FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS"

Transcripción

1 FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α, completo en adianes de una cicunfeencia de adio,, seía: Su símbolo es ad. Las Funciones Tigonométicas: y sen y cos y tg Las ecuaciones tigonométicas: Razones tigonométicas del ángulo difeencia: senα β senα cos β cosαsenβ ( α β ) cosα cos β + senαsenβ cos tgα tgβ tg α β + tgαtgβ Razones tigonométicas del ángulo suma: sen( α + β ) senα cos β + cosαsenβ cos ( α + β ) cosα cos β senαsenβ tgα + tgβ tg α + β tgαtgβ

2 Razones tigonométicas del ángulo mitad: α cosα sen ± α + cosα cos ± α cosα tg ± + cosα Razones tigonométicas del ángulo doble: sen α senα cosα cos α cos α sen α tgα tgα tg α Sumas y difeencias de senos y cosenos: sen α + cos α A + B A B sena + senb sen cos A + B A B sena senb cos sen A + B A B cos A + cos B cos cos A + B A B sena + senb sen sen Geometía y tigonometía básica: El tiángulo ectángulo:

3 El teoema de Pitágoas: c a + b Relaciones tigonométicas fundamentales:

4 CÁLCULO INTEGRAL Integales inmediatas:

5 Ejemplos: d ln + + C + d actg + C + La integal definida: Regla de Baow. Dada una función f continua en un intevalo [a,b] y sea g() cualquie pimitiva de f, es deci g ()f(). Entonces: b a f ( ) d g( b) g( a) Ejemplos: π 0 e cos( ) d sen( π ) sen(0) 0 d ln( e) ln() Integal de Riemann: El áea bajo una cuva f() La integal de Riemann es una opeación sobe una función continua y limitada en un intevalo (a;b), donde a y b son llamados los etemos de la integación. La opeación consiste halla el límite de la suma de poductos ente el valo de la función en un punto i * y el ancho del subintevalo conteniendo al punto. Nomalmente se denota como: b a f ( ) d El símbolo es una "S" defomada. En el caso en que la función f tenga vaias vaiables, el d especifica la vaiable de integación. INTERPRETACIÓN GEOMÉTRICA: La integal de Riemann es una foma simple de defini la integal de una función sobe un intevalo como el áea bajo la cuva de la función. Paa obtene una apoimación al áea enceada debajo de una cuva, se la puede dividi en ectángulos como indica la figua.

6 El áea de cada ectángulo, es el poducto de la función el un punto, po el ancho del intevalo. Al aumenta el númeo de ectángulos se obtiene una mejo apoimación.

7 A n i f ( i ) Teniendo en cuenta los esultados anteioes, podemos calcula el áea compendida ente la gáfica de una función positiva y f(), el eje OX y las ectas a, b. Dicha áea se epesenta como: b A f ( ) d a El áea enceada po dos cuvas f y g ente a y b seá: A b f a g EJEMPLO: Calcula el áea del ecinto deteminado po la paábola y el eje OX: y El vétice de la paábola se encuenta situado sobe la línea discontinua. El áea que queemos calcula apaece sombeada en amaillo. Po lo tanto los límites de integación seán los cotes de la cuva con el eje.

8 Sustituyendo en la ecuación y0, obtenemos los valoes: 0,. 0 ( ) d 0 6 Volumen de sólidos de evolución mediante el cálculo integal. Consideemos el poblema geneal de halla el volumen del sólido de evolución que se genea al hace gia alededo del eje y, la egión que está compendida ente la cuva y f(), con f() > 0, el eje, es deci, la ecta hoizontal y 0 y las ectas veticales a y b, donde 0 < a < b. La egión y el sólido de evolución que genea apaecen epesentados en las siguientes figuas: Dividamos el intevalo [a, b] en n subintevalos [ i, i ], todos con el mismo ancho: (b a) / n. Sea i * el punto medio del i-ésimo subintevalo. Consideemos el ectángulo R i constuido sobe el i-ésimo subintevalo con una altua de f ( i *) y hagámoslo gia en tono del eje y. Entonces se poduce un casquete cilíndico que tiene como adio medio i *, como altua f ( i *) y cuyo goso es i i. Po lo tanto, el volumen V i de este casquete cilíndico está dado po:

9 Paa obtene un cálculo apoimado del volumen total del sólido de evolución debemos pone n casquetes cilíndicos de éstos, unos dento de los otos, como lo ilusta la figua y después suma los volúmenes de todos ellos: Y de esta manea hemos llegado a fomula una egla geneal paa el cálculo de volúmenes con el método de los casquetes cilíndicos. Es la siguiente: Regla geneal: El volumen del sólido de evolución que se genea al hace gia alededo del eje y la egión que está compendida ente la cuva y f(), con f() > 0, el eje y las ectas veticales a y b, donde 0 < a < b, está dado po la integal:

10 EJEMPLO: Halla el volumen del sólido de evolución que se genea al hace gia sobe el eje y la egión compendida, en el pime cuadante, ente la cuva y y la vetical. En este caso la egión que gia está delimitada po la cuva f() +4 -+, po el eje y po las ectas veticales 0 y. La altua de los casquetes cilíndicos vaía de acuedo a la función f() V 4 π f ( ) d π ( ) d π ( ) d π + + π EJEMPLO: Demosta, empleando el método de los casquetes cilíndicos, que el volumen de un cono de altua h y con adio en su abetua está dado po: Paa comenza, obsevemos que este cono puede se visto como el sólido que se poduce al hace gia, alededo del eje y, la egión tiangula cuyos vétices son los puntos (0,0), (,0) y (0,h), donde h y son númeos eales positivos.

11 La ecuación de la ecta que pasa po los puntos (,0) y (0,h) es: Puesto que su pendiente es m h/ y la intesección con el eje y es el punto (0,h). Ahoa bien, paa aplica el método que nos ocupa, consideemos que el cono está fomado po una seie de casquetes cilíndicos, incustados los unos dento de los otos, cuyos adios vaían de 0 a y cuyas altuas vaían de 0 a h. Natualmente, la altua de cada cilindo está dada po la ecta y ( h/ ) + h. Los casquetes cecanos al cento son altos y su adio es pequeño, mientas que los que se sitúan más al eteio tienen un adio amplio peo su altua es pequeña. Debe se clao entonces que un casquete cualquiea, de adio, tiene como altua:

12 Po lo tanto, el volumen del cono viene dado po la integal: + h d h d h h d f V ) ( ) ) (( ) ( ) ( π π π π h h h ) 6 ( ) ( π π π EJEMPLO: Halla el volumen del sólido de evolución que se genea al hace gia, alededo del eje y, la egión que está delimitada po la paábola y + 4, po la cúbica y y po las veticales y. En este caso, a difeencia de los ejemplos anteioes, hay dos funciones involucadas que son:

13 El sólido de evolución que se genea al hace gia esta egión alededo del eje y. Obsévese que está limitado aiba y abajo po dos supeficies de evolución cuvas y en la pate inteio y en la eteio po dos supeficies cilíndicas. Consideemos ahoa que este sólido está fomado po una seie de casquetes cilíndicos incustados, como antes, los unos dento de los otos. Esta vez los casquetes no sólo vaían en cuanto a su adio y a su altua, sino que vaían además en cuanto a su ubicación especto del eje, puesto que su base infeio está situada en la paábola y + 4 mientas que su base supeio está situada en la cúbica y Po lo tanto, un casquete cilíndico de adio tiene como altua: Po lo tanto, el volumen de este sólido de evolución está dado po la integal:

14 V 4 π ( g( ) f ( )) d π( ) d π ( ) d [ ] π π π VECTORES Intoducción: Los vectoes son magnitudes epesentadas po un segmento diigido (flecha). Se caacteizan po posee: a) Una longitud, la que es epesentada po un valo numéico al que llamaemos módulo (también se la denomina noma) b) Una diección, que es la ecta a la que petenece c) Un sentido. La ecta posee dos sentidos, genealmente estos se indican mediante signos "+" paa un lado y "-" paa el oto. Los vectoes pueden situase en el plano, o sea dos dimensiones, o en el espacio, desde tes hasta infinitas dimensiones. Veamos los vectoes en el plano, las mismas popiedades pueden se aplicadas en todas las otas dimensiones. Es así que podemos escibi su oigen y su etemo como puntos (, y). La ubicación de estos puntos le daá el sentido al vecto. Si el oigen del vecto es, po ejemplo, A (, ) y el etemo B (4, 5), el vecto seá AB (de A hasta B). Resulta inteesante destaca que las coodenadas de estos puntos deteminan un tiángulo ectángulo, de manea que su módulo puede calculase aplicando el teoema de Pitágoas. De manea que la longitud de cada cateto coincide con el valo que debeía tene el vecto si su oigen fuea el cento de coodenadas. Sea A un vecto de n dimensiones, A {a, a, a,... a n } llamamos módulo, noma o simplemente longitud del vecto al valo numéico (escala) deteminado po:

15 Resta de vectoes: Resta dos vectoes geométicamente implica "taza" un tece vecto desde el etemo del pimeo hasta el etemo del segundo. Aitméticamente estamos las componentes veticales y hoizontales ente sí. A (7, ) B (5, 4) A - B (7,) (5,4) (7 5, 4 ) (, ) Suma de vectoes: Si tenemos dos vectoes podemos sumalos y halla un teceo. Método del paalelogamo: es un método geomético en el cual tazamos dos segmentos paalelos a la diección de cada vecto, po los etemos de los mismos. Uniendo la intesección de los vectoes y de los segmentos paalelos (puntos en colo) obtendemos el vecto suma. Analíticamente, se suman las componentes. A (0, 5) B (5, 4) A + B (0,5) + (5,4) (0 + 5, 5 + 4) (5, 9) Popiedades:. A + B C (al suma dos vectoes se obtiene oto vecto - ley de composición intena). A a (, ) (a, a ) (paa a R) [el poducto de un vecto y un escala da oto vecto]. (- ). A - A (opuesto) A - / A (inveso) 4. A + (B + C) (A + B) + C (popiedad asociativa) 5. A + B B + A (popiedad conmutativa) 6. a. (A + B) a. A + a. B (paa a R) (popiedad distibutiva) 7. A (a + b) A. a + A. b (paa a R, b R) 8. A A A [0 epesenta el vecto nulo (0, 0) que es neuto en suma]

16 9. A + (- A) A A. 0. A 0 Poducto escala ente dos vectoes: El esultado de esta opeación, como su popio nombe indica, es un númeo escala. Si tenemos dos vectoes A {a, a,..., a n } y B {b, b,..., b n } el poducto escala ente ambos puede hallase mediante la sumatoia del poducto de cada una de sus coodenadas. A. B a b + a b a n b n Dados dos vectoes A y B llamaemos poducto escala de A y B al númeo eal deteminado po: A. B A. B. cos α Siendo α el ángulo ente ambos vectoes. Popiedades:. A. B B. A. A. (B + C) A. B + A. C. (a. A). B A. (a. B) (paa a R) 4. A. A > 0 (paa A 0) 5. A. B < A. B (desigualdad de Cauchy - Schwaz) 6. Si A 0, B 0 y α 90º A. B 0 (El poducto escala de vectoes otogonales es nulo ya que el cos 90º 0.) Como se detemina el valo del ángulo ente dos vectoes? A B C (A B) C A. Α. Β + B C A. A. B. cos α + B C

