Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003."

Transcripción

1 Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Examen IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Este examen tiene 5 preguntas. Escriba su nombre en todas las páginas. Pregunta 1 /30 Pregunta 2 /30 Pregunta 3 /30 Pregunta 4 /30 Pregunta 5 /30 Total /150 Nota Duración: 2:30 hrs.

2 IIC 2222 Examen 2 Pregunta 1 [30 puntos] De ejemplos de lenguajes que cumplan con las condiciones pedidas. Si no existen tales lenguajes responda No es posible. (a) Un lenguaje regular R y otro lenguaje libre de contexto L, tales que R L y L es regular. (b) Un lenguaje libre de contexto L, no regular, tal que L es regular. (c) Un lenguaje libre de contexto L, no regular, tal que L no es recursivamente enumerable. (d) Un lenguaje aceptado por una MT, pero que no puede ser aceptado por ningún AFND-ε. (e) Un lenguaje libre de contexto L y otro lenguaje R tales que L R no es aceptado por ningún AFD. (f) Un lenguaje libre de contexto L y otro lenguaje R tales que L R no es aceptado por ningún AA. (g) Un lenguaje L, recursivamente enumerable, tal que L es recursivo. (h) Un lenguaje L que no es recursivamente enumerable. (i) Un lenguaje L que es recursivamente enumerable, pero que no es recursivo. (j) Un lenguaje indecidible, pero recursivo. (k) Un lenguaje libre de contexto L, cuyo complemento no es libre de contexto. (l) Una secuencia de lenguajes libres de contexto L 0, L 1,... tales que i=0 L i es no es libre de contexto. (m) Un lenguaje infinito, recursivamente enumerable, pero que no es generado por una expresión regular. (n) Un lenguaje L, y otro lenguaje regular R tales que L R no es regular. (ñ) Un lenguaje aceptado por un autómata linealmente acotado, pero que no aceptado por una máquina de turing de dos cabezas y dos cintas.

3 IIC 2222 Examen 3 Pregunta 2 [30 puntos] (a) Sea M = (Q, Σ, δ, q 0, F ) un AFD. Suponiendo que $ Σ, construya detalladamente una Máquina de Turing que acepte: L = {x$y r x, y L(M)}. (b) Considere ahora el lenguaje L = {xy r x, y L(M)}. Es posible construir una máquina de Turing determinística para L? Si es así cómo?.

4 IIC 2222 Examen 4 Pregunta 3 [30 puntos] En el lenguaje de programación funcional Haskell, el tipo de dato lista se encuentra predefindo. El siguiente párrafo describe informalmente cómo son las listas en Haskell: Una lista se denota empleando corchetes y comas. Por ejemplo, [1,2,3] es una lista de tres números y ["hola","adios"] es una lista de dos cadenas. Todos los elementos de una lista han de ser del mismo tipo. La lista vacía se escribe [] (...). En particular, [[]] es una lista unitaria cuyo único elemento es la lista vacía. Si todos los elementos de una lista son de tipo α, se dice que la lista tiene tipo [α] (pronunciado lista de α ). Por ejemplo, los siguientes son tipos válidos para listas: [1,2,3] es de tipo [Int] [ h, o, l, a ] es de tipo [Char] [[1,2],[3]] es de tipo [[Int]] De este último párrafo se deduce que si una lista es de tipo [Int] entonces todos sus elementos son de tipo Int. Por otra parte, si es de tipo [[Int]] entonces todos sus elementos son de tipo [Int]. Considere el lenguaje L H, de las listas de Haskell de tipo [ i α] i (para todo i 1), donde α es Int o Char. Es decir, L H contiene a todas las listas cuyo tipo haskell es [Int], [Char], [[Int]], [[Char]], [[[Int]]], y a así sucesivamente. (a) Demuestre que L H no es libre de contexto. (b) Muestre que si se define L H como el conjunto de todas las listas de Haskell de tipo [i α] i (con 1 i 2), entonces L H es libre de contexto. Nota: Puede usar el terminal int para representar a todos los enteros y el terminal char, para los caracteres.

