerza de una masa de fluido en movimiento

Fuerza de una masa de fluido en movimiento Fuez de un ms de fluido en movimiento e un ms m de fluido en movimiento que choc cont un supeficie, pependicul l diección del movimiento del fluido. P obtene l fuez que est ms de fluido ejece sobe l supeficie,

Más detalles

Vectores. Bases. Solución: a) Los vectores son linealmente independientes pues: λ(1, 2) + µ( 3, 1) = (0, 0) λ 3µ = 0; 2λ + µ = 0 λ = 0 y µ = 0

Vectores. Bases. Solución: a) Los vectores son linealmente independientes pues: λ(1, 2) + µ( 3, 1) = (0, 0) λ 3µ = 0; 2λ + µ = 0 λ = 0 y µ = 0 Geomeí CTSL Vecoes. Bses. Ddos los vecoes u (, ) v (, ): ) Compueb que u v fomn un bse del espcio vecoil de los vecoes del plno. b) Encuen ls componenes del veco w (, 5) en l bse {u, v }. ) Los vecoes

Más detalles

Capítulo. Cinemática del Sólido Rígido

Capítulo. Cinemática del Sólido Rígido Cpítulo 1 Cinemátic del Sólido Rígido Contenido Intoducción Tslción Rotción lededo de un Eje Fijo. elocidd Rotción lededo de un Eje Fijo: celeción Rotción lededo de un Eje Fijo: Sección epesentti Ecución

Más detalles

ˆ ˆ. FÍSICA 100 CERTAMEN # 2 Forma R 12 de junio de La pirámide de la figura está definida por los vectores a, b y

ˆ ˆ. FÍSICA 100 CERTAMEN # 2 Forma R 12 de junio de La pirámide de la figura está definida por los vectores a, b y FÍSICA 1 CERAMEN # Form R 1 de junio de 1 A. AERNO A. MAERNO NOMBRE ROL USM - Si su rol comienz con 9 coloque 9 ESE CERAMEN CONSA DE REGUNAS EN 8 ÁGINAS. IEMO: 15 MINUOS SIN CALCULADORA. SIN ELÉFONO CELULAR

Más detalles

Unidad Didáctica 7. Cinemática 1 Descripción del movimiento

Unidad Didáctica 7. Cinemática 1 Descripción del movimiento Unidd Didáctic 7 Cinemátic 1 Descipción del movimiento 1.- Intoducción. L Cinemátic es l pte de l Físic que descibe los movimientos de los cuepos sin bod ls cuss que los poducen, ls cules son objeto de

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

la integral de línea de B alrededor de un trayecto cerrado

la integral de línea de B alrededor de un trayecto cerrado LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En

Más detalles

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL 8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t

Más detalles

15. MOVIMIENTO OSCILATORIO.

15. MOVIMIENTO OSCILATORIO. Física. 5. Movimieno oscilaoio. 5. MOVIMINTO OSCIATORIO. Concepo de movimieno amónico simple. Movimieno amónico simple (M.A.S.). Movimieno peiódico en el que el móvil esá someido en odo insane a una aceleación

Más detalles

4πε. r 1. r 2. E rˆ La carga puntual q 1

4πε. r 1. r 2. E rˆ La carga puntual q 1 .3 L cg puntul q -5. nc está en el oigen l cg puntul q 3 nc está sobe el eje de ls en 3 cm. l punto P está en 4 cm. ) Clcule los cmpos elécticos debidos ls dos cgs en P. b) Obteng el cmpo eléctico esultnte

Más detalles

Soluciones unidad 9: Elementos del movimiento 1º Bachillerato 2007 1

Soluciones unidad 9: Elementos del movimiento 1º Bachillerato 2007 1 Solucione unidd 9: Eleeno del oiieno º Bcilleo 007 SOLUCIONES UNIDAD 9. ELEMENTOS DEL MOVIMIENTO QUÉ SABES DE ESTO?. Qué dinci y dede el puno de coodend cein (, 6 ) el puno de coodend (5, 0 )? Aplicndo