17 Poducto vectoial Dados dos vectoes A y B llamaemos poducto vectoial de A {a, a, a } y B{b, b, b } al vecto deteminado po: A B (a b a b, a b a b, a b a b ) Dicha epesión poviene de la esolución de un deteminante de la siguiente foma: Se considea una base otonomal del espacio vectoial V; B {e, e, e}. Llamamos poducto vectoial de los vectoes e y al vecto ^y obtenido de la foma siguiente: Siendo (,,) e y (y,y,y) especto de la base B Po tanto las coodenadas de ^y seán especto de esa base: En este caso son vectoes de R peo es aplicable a vectoes de cualquie dimensión. El vecto esultante seá pependicula al plano en el que se encuentan A y B. Popiedades:. A B - (A B). A (B + C) A B + A C. (a. A) B A (a. B) (paa a R) 4. A B es pependicula a A y a B 5. (A B) C A (B C) 6. (A B) (A. A). (B. B) - (A. B) 7. A B A. B. sen a Momento de un vecto especto de un punto. Se define el momento de un vecto v especto de un punto O a un vecto que veifica la condición: M O

18 Obseva que se tata de un poducto vectoial de dos vectoes, po lo que si los puntos son O (o,yo,zo) y A (A,yA,zA), el vecto momento tiene la epesión: Momento de un vecto especto de un eje Sea un vecto cuyo momento especto a un punto O es el dado po la epesión anteio y sea E une eje que pasa po el punto O, de manea que sea un vecto unitaio que señala la diección y sentido de E. El momento del vecto especto al eje E, ME, viene dado po la epesión: Si los vectoes de la fómula anteio se epesan en función de sus componentes catesianas, podemos escibi:

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u 298621 del vecto esultante de la siguiente combinación lineal w =

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2).

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2). GUIA 0 1 - Halla el módulo del vecto de oigen en (20,-5,8) etemo en (-4,-3,2). 2 - a) Halla las componentes catesianas de los siguientes vectoes: (i) A (ii) A = 4 A = θ = 30º 4 θ =135º A (iii) (iv) A θ

Más detalles

IV. Geometría plana. v v2 2. u v = u v cos α

IV. Geometría plana. v v2 2. u v = u v cos α Talle de Matemáticas 16 IV. Geometía plana IR 2 = {(x, y)/x, y IR} puede identificase con el espacio de vectoes libes del plano utilizando la base canónica: v =(v 1,v 2 )=v 1 (1, 0) + v 2 (0, 1) = v 1

Más detalles

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 )

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 ) COLEGIO ESTRADA DE MARIA AUILIADORA CIENCIA, TRABAJO VALORES: MI PROECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (0 ) Fecha: Nombe del estudiante: N O T A La nivelación es en foma de talle donde

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009

Selectividad Septiembre 2009 SEPTIEMBRE 2009 Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,

Más detalles

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula.

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula. Junio OPCÓN Poblema. a) Si obsevamos los desaollos de ) ( y ) ( vemos que se difeencian en el cuadado de la matiz unitaia. Dado que en este caso se veifica: ) ( ) ( ) ( ) ( + + ) ( ) ( ) ( b) b.) Paa que

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas. º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

( ) TEMA V. 1. Ecuaciones del plano. Tema 5 : Rectas y planos en el espacio

( ) TEMA V. 1. Ecuaciones del plano. Tema 5 : Rectas y planos en el espacio TEMA V. Ecuaciones del plano. Ecuaciones de la ecta. Haz de planos 4. Incidencia de planos y ectas 5. Ángulos en el espacio 6. Condiciones de pependiculaidad 7. Distancias en el espacio. Ecuaciones del

Más detalles

Trigonometría. Positivo

Trigonometría. Positivo Seminaio Univesitaio de Ingeso 17 Tigonometía La tigonometía es una de las amas de la matemática, cuyo significado etimológico es la medición de los tiángulos. Se deiva del vocablo giego tigōno: "tiángulo"

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2 CÁLCULO Pime cuso de Ingenieo de Telecomunicación Segundo Examen Pacial. 1 de Junio de 1 Pimea pate Ejecicio 1. Obtene la expesión en que se tansfoma z xx +z xy +z yy ; al cambia las vaiables independientes

Más detalles

Tema 6 Puntos, rectas y planos en el espacio

Tema 6 Puntos, rectas y planos en el espacio Tema 6 Puntos, ectas planos en el espacio. Punto medio. Los puntos A (,, ) B (-,, -) son vétices de un paalelogamo cuo cento es el punto M (,, ). Halla Los otos dos vétices las ecuaciones del lado AB.

