PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS
|
|
- Veronica Rojo Ortega
- hace 1 años
- Vistas:
Transcripción
1 Licenciatura en Sistemas de Información PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS UNSE FCEyT 1. DESCRIPCIÓN Este taller consta de tres partes. En cada una de ellas se especifican las actividades a realizar. Material bibliográfico y /o fuentes de información consulta: Barchini, Graciela y Alvarez Margarita. Fundamentos Teóricos de la Ciencia de la Computación, Departamento de Informática. FCEyT 1994 y Alfonseca Manuel, Sancho, Justo y Martínez. Teoría de Lenguajes, Gramáticas Y Autómatas. Ediciones Universidad y Cultura, Kelly Dean. Teoría de Autómatas y Lenguajes Formales. Editorial Prentice Hall, Comon, Hubert; Dauchet Max y otros. Tree Automata Techniques and Applications. Disponible en URL: <http://www.grappa.univ-lille3.fr/tata/tata.pdf>. [Acceso en marzo de 2008]. Este taller se complementa con los ejercicios planteados en el Cuadernillo de Ejercicios de Aplicación. 2. OBJETIVOS Que el estudiante logre: Conocer los conceptos fundamentales de la Teoría de lenguajes Habilidad para caracterizar, reconocer y utilizar gramáticas de estructura de frase. Conocer los conceptos fundamentales de la Teoría de Autómatas Habilidad para caracterizar reconocer y utilizar autómatas. Sistematizar e integrar los conocimientos adquiridos. 3. PRODUCTO ESPERADO Informe escrito individual de la Parte A y B con las respuestas requeridas. Archivo digital del informe completo. La evaluación dependerá del producto entregado en tiempo y en forma. Informe escrito grupal (máximo tres integrantes) de la Parte C. Archivo digital del informe completo y de la presentación en powerpoint. La evaluación dependerá del producto entregado en tiempo y en forma y de la exposición realizada. 4. FECHA DE PRESENTACIÓN: FECHA DE EXPOSICIÓN: PARTE A TEORÍA DE LENGUAJES 1. Determine si las siguientes proposiciones son verdaderas (V) o falsas (F). Justifique su respuesta Es libre de contexto L = {a n b m c p d q / n = m = p + q} 1.2. Es decidible si L(G1) = L(G2)? Donde G1 y G2 son dos gramáticas distintas y L es el mismo lenguaje La expresión regular (aa/bb)* designa al conjunto de cadenas formadas por todas las combinaciones pares e impares de letras a y b, incluida la hilera nula Todo lenguaje libre de contexto será subconjunto de algún lenguaje regular 1.5. La gramática: G = ({ a,b}, { A,B},A,P); con P: A bb / a B aa / b Es equivalente a la ER=a?(ba)*b 1.6. Son equivalentes las dos expresiones regulares siguientes (ab*)*a a / a(a / b)*a
2 TALLER 2: TEORÍA DE LENGUAJES Y AUTÓMATAS La siguiente gramática es ambigua <exp> ::= <exp> <op> <exp> ( <exp> ) número <op> ::= + - * y se puede deshacer dicha ambigüedad al modificar la gramática para que refleje adecuadamente la precedencia y la asociatividad de los operadores. Se le ha eliminado la ambigüedad a la gramática? <exp> ::= <factor> <op> <factor> <factor> <factor> ::= ( <exp> ) número <op> ::= + - * 1.8. Si una gramática libre de contexto cumple la siguiente característica entonces es ambigua: Existe un símbolo no terminal A que posee, simultáneamente, alguna producción recursiva por la izquierda (A A α) y alguna producción recursiva por la derecha (A β A) El lenguaje: L(G) = {x n y m z k n,m 0 : k = n + m} genera las siguientes hileras: xxxyzzzz; xyyyzzzz; xxyyyzzzzz Es sensible al contexto el lenguaje: L= {a n b n c m n m 2n} 2. Marque una y sólo una de las opciones. Justifique su respuesta La gramática G= ({P,A,B}, {[,], x, y, z, (, ) }, P, P) con P P [ B,P] / B B A / ( B ) A x / y / z genera las siguientes hileras: ([x,y]) [(x),[y]] [(x),y] 2.2. Cuál de las siguientes gramáticas genera un lenguaje palíndromo?: S as / Sa / bs / Sb / a / b S ab / c B Sb S asb / Sa / bsa / Sb / a / b 2.3. Señale la respuesta falsa La concatenación de lenguajes tiene las propiedades: asociativa, no conmutativa y elemento neutro. Un lenguaje formal es un conjunto