Más detalles

CAMPO MAGNÉTICO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRIENTE y. sin

CAMPO MAGNÉTICO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRIENTE y. sin CAMPO MAGNÉTCO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRENTE dl - P X d φ φ sin sin φ φ 3/ sin d d φ Cundo l longitud del conducto es mu gnde en compción con, l ecución se conviete en: >> 8. Un lmbe ecto

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

a) en vertical el movimiento es uniforme 400 t 40s b) en ese tiempo, en horizontal e v t 320m c) el ángulo, respecto a la vertical es v v rio

a) en vertical el movimiento es uniforme 400 t 40s b) en ese tiempo, en horizontal e v t 320m c) el ángulo, respecto a la vertical es v v rio 0. Ls gus de un río de 400 m de nchur se desplzn con un elocidd de 8 m/s. Un brc cruz el río de orill orill, mneniéndose perpendiculr l corriene. L brc se muee con un elocidd consne de 0 m/s. Clculr: )

Más detalles

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades.

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Integles y licciones. 4. Integles imois: definición y oieddes. Hst este momento hemos clculdo integles definids de funciones con ngo finito en intevlos

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Deptmento de Físic, UTFSM Físic Genel II / of: A. Bunel. FIS10: FÍSICA GENERAL II GUÍA #3: otencil Eléctico. Objetivos de pendizje Est guí es un hemient que usted debe us p log los siguientes objetivos:

Más detalles

CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA

CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA CURSO CERO DE FÍSIC PLICCIÓN DE VECTORES L FÍSIC Vness de Csto Susn i Deptmento de Físic CURSO CERO DE FÍSIC.UC3M PLICCIÓN DE VECTORES L FÍSIC CONTENIDO Mgnitudes escles vectoiles. Repesentción gáfic de

Más detalles

Electromagnetismo II

Electromagnetismo II Electomgnetismo II Semeste: 215-1 EXAMEN PARCIAL 2: Solución D. A. Reyes-Coondo Poblem 1 (2 pts.) Po: Jesús Cstejón Figueo ) Escibe ls cuto ecuciones de Mxwell en fom difeencil, escibiendo el nombe de

Más detalles

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS UNIVRSIDAD NACIONAL DL CALLAO FACULTAD D INGNIRÍA LÉCTRICA Y LCTRÓNICA SCULA PROFSIONAL D INGNIRÍA LÉCTRICA CURSO: TORÍA D CAMPOS LCTROMAGNÉTICOS PROFSOR: Ing. JORG MONTAÑO PISFIL PROBLMAS RSULTOS SOBR

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

Dinámica de las rotaciones

Dinámica de las rotaciones Dinámic de ls otciones Octube 009 Ve clses en: http://video.google.com./videoply?docid48804863890 486&eiX87oSp4NnYpAoq3ucA&qmomento+ngul +clses+video&hles# Físic de ls Tslciones Tiempo t neci m s Posición

Más detalles

t el espacio recorrido por los dos coches es el mismo t t 300; t 20s (20 10) 600m

t el espacio recorrido por los dos coches es el mismo t t 300; t 20s (20 10) 600m 0. Un cuerpo pre del reposo y se muee con celerción consne. En un momeno ddo iene un elocidd de 9,4 m/s, y 48,8 meros más lejos lle un elocidd de 5, m/s. Clcul: ) L celerción. b) El iempo empledo en recorrer

Más detalles

Tema 1, 2 y 3. Magnitudes. Cinemática.