Más detalles

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u Geometía. Puntos, ectas y planos en el espacio. Poblemas méticos en el espacio Pedo Casto Otega. Coodenadas o componentes de un vecto Sean dos puntos ( a, a ) y ( ) uuu uuu vecto son: = ( b a, b a, b a

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

EJERCICIOS DEL TEMA VECTORES

EJERCICIOS DEL TEMA VECTORES EJERCICIOS DEL TEMA VECTORES 1) Considea el vecto w, siguiente: w Dibuja, en cada caso uno de los siguientes casos, un vecto v, que sumado con u dé como esultado w : a) b) c) d) u u u u 2) A la vista de

Más detalles

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide egio Yansen Núñez Teoema de tokes y Gauss Actividad Nº Considee el campo vectoial F( x, y, z) ( y, x, z ). Calcule F d donde C es C la intesección ente el plano x + y + z y el cilindo x + y. Actividad

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un

Más detalles

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo.

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo. LY D GAU La ley de Gauss es un enunciado ue es deivable de las popiedades matemáticas ue tiene el Vecto de intensidad de Campo léctico con especto a las supeficies en el espacio. ste enunciado constituye

Más detalles

Apuntes de Trigonometría Elemental

Apuntes de Trigonometría Elemental Apuntes de Tigonometía Elemental José Antonio Salgueio González IES Bajo Guadalquivi - ebija ii Agadecimientos A Rocío, que con su apoyo hace posible la ealización de este poyecto 1 Índice geneal Agadecimientos

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos OPCIÓN A IES STER DJOZ PRUE DE ESO (OGSE) UNIVERSIDD DE EXTREMDUR JUNIO (GENER) (RESUETOS po ntonio Menguiano) MTEMÁTIS II Tiempo máimo: hoa y minutos Instucciones: El alumno elegiá una de las dos opciones popuestas

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse.

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse. Leyes de Keple. Antes de demosta las tes leyes de Keple, haé un análisis matemático de lo que es una elipse. Una elipse (Fig.) es el luga geomético de un punto que se mueve en un plano de tal manea que

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES U R S O: FÍSI OMÚN MTERIL: F-01 Sistema intenacional de medidas MGNITUDES ESLRES VETORILES En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales. El sistema

Más detalles

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es...

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es... Semana Ángulos: Gados 7 adianes Razones tigonométicas Semana 6 Empecemos! Continuamos en el estudio de la tigonometía. Esta semana nos dedicaemos a conoce halla las azones tigonométicas: seno, coseno tangente,

Más detalles

SISTEMA DIÉDRICO II Paralelismo, perpendicularidad y distancias Verdaderas magnitudes lineales TEMA 9 PARALELISMO

SISTEMA DIÉDRICO II Paralelismo, perpendicularidad y distancias Verdaderas magnitudes lineales TEMA 9 PARALELISMO SSTEMA ÉRCO Paalelismo, pependiculaidad y distancias Vedadeas magnitudes lineales Objetivos y oientaciones metodológicas TEMA 9 Esta unidad temática es fundamental y, a la vez, su explicación se puede

Más detalles

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011 EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 5 AÑOS SIN CICLO MEDIO COMPLETO PRACTICO Función Lineal Rectas Noviembe RECORDAR: Una unción lineal es de la oma popiedad que los cocientes incementales:

Más detalles

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA CIRCUNRNCIA UNIA III III. INICIÓN CIRCUNRNCIA Una cicunfeencia se define como el luga geomético de los puntos P, que equidistan de un punto fijo en el plano llamado cento. La distancia que eiste de cualquiea

Más detalles

2. CURVAS EN EL SISTEMA POLAR

2. CURVAS EN EL SISTEMA POLAR 2. CURVAS EN EL SISTEMA POLAR Objetivo: El alumno obtendá ecuaciones en foma pola de cuvas en el plano y deteminaá las caacteísticas de éstas a pati de su ecuación en foma pola. Contenido: 2.1 Sistema