de hileras formadas por la agrupación de un número finito de símbolos del vocabulario de acuerdo a las reglas especificadas para dicho lenguaje. Dos o más lenguajes son equivalentes si son generadas por la misma gramática Si G = ({S}, {a,b}, S, {S asbs / bsas / λ}) cuál de las siguientes afirmaciones es falsa: Las cadenas aabb, abab, aaab son todas formas sentenciales para la gramática. El lenguaje generado por la gramática es el conjunto de cadenas que contienen un número igual de letras a y b. El lenguaje generado por la gramática es L(G) = {w w {a,b}* = w a w b } 2.5. Cuál de las siguientes gramáticas es equivalente a la dada sin reglas lambda ni reglas unitarias? G = ({ a,b,c}, { S,A,B,C},S,P); con P: S A A AaB C λ B Bb Cb AaA S A λ A AaB C ab B Bb Cb AaA a aa Aa S λ AaB ab cc c A AaB ab cc c B Bb Cb AaA a aa Aa S λ AaB ab cc c A AaB ab c B Bb Cb a aa Aa
3 TALLER 2: TEORÍA DE LENGUAJES Y AUTÓMATAS 3 PARTE B TEORÍA DE AUTÓMATAS 3. Determine si las siguientes proposiciones son verdaderas (V) o falsas (F). Justifique su respuesta Sea M un AF cuyo único estado final es el estado inicial. L(M) contiene exactamente tres cadenas Sean Σ = {a, b} y L = {w Σ * / w comienza por la subcadena ba y contiene un número par de a s}. Existe un AFD que reconoce L, y necesariamente tiene más de 6 estados Dado un AF definido para un alfabeto Σ con n símbolos, debe contener al menos n transiciones Sea M un AP y sea L = {a, ba}. L puede ser aceptado por APD siempre que llegue a los estados de aceptación con pila vacía Un lenguaje es reconocido por un APND si y sólo si es reconocido por un APD 3.6. Si L 1 es el lenguaje representado por la ER 1(00/1)* ((10)* / 101)* y L 2 es reconocido por el autómata de la figura, entonces L 1 = L Sea M un AF cuyo único estado final es el estado inicial. Puede L(M) contener exactamente tres cadenas? 3.8. M reconoce L(A) y M reconoce L (A) M: M 3.9. Si un lenguaje es generado por una gramática libre del contexto, entonces es aceptado por un Autómata de Pila no determinístico Puede obtenerse un autómata de pila no determinístico para aa * ba que sólo tenga dos estados. 4. Marque una y sólo una de las opciones. Justifique su respuesta Un autómata finito determinista M reconoce un lenguaje L(M) si: a) acepta todas de cadenas de dicho lenguaje b) acepta exclusivamente la colección de cadenas de dicho lenguaje c) la colección de cadenas de dicho lenguaje es determinista d) ninguna de las anteriores
4 TALLER 2: TEORÍA DE LENGUAJES Y AUTÓMATAS Si L es el lenguaje reconocido por el autómata de la figura y L el lenguaje generado por la ER: 0 (00)* / (00)* 1 (λ / (1(00)* 1))* 10 (00)*, entonces a) L = L b) L L c) L L d) Ninguna de las anteriores 4.3. El lenguaje {x n } {x n y n } donde n es un número entero positivo, es reconocido por: (Indique el tipo de autómata más sencillo (menos potente) capaz de aceptar el lenguaje) a) Un autómata finito b) Un autómata de pila determinista. c) Un autómata de pila no determinista d) Una máquina de Turing El lenguaje que acepta el siguiente autómata es: x z y a)x*/yz* b) x*/ yz*/ x*y c) x*yz* d) Ninguna de las anteriores 4.5. El autómata de la siguiente figura se caracteriza por: x, λ ; λ λ, λ ; λ x, λ ; x x, y ; λ y, λ ; λ y, x ; λ a) ser determinista b) vacíar siempre su pila antes de llegar a un estado de aceptación c) que puede reconocer la cadena xy vaciando su pila antes de llegar al estado de aceptación d) Ninguna de las afirmaciones anteriores es cierta 5. Diseñe una MT que implemente la función potencia sobre palabras del alfabeto Σ = {a, b}. Sea x un número natural y y una palabra sobre un alfabeto Σ. La potencia x.ésima de y (denominada y x ), consiste en la palabra formada mediante la concatenación de y un número de veces x. Para el caso de x = 0, y 0 = λ. Considerar lo siguiente: El parámetro x debe codificarse en unario. El orden de los parámetros primero el exponente (x) y luego la palabra (y), separados por el símbolo blanco.