5 IIC 2222 Examen 5 [hoja extra pregunta 3]

6 IIC 2222 Examen 6 Pregunta 4 [30 puntos] (a) Defina un AFND-ε y una expresión regular para los siguientes lenguajes: i. Palabras binarias que no terminan en 101. ii. Palabras binarias en las que cada 1 está seguido por al menos dos 0 s o en las que cada 0 está seguido por dos 1 s. (b) Defina formalmente qué significa que dos estados de un AFD sean distinguibles. En qué se puede ocupar este concepto? (c) Es sabido que si L es un lenguaje regular, N es el número de estados del AFD que lo acepta, y z L ( z N), entonces existen u, v, w, con v 1, tales que z = uvw y, para todo i 0, se cumple que uv i w L. Por qué si al párrafo anterior agregamos la condición uv N la afirmación sigue siendo verdadera? Seguiría siendo verdadera si imponemos que uv N 2? Justifique.

7 IIC 2222 Examen 7 [hoja extra pregunta 4]

8 IIC 2222 Examen 8 Pregunta 5 [30 puntos] (a) Demuestre, sin apelar al teorema de Rice, que { M 000 L(M)} no es recursivamente enumerable. (b) Es L = { M M se detiene exactamente después de 10 transiciones al procesar la palabra vacía} decidible? Justifique.

9 IIC 2222 Examen 9 [hoja extra pregunta 5]

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003 Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales

Más detalles

Introducción a la indecidibilidad

Introducción a la indecidibilidad Introducción a la indecidibilidad José M. empere Departamento de istemas Informáticos y Computación Universidad Politécnica de Valencia Lenguajes y problemas Un problema será considerado cualquier cuestión

Más detalles

13.3. MT para reconocer lenguajes

13.3. MT para reconocer lenguajes 13.3. MT para reconocer lenguajes Gramática equivalente a una MT Sea M=(Γ,Σ,,Q,q 0,f,F) una Máquina de Turing. L(M) es el lenguaje aceptado por la máquina M. A partir de M se puede crear una gramática

Más detalles

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars)

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad

Más detalles

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle CONJUNTOS REGULARES Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 19 de Octubre de 2008 Contenido Expresiones regulares Teorema de Kleene Autómatas

Más detalles

Computabilidad y Lenguajes Formales: Autómatas Finitos

Computabilidad y Lenguajes Formales: Autómatas Finitos 300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. No Determinismo Hasta ahora cada

Más detalles

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS Licenciatura en Sistemas de Información PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS UNSE FCEyT 1. DESCRIPCIÓN Este taller consta de tres partes. En cada una de ellas se especifican

Más detalles

Capítulo 9. Introducción a los lenguajes formales. Continuar

Capítulo 9. Introducción a los lenguajes formales. Continuar Capítulo 9. Introducción a los lenguajes formales Continuar Introducción Un lenguaje es un conjunto de símbolos y métodos para estructurar y combinar dichos símbolos. Un lenguaje también recibe el nombre

Más detalles

Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares

Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares Autómata = Lógica Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares Pero antes: Vamos a hacer un breve repaso sobre

Más detalles

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007.

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007. Universidad de Puerto Rico Recinto de Mayagüez Facultad de Artes y Ciencias DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Programa de Autómata y Lenguajes Formales Curso: Autómata y Lenguajes Formales Codificación:

Más detalles

PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES

PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA

Más detalles

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila. 0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)

Más detalles

Tema 1: Introducción. Teoría de autómatas y lenguajes formales I

Tema 1: Introducción. Teoría de autómatas y lenguajes formales I Tema 1: Introducción Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison Wesley.

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS 1. DATOS INFORMATIVOS MATERIA: DISEÑO DE LENGUAJES Y AUTOMATAS: CARRERA: INGENIERÍA DE SISTEMAS NIVEL:

Más detalles

Computabilidad y Lenguajes Formales: Autómatas de Pila

Computabilidad y Lenguajes Formales: Autómatas de Pila 300CIG007 Computabilidad y Lenguajes Formales: Autómatas de Pila Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Basado en [SIPSER, Chapter 2] Autómatas

Más detalles

Tema: Autómata de Pila

Tema: Autómata de Pila Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores 1 Tema: Autómata de Pila Contenido La presente guía aborda los autómatas de pila, y se enfoca en la aplicación que se le puede dar a estas

Más detalles

Examen de Computabilidad y Complejidad (CMC) 21 de enero de 2011

Examen de Computabilidad y Complejidad (CMC) 21 de enero de 2011 Examen de Computabilidad y Complejidad (CMC) 21 de enero de 2011 (I) CUESTIONES: (Justifique formalmente las respuestas) 1. Es el lenguaje {x {a,b,c}*: x a x b x c } incontextual? El lenguaje dado no es

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I Tema 4: Gramáticas independientes del contexto Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación.