Más detalles

Aplicaciones de la Integración. Universidad Diego Portales CALCULO II

Aplicaciones de la Integración. Universidad Diego Portales CALCULO II Aplicaciones de la Integación El valo medio de una función En muchas situaciones pácticas, se desea enconta el valo medio de una función continua sobe un intevalo, como el nivel medio de la polución del

Más detalles

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS Paa los inteeses de la Física, los Campos Vectoiales se clasifican en dos gupos: -CAMPOS VECTORIALES CONSERVATIVOS.CAMPOS VECTORIALES NO CONSERVATIVOS Los de

Más detalles

Es claro que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palabra coseno (seno del complemento).

Es claro que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palabra coseno (seno del complemento). Es clao que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palaba coseno (seno del complemento). Nota: En adelante escibiemos indistintamente cos a o cos(m(a)),

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍ NLÍTIC PLN / Ecuaciones de la ecta Un punto y un vecto Dos puntos Un punto y la pendiente,,,,,, Coodenadas del vecto diecto ECUCION VECTORIL (x, y) (p, p ) + τ (v, v ) ECUCION PRMETRIC x p + τ

Más detalles

F. Trig. para ángulos de cualquier magnitud

F. Trig. para ángulos de cualquier magnitud F. Tig. paa ángulos de cualquie magnitud Ahoa vamos a utiliza la ciuncfeencia unitaia paa descubi algunas popiedades de las funciones tigonométicas. Empezamos con las funciones sin cos. Al vaia el valo

Más detalles

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro OBJETIVO 1 CLASIICAR POLIEDROS NOMBRE: CURSO: ECHA: POLIEDROS Un poliedo es un cuepo geomético que está limitado po cuato o más polígonos. Aista Los polígonos que limitan al poliedo se llaman caas. Caa

Más detalles

SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO

SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO Sugeencias paa quien impate el cuso: Se espea que con la popuesta didáctica pesentada en conjunción con los apendizajes que sobe el estudio de la tigonometía

Más detalles

GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS

GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 6 SEMESTRE 1 GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS RESEÑA HISTÓRICA Leonhad Eule, (1707-1783) Fue un matemático

Más detalles

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.).

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.). 1.- Clasificación de movimientos. 1. Tomando como efeencia la tayectoia: Movimientos ectilíneos o de tayectoia ecta. Movimientos cuvilíneos o de tayectoia cuva (cicula, elíptica, paabólica, etc.). 2. Tomando

Más detalles

π r. Cada círculo menor es de radio 2. Por

π r. Cada círculo menor es de radio 2. Por Pueba CNU Venezuela, Septiembe de 004. Modelo. Soluciones. < Si, y z son enteos positivos, tales que z. Cuál de las siguientes epesiones es mayo que? z ( ) ( ) a) z b) z c) z d) z e) = ( ) < ( ) = < Solución:

Más detalles

TRIGONOMETRÍA. Proviene del griego TRIGONOS (triángulo) y METRÍA (medida).

TRIGONOMETRÍA. Proviene del griego TRIGONOS (triángulo) y METRÍA (medida). Colegio Diocesano Asunción de Nuesta Señoa Ávila Tema 6 El cálculo de distancias se fundamenta en la semejanza de tiángulos ectángulos. Desde hace siglos los astónomos, sobe todo los hindús, tataon de

Más detalles

2λ λ. La ecuación del plano que buscamos es p: 5x 2y + 2z

2λ λ. La ecuación del plano que buscamos es p: 5x 2y + 2z Poducto escala 060 Halla la ecuación de la ecta que cota a y s pependiculamente. x = 1 x = 6 µ : y = 11+ s: y = + µ z = 1+ z = + µ Hallamos un punto P y un punto Q s de modo que el vecto PQ sea pependicula

Más detalles

Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition.

Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Vectoes Pesentanción basada en el mateial contenido en: Seway, R. Physics fo Scientists and Enginees. Saundes College Pub. 3d edition. Sistemas de Coodenadas Se usan paa descibi la posición de un punto

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles

TRIGONOMETRÍA. Estudia las relaciones entre los lados y los ángulos de los triángulos.

TRIGONOMETRÍA. Estudia las relaciones entre los lados y los ángulos de los triángulos. TRIGONOMETRÍA Estudia las elaciones ente los lados los ángulos de los tiángulos. Los ángulos en maúsculas. Los lados como el ángulo opuesto, peo en minúsculas. Ángulo. Poción de plano compendida ente dos

Más detalles

TEMAS DE MATEMATICAS (Oposiciones de Secundaria)

TEMAS DE MATEMATICAS (Oposiciones de Secundaria) TEMAS DE MATEMATICAS (Oposiciones de Secundaia) TEMA 47 GENERACIÓN DE CURVAS COMO ENVOLVENTES.. Intoducción.. Envolvente... Definición de Envolvente... Existencia de Envolvente en el Plano..3. Deteminación

Más detalles

Ejemplos 2. Cinemática de los Cuerpos Rígidos

Ejemplos 2. Cinemática de los Cuerpos Rígidos Ejemplos. Cinemática de los Cuepos Rígidos.1. Rotación alededo de un eje fijo.1.** El bloque ectangula ota alededo de la ecta definida po los puntos O con una velocidad angula de 6,76ad/s. Si la otación,

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. Página 68 Reconoce, nomba y descibe figuas geométicas que apaecen en esta ilustación. Respuesta libe. Po ejemplo: cilindo, otoedo, cono, pisma tiangula Recueda otas figuas geométicas que foman pate

Más detalles

UNIDAD 10.- Geometría afín del espacio (tema 5 del libro)

UNIDAD 10.- Geometría afín del espacio (tema 5 del libro) UNIDD.- Geometía afín del espacio tema del libo). VECTOR LIBRE. OPERCIONES CON VECTORES LIBRES En este cuso amos a tabaja con el espacio ectoial de dimensión,, que es simila al tatado en º de Bachilleato,

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 Ejecicio de aplicación 44 (Deivación) Se desea obtene una viga ectangula a pati de un tonco cilíndico de 6 cm de diámeto a) Demosta que la viga con

Más detalles

2º de Bachillerato Campo Eléctrico

2º de Bachillerato Campo Eléctrico Física TEM 6 º de achilleato ampo Eléctico.- Tes cagas elécticas puntuales iguales, de n, están situadas en el vacío ocupando los puntos cuyas coodenadas en metos son (,, (,4 y (,. alcula la fueza que

Más detalles

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia

Más detalles

REPARTIDO III CIRCUNFERENCIA

REPARTIDO III CIRCUNFERENCIA Pof.: Lucia Tafenabe Ecuación Geneal REPRTIDO III IRUNFERENI B B cento, Ecuación de la icunfeencia conociendo cento (α, β) adio. adio B MN ( - α) ( - β) Deteminación de la ecuación de la cicunfeencia conociendo:

Más detalles

A B. Teniendo en cuenta que el lado de un pentágono regular es la sección aurea de su diagonal, se tiene la siguiente construcción:

A B. Teniendo en cuenta que el lado de un pentágono regular es la sección aurea de su diagonal, se tiene la siguiente construcción: 1. Dibuja el pentágono egula de diagonal 120 mm. D E O G AF/2 A B F Pate pimea: Dibujo del pentágono. Teniendo en cuenta que el lado de un pentágono egula es la sección auea de su diagonal, se tiene la

Más detalles

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1 PAUTA CONTROL CÁLCULO EN VARIAS VARIABLES, 14/1 (1) (a) Demueste que el máximo de la función x y z sobe la esfea x + y + z = a es (a /) y que el mínimo de la función x + y + z sobe la supeficie x y z =

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

Tema I Conceptos y Principios fundamentales. Estática de partículas. Sistemas Equivalentes de fuerzas.