Tema 1, 2 y 3. Magnitudes. Cinemática. IES Pedo de Tolosa. SM de Valdeiglesias. 1 Tema 1, y 3. Magniudes. Cinemáica. MAGNITUDES FÍSICAS. LIBRO Pág. 1 Y 13. Recueda: magniud es cualquie popiedad de un cuepo o de un fenómeno físico que se pueda

Más detalles

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar:

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar: Ceno Concedo Pl Mde Mol nº 86- MADRID TEMA GEOMETRÍA RECTAS Y PLANOS P empe. Ddo lo puno A() B(8) hll ) L coodend de lo vecoe fijo AB BA b) Do puno C D le que CD e equipolene AB. c) El eemo F de un veco

Más detalles

1 Inductancia interna de conductores

1 Inductancia interna de conductores Cmpos y Onds nductnci inten de conductoes Pág. nductnci inten de conductoes En est sección se efectún ls deducciones de l inductnci inten de distints geometís de conductoes, que conducen un coiente estcioni

Más detalles

Movimiento Circular Uniforme. Importantes Términos y Ecuaciones. Cinemática del MCU. Slide 2 / 113. Slide 1 / 113. Slide 3 / 113.

Movimiento Circular Uniforme. Importantes Términos y Ecuaciones. Cinemática del MCU. Slide 2 / 113. Slide 1 / 113. Slide 3 / 113. Slide 1 / 113 Slide 2 / 113 ems del Movimiento icul Unifome (MU) Movimiento icul Unifome 2009 po Goodmn y Zvootniy inemátic del MU Peíodo, Fecuenci, y Velocidd de otción inámic del MU Hg clic en el tem

Más detalles

Tasas de crecimiento poblacional (r): Una mirada desde el modelo matemático lineal, geométrico y exponencial 1

Tasas de crecimiento poblacional (r): Una mirada desde el modelo matemático lineal, geométrico y exponencial 1 Pogm Gdudo en Demogfí Mesí en Ciencis en Demogfí Tss de cecimieno poblcionl (): Un mid desde el modelo memáico linel, geoméico y exponencil 1 Anldo Toes-Degó, Ph.D. 2 Fom de ci: Toes-Degó, A. (2011). Tss

Más detalles

5.1 LÍMITES INFINITOS 5.2 INTEGRANDOS INFINITOS

5.1 LÍMITES INFINITOS 5.2 INTEGRANDOS INFINITOS MOISES VILLEA MUÑOZ 5 5. LÍMITES IFIITOS 5. ITEGRADOS IFIITOS Objeivo: Se reende que el esudine clcule inegrles sobre regiones no cods y resuelv roblems de licción relciondos con ls inegrles imrois 97

Más detalles

Academia NIPHO Cl. Miguel Fleta, 25 Tel/Fax: MOVIMIENTO CIRCULAR

Academia NIPHO Cl. Miguel Fleta, 25 Tel/Fax: MOVIMIENTO CIRCULAR Cl. Miguel Fle, 5 Tel/Fx: 978 83 33 6 446-Alcñiz (Te) www.cdemi-ipho.e MOVIMIENTO CICULA Coideemo u yecoi cu y u móil que lecoe ido u elocidd (e módulo) de me uifome. Si queemo clcul el uu eco uu celeció,

Más detalles

EXAMEN RESUELTO Septiembre de 2002

EXAMEN RESUELTO Septiembre de 2002 EXMEN RESUELTO Sepieme de V L{ 45} ë ë Sen los suespcios de R : V ë ë V Hll: Ls dimensiones uns ses de los es suespcios. L dimensión del suespcio VV c Uns ecuciones implícis del suespcio V V. d Compo si

Más detalles

I.E.S. Al-Ándalus. Dpto. de Física y Química. Física 2º Bach. Tema 0. Vectores. Cinemática

I.E.S. Al-Ándalus. Dpto. de Física y Química. Física 2º Bach. Tema 0. Vectores. Cinemática I.E.S. Al-Ándlus. Dpto. de Físic Químic. Físic º Bch. Tem 0. Vectoes. Cinemátic. - 1 - TEMA 0: VECTORES. CINEMÁTICA. DINÁMICA DE LA ARTÍCULA VECTORES: Un vecto es l epesentción mtemátic de un mgnitud vectoil.