5 TALLER 2: TEORÍA DE LENGUAJES Y AUTÓMATAS 5 PARTE C INVESTIGACIÓN EXPLORATORIA SOBRE LENGUAJES Y AUTÓMATAS ACTIVIDAD I. Realice una investigación exploratoria sobre uno de los siguientes temas y elabore un breve informe escrito. 1. Gramáticas de rasgos. 2. Gramáticas para describir interfaces de usuario. 3. Gramáticas para la representación de diálogos 4. Lenguajes semánticos 5. Algoritmos de Markov. Reglas de transformación. Equivalencia con las gramáticas formales. 6. Equivalencia entre Máquinas de Turing y Algoritmos de Markov 7. Máquinas secuenciales: Máquinas de MEALY, Máquinas de MOORE 8. Máquinas de Turing y Computación Cuántica 9. Máquinas de Turing probabilísticas 10. Autómatas y Redes Neuronales 11. Hipercomputación ACTIVIDAD II. Prepare una breve exposición (presentación en Powerpoint) para ser presentada a sus compañeros y docentes de la cátedra.
1. Cadenas EJERCICIO 1
LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada
UNIVERSIDAD TECNOLOGICA DE PEREIRA FACULTAD DE INGENIERIAS
Asignatura Código Gramática y Lenguajes Formales IS405 Créditos 4 Intensidad semanal Requisitos 6 Horas IS323 Justificación Objetivo general Dar al estudiante toda una gran base teórica sobre Ciencias
Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña
Máquinas Secuenciales, Autómatas y Lenguajes Tema 4: Expresiones Regulares Luis Peña Sumario Tema 4: Expresiones Regulares. 1. Concepto de Expresión Regular 2. Teoremas de Equivalencia Curso 2012-2013
MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.
MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.
Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I
Tema 4: Gramáticas independientes del contexto Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación.
Expresiones Regulares
Conjuntos Regulares y Una forma diferente de expresar un lenguaje Universidad de Cantabria Conjuntos Regulares y Esquema 1 Motivación 2 Conjuntos Regulares y 3 4 Conjuntos Regulares y Motivación El problema
EJERCICIOS del TEMA 3: Lenguajes independientes del contexto
EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )
TEORIA DE AUTOMATAS.
TEORIA DE AUTOMATAS. RELACION DE PROBLEMAS II.. Construir un AFND capaz de aceptar una cadena u {, }, que contenga la subcadena. Construir un AFND capaz de aceptar una cadena u {, }, que contenga la subcadena.
Ciencias de la Computación I
Ciencias de la Computación I Gramáticas Regulares Expresiones Regulares Gramáticas - Intuitivamente una gramática es un conjunto de reglas para formar correctamente las frases de un lenguaje - Por ejemplo,
CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle
CONJUNTOS REGULARES Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 19 de Octubre de 2008 Contenido Expresiones regulares Teorema de Kleene Autómatas
Universidad de Valladolid
Universidad de Valladolid Departamento de Informática Teoría de autómatas y lenguajes formales. 2 o I.T.Informática. Gestión. Examen de primera convocatoria. 18 de junio de 29 Apellidos, Nombre... Grupo:...