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Curso Básico de Computación

Curso Básico de Computación Curso Básico de Computación 3 Propiedades de los conjuntos regulares Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) 3 Propiedades

Más detalles

Departamento de Tecnologías de la Información. Tema 4. Máquinas de Turing. Ciencias de la Computación e Inteligencia Artificial

Departamento de Tecnologías de la Información. Tema 4. Máquinas de Turing. Ciencias de la Computación e Inteligencia Artificial Departamento de Tecnologías de la Información Tema 4 Máquinas de Turing Ciencias de la Computación e Inteligencia Artificial Índice 4.1 Límites de los autómatas 4.2 Definición de Máquina de Turing 4.3

Más detalles

Teoría de la Computación puesta en Práctica

Teoría de la Computación puesta en Práctica Teoría de la Computación puesta en Práctica Marcelo Arenas M. Arenas Teoría de la Computación puesta en Práctica 1 / 24 Problema a resolver WiMAX (Worldwide Interoperability for Microwave Access): estándar

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 45 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Universidad de Valladolid

Universidad de Valladolid Universidad de Valladolid Departamento de Informática Teoría de autómatas y lenguajes formales. 2 o I.T.Informática. Gestión. Examen de primera convocatoria. 18 de junio de 29 Apellidos, Nombre... Grupo:...

Más detalles

Teoría Matemática de la Computación Primer Problemario Prof. Miguel A. Pizaña 22 de Febrero de 2007

Teoría Matemática de la Computación Primer Problemario Prof. Miguel A. Pizaña 22 de Febrero de 2007 Teoría Matemática de la Computación Primer Problemario Prof. Miguel A. Pizaña 22 de Febrero de 2007 I Tareas 1. Dudar de todo, al menos una vez en la vida. 2. Qué emociones le produce el teorema de Cantor,

Más detalles

Otras propiedades de los lenguajes regulares

Otras propiedades de los lenguajes regulares Capítulo 3 Otras propiedades de los lenguajes regulares En los dos capítulos anteriores hemos presentado las propiedades básicas de los lenguajes regulares pero no hemos visto cómo se puede demostrar que

Más detalles

Teoría de Lenguajes y Autómatas Conceptos y teoremas fundamentales

Teoría de Lenguajes y Autómatas Conceptos y teoremas fundamentales Se prohíbe la reproducción total o parcial de este documento, excepto para uso privado de los alumnos de la asignatura Teoría de Autómatas I de la UNED y los alumnos de asignaturas equivalentes de otras

Más detalles

Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular:

Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular: Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Máquinas Secuenciales, Autómatas y Lenguajes Hoja de Problemas: Propiedades Lenguajes Regulares Nivel del ejercicio : ( ) básico, ( ) medio,

Más detalles

Paréntesis: Una aplicación en lenguajes formales

Paréntesis: Una aplicación en lenguajes formales Paréntesis: Una aplicación en lenguajes formales Vamos a ver una aplicación del Teorema de Immerman-Szelepcsényi en la área de lenguajes formales. IIC3242 Clases de Complejidad 35 / 69 Paréntesis: Una

Más detalles

1. Cadenas EJERCICIO 1

1. Cadenas EJERCICIO 1 LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada

Más detalles

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas Gramáticas Introducción Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas En algunos lenguajes, una sucesión de símbolos depende del

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica Fa.M.A.F., Universidad Nacional de Córdoba 22//4 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes y computación.

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica y la Computación Fa.M.A.F., Universidad Nacional de Córdoba 26/0/6 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes

Más detalles

Tema: Autómatas de Estado Finitos

Tema: Autómatas de Estado Finitos Compiladores. Guía 2 1 Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores Tema: Autómatas de Estado Finitos Contenido En esta guía se aborda la aplicación de los autómatas en el campo de

Más detalles

Curso Básico de Computación

Curso Básico de Computación Curso Básico de Computación 8.1 Indecibilidad Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) 8.1 Indecibilidad 2010 1 / 96 8.5

Más detalles

8.1 Indecibilidad 8.5 Indecibilidad en el problema de la correspondencia de Post

8.1 Indecibilidad 8.5 Indecibilidad en el problema de la correspondencia de Post 1 Curso Básico de Computación 8.1 Indecibilidad 8.5 Indecibilidad en el problema de la correspondencia de Post Los problemas indecidibles aparecen en varias áreas. En las próximas tres secciones se analizarán

Más detalles

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción

Más detalles

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto

Más detalles

SSL Guia de Ejercicios

SSL Guia de Ejercicios 1 SSL Guia de Ejercicios INTRODUCCIÓN A LENGUAJES FORMALES 1. Dado el alfabeto = {a, b, c}, escriba las palabras del lenguaje L = {x / x }. 2. Cuál es la cardinalidad del lenguaje L = {, a, aa, aaa}? 3.