Tema I Conceptos y Principios fundamentales. Estática de partículas. Sistemas Equivalentes de fuerzas. Univesidad de Los Andes. acultad de Ingenieía. Escuela Básica de Ingenieía. Tema I Conceptos Pincipios fundamentales. Estática de patículas. Sistemas Equivalentes de fuezas. Pof. Naive Jaamillo S. Cáteda:

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

Preguntas 1 y 2: Vectores y operaciones con vectores. v w, queremos indicar que v r y w son dos vectores paralelos.

Preguntas 1 y 2: Vectores y operaciones con vectores. v w, queremos indicar que v r y w son dos vectores paralelos. Resmen Unidad 5: Vectoes en el espacio. Pegntas : Vectoes opeaciones con ectoes. En n ecto tenemos qe distingi: Módlo: es la longitd del ecto se epesenta po La flecha indica el sentido del ecto Diección:

Más detalles

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA OBJETIVOS I.- Loga el equilibio estático de objetos que pueden ota en tono a un eje, po medio de la aplicación de fuezas y toques. INTRODUCCIÓN

Más detalles

Universidad de Tarapacá Facultad de Ciencias Departamento de Física

Universidad de Tarapacá Facultad de Ciencias Departamento de Física Univesidad de Taapacá Facultad de Ciencias Depatamento de Física Aplica el álgea de vectoes: Poducto escala Poducto vectoial Magnitudes físicas po su natualeza Escalaes Vectoiales Es un escala que se

Más detalles

EJERCICIOS SOBRE VECTORES

EJERCICIOS SOBRE VECTORES EJERCICIOS SOBRE VECTORES 1) Dados los puntos A = ( 2, 1,4) ( 3,1, 5) uuu vecto AB B =, calcula las componentes del 2) Dados los puntos A = ( 2, 1,4), B = ( 3,1, 5) ( 4,2, 3) C =, detemina las uuu uuu

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

A continuación obligamos, aplicando el producto escalar, a que los vectores:

A continuación obligamos, aplicando el producto escalar, a que los vectores: G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla

Más detalles

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A.

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A. 1 Halla la mediatiz del segmento. 2 Taza la ecta pependicula a la ecta po el punto. 3 Taza la pependicula a la ecta desde el punto. uál es la distancia del punto a la ecta? 4 Dibuja dos ectas pependiculaes

Más detalles

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de

Más detalles

Apunte FII-1-RM: Repaso de Matemática

Apunte FII-1-RM: Repaso de Matemática Física II Física B - Electomagnetismo Pofesoa: Da. C. Caletti : Repaso de Matemática I. Gadiente A fin de compende mejo el concepto de gadiente comenzaemos po las bases, analizando, peviamente, qué tipo

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMÁTICAS

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMÁTICAS 6.1 Ángulos UNIVERSIDAD DE ANTIQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENT DE MATEMÁTICAS CNM - 108 Álgeba Tigonometía Funciones tigonométicas de númeos eales De acuedo a la disciplina tabajada

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo Cuso: FISICA II CB 3U 1I Halla el CE de una esfea hueca con caga Q adio a. ad a d asen P de a Las componentes en el eje Y se anulan El CE esultante de la esfea hueca se encontaa sobe el eje X. El áea de

Más detalles

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

OPTIMIZACIÓN DE FUNCIONES DE UNA VARIABLE

OPTIMIZACIÓN DE FUNCIONES DE UNA VARIABLE Matemáticas º Bacilleato. OTIMIZACIÓN DE UNCIONE DE UNA VARIABLE ROBLEMA DE OTIMIZACIÓN aa esolve un poblema de optimización se siguen los siguientes pasos:. Lee bien el enunciado.. i el poblema tiene

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

5. ROTACION; CINEMATICA Y DINAMICA

5. ROTACION; CINEMATICA Y DINAMICA 73 5. OTACION; CINEMATICA Y DINAMICA Los movimientos cuvilíneos se dan en el plano o en el espacio, son, po tanto, movimientos bi o incluso tidimensionales. Ello hace que paa expesa la posición sea necesaio

Más detalles