Más detalles

CURSO CERO DE FÍSICA CINEMÁTICA DEL PUNTO

CURSO CERO DE FÍSICA CINEMÁTICA DEL PUNTO CURSO CERO DE FÍSICA Ángel Muño Csellnos Depmeno de Físc CONTENIDO Momeno undmensonl Poscón, elocdd, celecón Momeno eclíneo unfome Momeno eclíneo unfomemene celedo Momeno en el espco Vecoes poscón, elocdd

Más detalles

SOSTENIBILIDAD DE UNA POLÍTICA FISCAL

SOSTENIBILIDAD DE UNA POLÍTICA FISCAL 1 SOSTENIBILIDAD DE UNA POLÍTICA FISCAL Definición de un políic fiscl sosenible El concepo de políic fiscl sosenible no cep un definición precis. Sin embrgo, un definición generl (unque lgo rivil) es que

Más detalles

Números reales. Porcentajes 1

Números reales. Porcentajes 1 Númeos eles. Pocenjes 1 CLAVS PARA MPZAR 1. Págin 6 47 ),47 = b) 146 1 1 1,46 = = 99 99 c) 1 179,1= = 990 990. Págin 6 ) 7, c) 17 = + 7, 7 8 6 b) 4 7 1 d) = 0 1 VIDA COTIDIANA LA BANCA. Págin 7 480 1 Nos

Más detalles

x y Si el vector está en tres dimensiones: x y z cos cos cos 1 Conociendo dos ángulos, el tercero queda determinado.

x y Si el vector está en tres dimensiones: x y z cos cos cos 1 Conociendo dos ángulos, el tercero queda determinado. Sum de ectoes Si tienen el mismo punto de plicción se tzn plels cd ecto po el extemo del oto. Si están uno continución de oto, se une el oigen del pimeo con el extemo del último. S c S - L est es un cso

Más detalles

PROBLEMAS RESUELTOS DE CINÉTICA DE UNA PARTÍCULA

PROBLEMAS RESUELTOS DE CINÉTICA DE UNA PARTÍCULA UIERSIDD IOL DEL LLO ULTD DE IGEIERÍ ELÉTRI Y ELETRÓI ESUEL PROESIOL DE IGEIERÍ ELÉTRI URSO : MEÁI DE SÓLIDOS I PROESOR : In. JORGE MOTÑO PISIL PROBLEM º 1 PROBLEMS RESUELTOS DE IÉTI DE U PRTÍUL El vón

Más detalles

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO DOCENTE EL SABINO DEPARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II PROFESORA CARMEN ADRIANA CONCEPCIÓN 1. Un potón (q potón

Más detalles

MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ

MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U. -- 0 - - 03. N.S.Q INSIUCIÓN EDUCAIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ M.C.U. MOVIMIENO CIRCULAR UNIFORME Pieda atada a una cueda: estoy giando La tiea:

Más detalles

x y Si el vector está en tres dimensiones: x y coordenadas se les llama cosenos directores

x y Si el vector está en tres dimensiones: x y coordenadas se les llama cosenos directores Sum de ectoes Si tienen el mismo punto de plicción se tzn plels cd ecto po el extemo del oto. Si están uno continución de oto, se une el oigen del pimeo con el extemo del último. S c S - L est es un cso

Más detalles

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1 .6 Ls 3 esfes peueñs ue se muestn en l figu tienen cgs 4 n, -7.8 n y 3.4 n. Hlle el flujo eléctico neto tvés de cd un de ls supeficies ceds S, S, S3, S4 y S5. S S S3 S5 3 S4 4 m S 9 3 Φ.45 m 8.85 9 7.8

Más detalles

Se le define como toda situación física producida por una masa m en el espacio que lo rodea y que es perceptible debido a la fuerza que ejerce sobre

Se le define como toda situación física producida por una masa m en el espacio que lo rodea y que es perceptible debido a la fuerza que ejerce sobre Cpo vitcionl Se le define coo tod situción físic poducid po un s en el espcio que lo ode y que es peceptible debido l fuez que ejece sobe un s colocd en dicho espcio. Dd un s en el espcio y un s en difeentes