Más detalles

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones 1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y

Más detalles

ESCUELA: UNIVERSIDAD DEL ISTMO

ESCUELA: UNIVERSIDAD DEL ISTMO 1.-IDENTIFICACIÓN ESCUELA: UNIVERSIDAD DEL ISTMO CLAVE: 3041 GRADO: ING. EN COMPUTACIÓN, CUARTO SEMESTRE TIPO DE TEÓRICA/PRÁCTICA ANTECEDENTE CURRICULAR: 3033.- OBJETIVO GENERAL Proporcionar al alumno

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas Tema 3.1: Autómatas Finitos Deterministas Luis Peña luis.pena@urjc.es http://www.ia.urjc.es/cms/es/docencia/ic-msal Sumario Tema 3.1: Autómatas Finitos Deterministas. 1. Concepto de AFD 2. Equivalencia

Más detalles

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo: 1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.

Más detalles

Autómatas Deterministas. Ivan Olmos Pineda

Autómatas Deterministas. Ivan Olmos Pineda Autómatas Deterministas Ivan Olmos Pineda Introducción Los autómatas son una representación formal muy útil, que permite modelar el comportamiento de diferentes dispositivos, máquinas, programas, etc.

Más detalles

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )

Más detalles

Nombre de la asignatura : Lenguajes y Autómatas. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB- 9324

Nombre de la asignatura : Lenguajes y Autómatas. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB- 9324 . D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Lenguajes y Autómatas Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : SCB- 9 Horas teoría-horas práctica-créditos

Más detalles

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en

Más detalles

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I Tema 3: Gramáticas regulares Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison

Más detalles

300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos

300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos 300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Qué es un computador? Todos lo sabemos!!!

Más detalles

Lenguajes, Gramáticas y Autómatas Conceptos

Lenguajes, Gramáticas y Autómatas Conceptos Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y

Más detalles

Convertir un AFND a un AFD

Convertir un AFND a un AFD Convertir un AFND a un AFD Existe una equivalencia entre los AFD y AFN, de forma que un autómata M es equivalente a un autómata M' si L(M) ) L(M'). Ejemplo: Los autómatas de la siguiente figura son equivalentes.

Más detalles

ALGORITMOS DIGITALES II. Ing. Hugo Fdo. Velasco Peña Universidad Nacional 2006

ALGORITMOS DIGITALES II. Ing. Hugo Fdo. Velasco Peña Universidad Nacional 2006 ALGORITMOS DIGITALES II Ing. Hugo Fdo. Velasco Peña Universidad Nacional 2006 OBJETIVOS Conocer los principios básicos de los algoritmos. Establecer paralelos entre los algoritmos, los programas y las

Más detalles

Unidad 4. Autómatas de Pila

Unidad 4. Autómatas de Pila Unidad 4. Autómatas de Pila Una de las limitaciones de los AF es que no pueden reconocer el lenguaje {0 n 1 n } debido a que no se puede registrar para todo n con un número finito de estados. Otro lenguaje

Más detalles

Curso Básico de Computación

Curso Básico de Computación Curso Básico de Computación 7 Máquina de Turing Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) 7 Máquina de Turing 2010 1 / 43

Más detalles

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y CONTENIDO Reconocedores [HMU2.1]. Traductores [C8]. Diagramas de Estado [HMU2.1]. Equivalencia entre AF deterministas y no deterministas [HMU2.2-2.3]. Expresiones [HMU3]. Propiedades de [HMU4]. Relación

Más detalles

Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez

Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez Análisis y Complejidad de Algoritmos Arboles Binarios Arturo Díaz Pérez Arboles Definiciones Recorridos Arboles Binarios Profundidad y Número de Nodos Arboles-1 Arbol Un árbol es una colección de elementos,

Más detalles

Clase 17: Autómatas de pila

Clase 17: Autómatas de pila Solicitado: Ejercicios 14: Autómatas de pila de GLC M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfrancom@ipn.mx 1 Contenido Autómata de pila Definición