Autómatas de Pila y Lenguajes Incontextuales
Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia
SSL Guia de Ejercicios
1 SSL Guia de Ejercicios INTRODUCCIÓN A LENGUAJES FORMALES 1. Dado el alfabeto = {a, b, c}, escriba las palabras del lenguaje L = {x / x }. 2. Cuál es la cardinalidad del lenguaje L = {, a, aa, aaa}? 3.
Procesadores de Lenguaje
Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales
Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.
0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)
autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y
CONTENIDO Reconocedores [HMU2.1]. Traductores [C8]. Diagramas de Estado [HMU2.1]. Equivalencia entre AF deterministas y no deterministas [HMU2.2-2.3]. Expresiones [HMU3]. Propiedades de [HMU4]. Relación
Expresiones regulares, gramáticas regulares
Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde
Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003
Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación
Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas
Gramáticas Introducción Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas En algunos lenguajes, una sucesión de símbolos depende del
Lenguajes Incontextuales
Tema 5: Gramáticas Formales Lenguajes Incontextuales Departamento de Sistemas Informáticos y Computación http://www.dsic.upv.es p.1/31 Tema 5: Gramáticas Formales Gramáticas. Tipos de Gramáticas. Jerarquía
Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003.
Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Examen IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Este examen tiene
MÁQUINAS DE TURING CIENCIAS DE LA COMPUTACION I 2009
MÁQUINAS DE TURING Las máquinas de Turing, así como los AF y los AP se utilizan para aceptar cadenas de un lenguaje definidas sobre un alfabeto A. El modelo básico de máquina de Turing, tiene un mecanismo
Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002
Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto
Expresiones regulares, gramáticas regulares Unidad 3
Expresiones regulares, gramáticas regulares Unidad 3 Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes,
Autómatas Finitos Deterministicos (DFA)
Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica Fa.M.A.F., Universidad Nacional de Córdoba 22//4 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes y computación.
LENGUAJES Y GRAMÁTICAS
LENGUAJES Y GRAMÁTICAS Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 20 de septiembre de 2008 Contenido Lenguajes y Gramáticas Gramáticas Gramáticas
Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I
Tema 3: Gramáticas regulares Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison
Autómatas Finitos Deterministicos (DFA)
Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica y la Computación Fa.M.A.F., Universidad Nacional de Córdoba 26/0/6 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes
Las Gramáticas Formales
Definición de Las Como definir un Lenguaje Formal Universidad de Cantabria Esquema Motivación Definición de 1 Motivación 2 Definición de 3 Problema Motivación Definición de Dado un lenguaje L, se nos presenta
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales 1. Objetivos 2. Representación de los datos en Mathematica 3. Eliminación de símbolos inútiles 3.1. Símbolos
Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.
Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en
LENGUAJES Y GRAMÁTICAS
LENGUAJES Y GRAMÁTICAS LENGUAJES Y GRAMÁTICAS La sintaxis de un lenguaje natural en lenguajes como el ingles, español, alemán o francés es extremadamente complicada, dado que es imposible especificar la
Máquinas de estado finito y expresiones regulares
Capítulo 3 Máquinas de estado finito y expresiones regulares En este tema definiremos y estudiaremos máquinas de estado finito, llamadas también máquinas de estado finito secuenciales o autómatas finitos.
DEL AUTÓMATA FINITO A LA EXPRESIÓN REGULAR
DEL AUTÓMATA FINITO A LA EXPRESIÓN REGULAR Muchas veces es más fácil y seguro dibujar el DT de un AF que reconozca al lenguaje, para luego obtener la ER a partir de este autómata. Se presenta un método
Máquinas de Turing, recordatorio y problemas
Máquinas de Turing, recordatorio y problemas Elvira Mayordomo, Universidad de Zaragoza 5 de diciembre de 2014 1. Recordatorio de la definición de máquina de Turing Una máquina de Turing, abreviadamente
No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:
1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.