Más detalles

FÍSICA Y QUÍMICA 1º BACHILLERATO

FÍSICA Y QUÍMICA 1º BACHILLERATO FÍSICA Y QUÍMICA 1º BACHILLERATO BLOQUE I: MECÁNICA Unidad 1: Cinemáica 1. INTRODUCCIÓN (pp. 8-3) 1.1. Definición de movimieno. Relaividad del movimieno Un cuerpo esá en movimieno cuando cambia de posición

Más detalles

Posiciones relativas entre rectas y planos

Posiciones relativas entre rectas y planos Maemáicas II Geomeía del espacio Posiciones elaivas ene ecas planos Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. Discui según los valoes del

Más detalles

Tema 5B. Geometría analítica del plano

Tema 5B. Geometría analítica del plano Tem 5B. Geometí nlític del plno L geometí nlític estudi ls elciones ente puntos, ects, ángulos, distncis, de un modo lgebico, medinte fómuls lgebics y ecuciones. P ello es impescindible utiliz un sistem

Más detalles

CAPITULO II FUNCIONES VECTORIALES

CAPITULO II FUNCIONES VECTORIALES CAPITULO II FUNCIONES VECTORIALES En el cpíulo nerior, cundo describimos l rec en el espcio, uilizmos un prámero en ls ecuciones pr enconrr ls coordends de los punos que conformn es rec. ecuciones prmérics

Más detalles

FUNCIONES VECTORIALES

FUNCIONES VECTORIALES FUNCIONES VECTORIALES v - v e lo c i d d i n i c i l v v v lur inicil v r() P Vecor velocidd r() r Q r(+) INDICE FUNCIONES VECTORIALES FUNCIÓN VECTORIAL 4 Dominio de un función vecoril 5 Operciones con

Más detalles

Cinemática de una partícula

Cinemática de una partícula Cinemáica de una paícula. Inoducción.. El moimieno. a. Ecuación del moimieno. b. Tayecoia. c. La ecuación inínseca del moimieno. 3. El eco Velocidad. 4. El eco Aceleación. a. Componenes inínsecas del eco

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

O Y x A esta ecuación se la denomina ecuación del movimiento. , es la variación que experimenta el vector posición en cierto tiempo, t = t t 0

O Y x A esta ecuación se la denomina ecuación del movimiento. , es la variación que experimenta el vector posición en cierto tiempo, t = t t 0 CINEMÁTICA. ESTUDI DEL MVIMIENT Tipos de moimieno El moimieno es el cambio que expeimena la posición de un cuepo especo a oo, que se oma como efeencia. Un cuepo se muee cuando cambia la posición que ocupa

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

PRÁCTICA 3 LEYES DE NEWTON

PRÁCTICA 3 LEYES DE NEWTON Fundmenos Físicos de l Inenierí Inenierí Indusril Prácics de Lbororio PRÁCTIC 3 LEYES DE NEWTON 3 OJETIVO- Deerminr ls leyes que rien l relciones espcio-iempo y velocidd-iempo en movimienos uniformemene

Más detalles

RECONOCER FUNCIONES EXPONENCIALES

RECONOCER FUNCIONES EXPONENCIALES RECONOCER FUNCIONES EPONENCIALES REPASO APOO OBJETIVO Una función eponencial es una función de la foma f ( ) = a o y = a, donde a es un númeo eal posiivo (a > ) y disino de (a! ). La función eponencial

Más detalles

Soluciones Hoja 4: Relatividad (IV)

Soluciones Hoja 4: Relatividad (IV) Soluciones Hoj 4: Reltividd (IV) 1) Un estdo excitdo X de un átomo en reposo ce su estdo fundmentl X emitiendo un fotón En físic tómic es hitul suponer que l energí E γ del fotón es igul l diferenci de

Más detalles

una y en dos dimensiones http://www.walter-fendt.de/ph14s/ 1

una y en dos dimensiones http://www.walter-fendt.de/ph14s/ 1 Bolilla : Movimieno en una y en dos dimensiones hp://www.wale-fend.de/ph4s/ Bolilla : Movimieno en una y endos dimensiones - El esudio del movimieno se basa en medidas de Posición, Velocidad, y Aceleación.