Más detalles

DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES

DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES 1 DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES Los LENGUAJES FORMALES están formados por PALABRAS, las palabras son CADENAS y las cadenas están constituidas por SÍMBOLOS de un ALFABETO. SÍMBOLOS

Más detalles

16 Análisis sintáctico I

16 Análisis sintáctico I 2 Contenido Recordando la estructura de un compilador Recordando el análisis léxico l análisis sintáctico Comparación con el análisis léxico l Rol del Parser Lenguajes de programación Gramáticas structura

Más detalles

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50 INAOE (INAOE) 1 / 50 Contenido 1 2 3 4 (INAOE) 2 / 50 Pushdown Automata Las gramáticas libres de contexto tienen un tipo de autómata que las define llamado pushdown automata. Un pushdown automata (PDA)

Más detalles

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto Universidad Autónoma del Estado de México Centro Universitario UAEM Texcoco Departamento de Ciencias Aplicadas. Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer,

Más detalles

Introducción al Procesamiento de Lenguaje Natural

Introducción al Procesamiento de Lenguaje Natural Introducción al Procesamiento de Lenguaje Natural Grupo de PLN - InCo 2011 Expresiones regulares y autómatas finitos English is not a finite state language. (Chomsky 1957) ER y Búsquedas Se requiere: Patrón

Más detalles

Facultad de Ingeniería de Sistemas 1.5 Carrera: Ingeniería de Sistemas 1.6 Código: ISI 1.7 Nivel: Pregrado

Facultad de Ingeniería de Sistemas 1.5 Carrera: Ingeniería de Sistemas 1.6 Código: ISI 1.7 Nivel: Pregrado 1. Identificación del curso 1.1 Escuela / Departamento: Ciencias Naturales e Ingeniería 1.3 Programa: 1.2 Código: CN 1.4 Código: FAC-ISI Facultad de Ingeniería de Sistemas 1.5 Carrera: Ingeniería de Sistemas

Más detalles

Carácter Modalidad Horas de estudio semestral (16 semanas)

Carácter Modalidad Horas de estudio semestral (16 semanas) PROGRAMA DE ESTUDIOS: TEORÍA DE LA COMPUTACIÓN PROTOCOLO Fechas Mes/año Clave Semestre 5 o Elaboración 05-2010 Nivel Licenciatura X Maestría Doctorado Aprobación Ciclo Integración Básico Superior Aplicación

Más detalles

Autómatas finitos no deterministas (AFnD)

Autómatas finitos no deterministas (AFnD) Autómatas finitos no deterministas (AFnD) Elvira Mayordomo Universidad de Zaragoza 1 de octubre de 2012 Contenido de este tema Introducción y ejemplos de autómatas finitos no deterministas Definición de

Más detalles

Introducción a la Lógica y la Computación

Introducción a la Lógica y la Computación Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 7 de Noviembre de 2014 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/20 Lenguajes Formales

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACIÓN

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACIÓN BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACIÓN PROGRAMA DE LA MATERIA CORRESPONDIENTE A LA LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN. Coordinación: NOMBRE DE LA MATERIA:

Más detalles

Equivalencia Entre PDA y CFL

Equivalencia Entre PDA y CFL Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede

Más detalles

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I Gramáticas independientes del contexto UTÓMTS Y LENGUJES FORMLES LENGUJES INDEPENDIENTES DEL CONTEXTO Y UTÓMTS DE PIL Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNM E-mail:

Más detalles

Lenguajes Formales. 27 de octubre de 2005

Lenguajes Formales. 27 de octubre de 2005 Apuntes de Teoría de Autómatas y Lenguajes Formales Gloria Martínez Luis A. García 27 de octubre de 2005 II Índice general 3.1. El Teorema de Myhill-Nerode. Minimización de Autómatas Finitos..... 41 3.2.

Más detalles

Gramáticas libres de contexto

Gramáticas libres de contexto Gramáticas libres de contexto Conceptos básicos El siguientes es un ejemplo de una gramática libre de contexto, a la cual llamaremos G1. A 0A1 A B B # Una gramática consiste de una colección de reglas

Más detalles

PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE INTRODUCCIÓN Y TEORÍA DE LA COMPUTACIÓN

PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE INTRODUCCIÓN Y TEORÍA DE LA COMPUTACIÓN CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE INTRODUCCIÓN Y TEORÍA DE LA COMPUTACIÓN 1. DATOS DE IDENTIFICACIÓN DE LA ASIGNATURA. Título: Facultad:

Más detalles

Problemas indecidibles

Problemas indecidibles Capítulo 7 Problemas indecidibles 71 Codificación de máquinas de Turing Toda MT se puede codificar como una secuencia finita de ceros y unos En esta sección presentaremos una codificación válida para todas

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 2.