Teoría de Lenguajes // 1er. cuatrimestre de er. Parcial
Teoría de Lenguajes // er. cuatrimestre de 200 er. Parcial Dados los lenguajes: L = { w (a b)* para algún prefijo v de w: v a - v b > } (Ejemplos: Las cadenas ababaa y bbbaa pertenecen a L. Las cadenas
TIPOS DE GRAMATICAS JERARQUIAS DE CHOMSKY
TIPOS DE GRAMATICAS JERARQUIAS DE CHOMSKY Para el estudio de este tema es necesario analizar dos tipos de gramáticas de la clasificación de Chomsky, las regulares y las independientes de contexto, las
Compiladores. Análisis Sintáctico Ascendente. Adrian Ulises Mercado Martínez. Facultad de Ingeniería, UNAM. 5 de septiembre de 2013
Compiladores Análisis Sintáctico Ascendente Adrian Ulises Mercado Martínez Facultad de Ingeniería, UNAM 5 de septiembre de 2013 Adrian Ulises Mercado Martínez (FI,UNAM) Compiladores 5/07/2013 1 / 34 Índice
Algoritmo para la obtención de los estados accesibles
UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS SEGUNDO CURSO, SEGUNDO CUATRIMESTRE TEORÍA DE AUTÓMATAS
UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS
UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS SEGUNDO CURSO, SEGUNDO CUATRIMESTRE TEORÍA DE AUTÓMATAS
GRAMÁTICAS y LENGUAJES INDEPENDIENTES DEL CONTEXTO
Dpto. de Informática (ATC, CCIA y LSI). Universidad de Valladolid. TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES I Ingeniería Técnica en Informática de Sistemas. Curso 2011-12 GRAMÁTICAS y LENGUAJES INDEPENDIENTES
Ciencias de la Computación I
Ciencias de la Computación I Autómatas Linealmente Acotados Máquinas de Turing Motivación - Es posible diseñar un AP que reconozca el lenguaje L 1? L 1 = { a n b n c n / n > 0 } Ejemplo una estrategia
7. ( ) Describe una máquina de Turing que acepte el siguiente lenguaje: L = {a n b n n>0}. L = {a n b n c n n>0}. L = {xcx x {a, b} + }.
Universidad Rey Juan Carlos Curso 2010 2011 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 13 Máquinas de Turing Nivel del ejercicio : ( ) básico,
Autómata de Pila (AP, PDA) Tema 18
Tema Autómata de Pila (Pushdown Automata Autómata de Pila (AP, PDA Un AP es una máquina que acepta el lenguage generado por una GLC Consiste en un NFA- aumentado con una pila (stack. Dr. Luis A. Pineda
Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales
Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción
Lenguajes y Gramáticas
Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas
Teoría de Autómatas y Lenguajes Formales.
Teoría de Autómatas y Lenguajes Formales Prueba de Evaluación de Lenguajes y Gramáticas Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel
Alfabetos, cadenas y lenguajes
Capítulo 1 lfabetos, cadenas y lenguajes 1.1. lfabetos y cadenas Un alfabeto es un conjunto finito no vacío cuyos elementos se llaman símbolos. Denotamos un alfabeto arbitrario con la letra Σ. Una cadena
Tema 1: Introducción. Teoría de autómatas y lenguajes formales I
Tema 1: Introducción Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison Wesley.
Teoría de Lenguajes. Gramáticas incontextuales
Teoría de Lenguajes Gramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Gramáticas incontextuales 1. Definiciones básicas.
Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars)
Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad
Introducción a la Lógica y la Computación
Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 7 de Noviembre de 2014 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/20 Lenguajes Formales
Modelos De Computación. Guía Modelos de Computación. Tema I: Lenguajes y Gramáticas
Guía Modelos de Computación Tema I: Lenguajes y Gramáticas Introducción La sintaxis de un lenguaje natural, esto es, la de los lenguajes hablados, como el inglés, el español, el alemán o el francés, es
ESCUELA: UNIVERSIDAD DEL ISTMO
1.-IDENTIFICACIÓN ESCUELA: UNIVERSIDAD DEL ISTMO CLAVE: 3041 GRADO: ING. EN COMPUTACIÓN, CUARTO SEMESTRE TIPO DE TEÓRICA/PRÁCTICA ANTECEDENTE CURRICULAR: 3033.- OBJETIVO GENERAL Proporcionar al alumno
Lenguajes, Gramáticas y Autómatas Conceptos
Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y
Departamento de Tecnologías de la Información. Tema 5. Decidibilidad. Ciencias de la Computación e Inteligencia Artificial
Departamento de Tecnologías de la Información Tema 5 Decidibilidad Ciencias de la Computación e Inteligencia Artificial Índice 5.1 Lenguajes reconocibles y decidibles 5.2 Problemas decidibles sobre lenguajes
ESPECIFICACIÓN DE SÍMBOLOS
1 UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE COMPUTACIÓN ESPECIFICACIÓN DE SÍMBOLOS Elaborado el Sábado 24 de Julio de 2004 I.- COMPONENTES LÉXICOS, PATRONES Y LEXEMAS (extraído de
Tema: Autómata de Pila
Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores 1 Tema: Autómata de Pila Contenido La presente guía aborda los autómatas de pila, y se enfoca en la aplicación que se le puede dar a estas
6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales
6. Autómatas a Pila Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar
PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES
UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA
Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto
Universidad Autónoma del Estado de México Centro Universitario UAEM Texcoco Departamento de Ciencias Aplicadas. Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer,
Coordinación de Ciencias Computacionales INAOE. Teoría de Autómatas y Lenguajes Formales. Temario detallado para examen de ingreso 2012
Coordinación de Ciencias Computacionales INAOE Teoría de Autómatas y Lenguajes Formales Temario detallado para examen de ingreso 2012 1. Autómatas 1.1. Por qué estudiar la teoría de autómatas? 1.1.1. Introducción
Tema 5: Autómatas a pila. Teoría de autómatas y lenguajes formales I
Tema 5: Autómatas a pila Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison Wesley.
GRAMÁTICAS LIBRES DE CONTEXTO
GRAMÁTICAS LIBRES DE CONTEXTO Definición Una gramática libre de contexto (GLC) es una descripción estructural precisa de un lenguaje. Formalmente es una tupla G=, donde Vn es el conjunto
Gramáticas tipo 0 o Estructura de frase En este tipo de gramáticas no hay restricción en su producciones y tienen la forma siguiente.
Gramáticas Libres de Contexto 1. Gramáticas. Como vimos en el capítulo anterior una gramática es un conjunto finito de reglas que describen todas las secuencias de símbolos que pertenecen a un lenguaje.
16 Análisis sintáctico I
2 Contenido Recordando la estructura de un compilador Recordando el análisis léxico l análisis sintáctico Comparación con el análisis léxico l Rol del Parser Lenguajes de programación Gramáticas structura
Tema 5 Lenguajes independientes del contexto. Sintaxis
Tema 5 Lenguajes independientes del contexto. Sintaxis 1 Gramáticas independientes del contexto Transformación de gramáticas independientes del contexto Autómatas de pila Obtención de un autómata de pila
Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado.
Universidad Rey Juan Carlos Curso 2010 2011 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 12 Propiedades de L.I.C. Nivel del ejercicio : ( ) básico,
13.3. MT para reconocer lenguajes
13.3. MT para reconocer lenguajes Gramática equivalente a una MT Sea M=(Γ,Σ,,Q,q 0,f,F) una Máquina de Turing. L(M) es el lenguaje aceptado por la máquina M. A partir de M se puede crear una gramática
Lenguajes y Compiladores Aspectos Formales (Parte 2) Compiladores
Facultad de Ingeniería de Sistemas Lenguajes y Aspectos Formales (Parte 2) 2007 1 Derivaciones El proceso de búsqueda de un árbol sintáctico para una cadena se llama análisis sintáctico. El lenguaje generado
1. Define que es un Autómatas finitos determinanticos y cuáles son sus elementos constitutivos (explique cada uno de ellos).