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento

Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento 1 Bárbara Cánovas Conesa 637 70 113 www.clasesalacarta.com 1 Cinemática Posición de un Cuerpo Coordenadas Cartesianas Coordenadas Polares Vector de Posición (,, z) r, q r Elementos para la descripción

Más detalles

DAD Y MAGNETISMO OPERADOR NABLA.

DAD Y MAGNETISMO OPERADOR NABLA. qwetuiopsdfghjklcvbnmqwetui opsdfghjklcvbnmqwetuiopsdfgh jklcvbnmqwetuiopsdfghjklcvb nmqwetuiopsdfghjklcvbnmqwe tuiopsdfghjklcvbnmqwetuiops NTECEDENTE DE ELECTRICIDD Y MGNETIMO OERDOR NBL. dfghjklcvbnmqwetuiopsdfghjkl

Más detalles

CINEMÁTICA LA CINEMÁTICA

CINEMÁTICA LA CINEMÁTICA CINEMÁTICA LA CINEMÁTICA es la parte de la Física que estudia el movimiento de los cuerpos sin tener en cuenta sus causas. Para estudiar el movimiento de un cuerpo es necesario elegir un sistema de referencia

Más detalles

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que Tem 8: Integl de iemnn Monotonídelintegl Si f y g son funciones integbles en [, b] tles que f(x) g(x) x [, b] entonces b b f Como cso pticul p g =se obtiene que si f es un función integble en [, b] tl

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.).

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.). 1.- Clasificación de movimientos. 1. Tomando como efeencia la tayectoia: Movimientos ectilíneos o de tayectoia ecta. Movimientos cuvilíneos o de tayectoia cuva (cicula, elíptica, paabólica, etc.). 2. Tomando

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 Nombre Prlelo. 16 de Julio de 2012 CADA UNO DE LOS TEMAS VALE 3.182 PUNTOS.

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

60º L = 5 cm. q 1. q 2. b = 6 cm. q 4. q 3

60º L = 5 cm. q 1. q 2. b = 6 cm. q 4. q 3 UNIVERSIDAD NACIONAL EXERIMENTAL FRANCISCO DE MIRANDA COMLEJO DOCENTE EL SABINO DEARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II ROFESORA CARMEN ADRIANA CONCECIÓN 1 Considere tres crgs en

Más detalles

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB Cuso: FISICA II CB 3U Ley de Coulomb (1736-186). Si ls cgs se ten o epelen signific que hy un fuez ente ells. LEY DE COULOMB L fuez ejecid po un cg puntul sobe ot Está diigid lo lgo de l líne que los une.

Más detalles

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (4-M;Jun-B-) (5 punos) Consider ls mrices A = y B = Deermin, si exise, l mriz X que verific AX + B = A + m (4-M-B-)

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

Cinemática y Dinámica

Cinemática y Dinámica Cinemátic y inámic Cinemátic del cuepo ígido Objetio: El lumno nlizá y eoleá ejecicio de moimiento plno de cuepo ígido, y de lguno mecnimo donde no inteengn l cu que modificn dicho moimiento. Intoducción

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

Problema 4 del primer parcial de FT1-2do cuatri 2014

Problema 4 del primer parcial de FT1-2do cuatri 2014 Poblem 4 del pime pcil de FT - 2do cuti 204 Solución po imágenes Usulmente cundo nos plnten lgun geometí de conductoes tie, lo más común es pens en el método de imágenes, más que nd cundo se tt de lgun

Más detalles

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos

Más detalles

Cantidad de movimiento en la máquina de Atwood.