Unidad 2.- Lenguajes Regulares Los lenguajes regulares sobre un alfabeto dado _ son todos los lenguajes que Se pueden formar a partir de los lenguajes básicos?, {_}, {a}, a 2 _, por medio De las operaciones
Lenguajes formales y autómatas
y autómatas. raul.gutierrez@correounivalle.edu.co Marzo, 2014 El alfabeto Un alfabeto es un conjunto finito no vacío cuyos elementos se llaman símbolos. Sea Σ = {a, b} el alfabeto que consta de los símbolos
1 er Parcial Febrero 2009
Autómatas y Lenguajes Formales 3 o Ingeniería Informática 1 er Parcial Febrero 2009 Normas : La duración de esta parte del examen es de 2,5 horas. Todos los ejercicios se entregarán en hojas separadas.
Introducción a la Lógica y la Computación
Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 4 de Noviembre de 2015 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/21 Lenguajes Formales
UNIVERSIDAD DE LOS LLANOS Facultad de Ciencias Básicas e Ingeniería Programa Ingeniería de Sistemas ALGORITMIA AVANZADA
CURSO: ALGORITMIA AVANZADA 1 SEMESTRE: VII 2 CODIGO: 602802 3 COMPONENTE: 4 CICLO: 5 AREA: Profesional 6 FECHA DE APROBACIÓN: 7 NATURALEZA: Teórico - Practica 8 CARÁCTER: Obligatorio 9 CREDITOS (RELACIÓN):
CAPITULO 2: LENGUAJES
CAPITULO 2: LENGUAJES 2.1. DEFINICIONES PREIAS SIMBOLO: Es una entidad indivisible, que no se va a definir. Normalmente los símbolos son letras (a,b,c,.., Z), dígitos (0, 1,.., 9) y otros caracteres (+,
NOTAS PARA LA MATERIA LENGUAJES DE PROGRAMACIÓN
NOTAS PARA LA MATERIA LENGUAJES DE PROGRAMACIÓN G r a m á t i c a s UNIVERSIDAD DE SONORA DEPARTAMENTO DE MATEMÁTICAS LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN Dra. María de Guadalupe Cota Ortiz Lenguaje
Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales
Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt holger.billhardt@urjc.es Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre
Autómatas de Estados Finitos
Asignatura: Teoría de la Computación Unidad 1: Lenguajes Regulares Tema 1: Autómatas de Estados Finitos Autómatas de Estados Finitos Definición de Autómatas de estados finitos: Tipo Lenguaje Máquina Gramática
El análisis descendente LL(1) 6, 7 y 13 de abril de 2011
6, 7 y 13 de abril de 2011 Analizadores sintácticos (repaso) Los analizadores descendentes: Corresponden a un autómata de pila determinista. Construyen un árbol sintáctico de la raíz hacia las hojas (del
Teoría de la Computación Lenguajes Regulares (LR) - Propiedades
Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Prof. Hilda Y. Contreras Departamento de Computación hyelitza@ula.ve http://webdelprofesor.ula.ve/ingenieria/hyelitza Objetivo Lenguajes
Gramáticas independientes del contexto TEORÍA DE LA COMPUTACIÓN LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I
Gramáticas independientes del contexto TEORÍ DE L COMPUTCIÓN LENGUJES INDEPENDIENTES DEL CONTEXTO Y UTÓMTS DE PIL Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNM E-mail:
Sumario: Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 1: Conceptos básicos (parte 1) Tema 1: Conceptos básicos
Formales Tema 1: Conceptos básicos (parte 1) Holger Billhardt holger.billhardt@urjc.es Sumario: Tema 1: Conceptos básicos 1. Lenguajes Formales 2. Gramáticas Formales 3. Autómatas Formales 2 1 Sumario:
EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA
EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA 1ER PARCIAL TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Examen parcial 12/02/2003 1.- Usa el lema de bombeo para
Teoría de Autómatas y Compiladores [ICI-445] Capítulo 2: Autómatas Finitos