Cantidad de movimiento en la máquina de Atwood. Cntidd de movimiento en l máquin de Atwood. esumen Joge Sved y Pblo Adián Nuñez. jogesved@topmil.com. pblo_nuniez2000@yhoo.com. ed pticiptiv de Cienci UNSAM - 2005 En el pesente tbjo se puso pueb l pedicción

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

DISEÑO MECÁNICO (Ingeniería Industrial, 4º curso) EXAMEN: 16 de FEBRERO de 2006

DISEÑO MECÁNICO (Ingeniería Industrial, 4º curso) EXAMEN: 16 de FEBRERO de 2006 DISEÑO MECÁNICO (Ingenieí Indutil, 4º cuo) EXMEN: 16 de ERERO de 006 El elemento mecánico que peent meno dución de un máquin e un odmiento de bol del tipo 6004. Detemin como e coneguií un myo vid útil

Más detalles

Unidad 3 Sistemas de Ecuaciones Lineales

Unidad 3 Sistemas de Ecuaciones Lineales Unidd 3 Sistems de Ecuciones Lineles Popedéutico 8 D. Ruth M. Aguil Ponce Fcultd de Ciencis Deptmento de Electónic Popedéutico 8 Fcultd de Ciencis Popedéutico 8 Fcultd de Ciencis Sistem de Ecuciones Lineles

Más detalles

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v Escles cmpos escles nálisis Vectoil Teoí Electomgnétic 1 Dipl.-Ing. noldo Rojs oto Escl: ntidd cuo lo puede se epesentdo po un simple númeo el positio o negtio mpos escles: Función mtemátic del ecto que

Más detalles

MOVIMIENTO RECTILÍNEO

MOVIMIENTO RECTILÍNEO Transparencia Nº 1. CINEMÁTICA. MOVIMIENTO QUÉ ES EL MOVIMIENTO? Cambio de posición de un móvil con el iempo. TIPOS DE MOVIMIENTO Según su rayecoria Todo movimieno es RELATIVO Lo rápido del cambio lo indoca

Más detalles

( ) ( ) ( ) RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 2 LONGITUD DE ARCO RPTA.: D RPTA.: C

( ) ( ) ( ) RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 2 LONGITUD DE ARCO RPTA.: D RPTA.: C EMN ONGITU E O 3. i: l + l 6. Hlle el áe del sect cicul EOF.. lcule l lngitud de un c en un sect cicul cuy ángul centl mide º y su di mide 00 cm. ) m ) m ) m ) ) ) 3 E ) 0 m E) 0 m º i: º d ; 00 cm m 0

Más detalles

DINÁMICA DEL MOVIMIENTO CIRCULAR.

DINÁMICA DEL MOVIMIENTO CIRCULAR. Diámic del oimieto Cicul DINÁICA DEL OIIENO CICULA..- uez Noml o Cetípet. Si u cuepo se est moiedo co u pidez uifome, e u cículo de dio, este expeimet u celeció cetípet, cuy mitud seá: L diecció de es

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA. Problema Teórico 1

REAL SOCIEDAD ESPAÑOLA DE FÍSICA. Problema Teórico 1 REAL SOCIEDAD ESPAÑOLA DE FÍSICA Poblem Teóico 1 Poblem 1. Un intoducción l te de nveg. Alicnte es un bell ciudd mediteáne que vive de c l m. Su mgnífico pueto es un hevideo de bcos de eceo, tes espectcules

Más detalles

MOVIMIENTO EN LÍNEA RECTA

MOVIMIENTO EN LÍNEA RECTA 2 MVIMIENT EN LÍNEA RECTA METAS DE APRENDIZAJE Al esudir ese cpíulo, used prenderá: Cómo describir el moimieno en líne rec en érminos de elocidd medi, elocidd insnáne, celerción medi y celerción insnáne.

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.

Más detalles

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO MOVIMIENTO RECTILINEO UNIFORME La trayectoria es una línea recta la velocidad no cambia en dirección ni en módulo, por lo que no hay ningún tipo de aceleración. Ecuación del movimiento: S = V.t Gráficas

Más detalles

EXAMEN A1. FORESTALES. CURSO 2010/2011

EXAMEN A1. FORESTALES. CURSO 2010/2011 EXMEN 1. FRESTLES. URS 010/011 PELLIDS Y NMRE Insucciones paa la ealización del ejecicio. El iempo oal es de h. omience po las pegunas, que deben conesase en la hoja coloeada que se enega con el examen

Más detalles