Teoría de Autómatas y Compiladores [ICI-445] Capítulo 2: Autómatas Finitos Dr. Ricardo Soto [ricardo.soto@ucv.cl] [http://www.inf.ucv.cl/ rsoto] Escuela de Ingeniería Informática Pontificia Universidad
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso 202-203 Universidad Rey Juan Carlos GUÍA PARA LA REALIZACIÓN DE LA HOJA DE PROBLEMAS No 3 (Tema 3: Expresiones Regulares)
AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO
Autómatas de pila y lenguajes independientes del contexto -1- AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO AUTÓMATAS DE PILA - Son autómatas finitos con una memoria en forma de pila. - Símbolos
Departamento de Tecnologías de la Información. Tema 3. Autómatas finitos y autómatas de pila. Ciencias de la Computación e Inteligencia Artificial
Departamento de Tecnologías de la Información Tema 3 Autómatas finitos Ciencias de la Computación e Inteligencia Artificial Índice 3.1 Funciones sobre conjuntos infinitos numerables 3.2 Autómatas finitos
Nombre de la asignatura: Lenguajes y Autómatas I. Créditos: Aportación al perfil
Nombre de la asignatura: Lenguajes y Autómatas I Créditos: 2 3 5 Aportación al perfil Desarrollar, implementar y administrar software de sistemas o de aplicación que cumpla con los estándares de calidad
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 3.
UNIVRSIDAD NACIONAL D DUCACIÓN A DISTANCIA scuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes Tema 3 Parte I Análisis Sintáctico Javier Vélez Reyes jvelez@lsi.uned.es Objetivos
DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES
1 DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES Los LENGUAJES FORMALES están formados por PALABRAS, las palabras son CADENAS y las cadenas están constituidas por SÍMBOLOS de un ALFABETO. SÍMBOLOS
Sintaxis y Semántica. Tema 3. Sintaxis y Semántica. Expresiones y Lenguajes Regulares. Dr. Luis A. Pineda ISBN:
Tema 3 Expresiones y Lenguajes Regulares Dr Luis A Pineda ISBN: 970-32-2972-7 Sintaxis y Semántica En us uso normal, las expresiones lingüística hacen referencia a objetos individuales, así como a sus
06 Análisis léxico II
2 Contenido Alfabetos, símbolos y cadenas Operaciones con cadenas Concatenación de dos cadenas Prefijos y sufijos de una cadena Subcadena y subsecuencia Inversión de una cadena Potencia de una cadena Ejercicios
Introducción a la Teoría de Autómatas, Lenguajes y Computación
Introducción a la Teoría de Autómatas, Lenguajes y Computación Gustavo Rodríguez Gómez y Aurelio López López INAOE Propedéutico 2010 1 / 53 Capítulo 2 Autómatas Finitos 2 / 53 1 Autómatas Finitos Autómatas
John Venn Matemático y filósofo británico creador de los diagramas de Venn
Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan
PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS
PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS 1. DATOS INFORMATIVOS MATERIA: DISEÑO DE LENGUAJES Y AUTOMATAS: CARRERA: INGENIERÍA DE SISTEMAS NIVEL:
LENGUAJES FORMALES Y AUTÓMATAS
LENGUAJES FORMALES Y AUTÓMATAS Departamento de Lenguajes y Sistemas Informáticos Escuela Técnica Superior de Ingeniería Informática Universidad de Sevilla Víctor J. Díaz Madrigal José Miguel Cañete Valdeón
Conceptos básicos sobre gramáticas
Procesamiento de Lenguajes (PL) Curso 2014/2015 Conceptos básicos sobre gramáticas Gramáticas y lenguajes Gramáticas Dado un alfabeto Σ, un lenguaje es un conjunto (finito o infinito) de cadenas de símbolos
Expresiones regulares y derivadas
Expresiones regulares y derivadas Teoría de Lenguajes 1 er cuatrimestre de 2002 1 Expresiones regulares Las expresiones regulares son expresiones que se utilizan para denotar lenguajes regulares. No sirven