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 2. UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes Tema 2 Análisis Léxico Javier Vélez Reyes jvelez@lsi.uned.es Objetivos del Tema

Más detalles

Lenguajes y Gramáticas

Lenguajes y Gramáticas Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 4: Autómatas finitos deterministas. Holger Billhardt holger.billhardt@urjc.

Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 4: Autómatas finitos deterministas. Holger Billhardt holger.billhardt@urjc. Formales Tema 4: Autómatas finitos deterministas Holger Billhardt holger.billhardt@urjc.es Sumario: Bloque 2: Autómatas Finitos 4. Autómatas Finitos Deterministas 1. Concepto y Definición 2. Autómata finito

Más detalles

Lenguajes Formales y Monoides

Lenguajes Formales y Monoides Universidad de Cantabria Esquema 1 2 3 La operación esencial sobre Σ es la concatenación o adjunción de palabras: : Σ Σ Σ (x, y) x y es decir, si x = x 1 x n e y = y 1 y m, entonces x y = x 1 x n y 1 y

Más detalles

2^10 2^9 2^8 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0 SUMA

2^10 2^9 2^8 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0 SUMA Universidad Rafael Urdaneta Facultad de Ingeniería Escuela de Ingeniería de Computación Cátedra: Programación I Laboratorio - Semestre 2012-1 (Sección C ) Profesor: Jaime Soto Examen #1 - Fecha: 07-03-2012

Más detalles

Analizador De léxico. V A R i : I N T E G E R ; \n...

Analizador De léxico. V A R i : I N T E G E R ; \n... UNIDAD III Analisis de Lexico 3.1 Analizador de Lexico La tarea del análisis de léxico es reconocer símbolos en un flujo de caracteres y presentarlos en una representación mas util para el análisis sintáctico.

Más detalles

Capítulo 7: Expresiones Regulares

Capítulo 7: Expresiones Regulares Capítulo 7: Expresiones Regulares 7.1. Concepto de expresión regular 7.1.1. Definición 7.1.2. Lenguaje descrito 7.1.3. Propiedades 7.2. Teoremas de equivalencia 7.2.1. Obtener un AFND a partir de una expresión

Más detalles

Apuntes de Teoría de Autómatas y Lenguajes Formales. Gloria Martínez

Apuntes de Teoría de Autómatas y Lenguajes Formales. Gloria Martínez Apuntes de Teoría de Autómatas y Lenguajes Formales Gloria Martínez Luis A. García 11 de octubre de 2005 Índice general 1. Introducción 1 1.1. Alfabetos y Cadenas.............................. 1 1.2.

Más detalles

Contenido. Capítulo 1. Teoría de conjuntos. 1. Capítulo 2. Lenguaje. 39. Capítulo 3. Lenguajes formales. 55

Contenido. Capítulo 1. Teoría de conjuntos. 1. Capítulo 2. Lenguaje. 39. Capítulo 3. Lenguajes formales. 55 Contenido Capítulo 1. Teoría de conjuntos. 1 1.1 Conjuntos.... 3 1.1.1 Definiciones básicas.... 3 1.1.2 Operaciones sobre conjuntos.... 6 1.1.3 Diagrama de Venn.... 7 1.1.4 Álgebra de conjuntos.... 7 1.2

Más detalles

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total.

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total. U.R.J.C. Ingeniera Técnica en Informática de Sistemas Teoría de Autómatas y Lenguajes Formales Junio 2009 2do. Parcial Normas : La duración del examen es de 2 horas. Todos los ejercicios se entregarán

Más detalles

Una (muy) breve introducción a la teoría de la computación

Una (muy) breve introducción a la teoría de la computación Una (muy) breve introducción a la teoría de la computación Marcelo Arenas M. Arenas Una (muy) breve introducción a la teoría de la computación 1 / 48 Ciencia de la computación Cuál es el objeto de estudio

Más detalles

Introducción a la Lógica y la Computación

Introducción a la Lógica y la Computación Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 4 de Noviembre de 2015 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/21 Lenguajes Formales

Más detalles

Computabilidad, complejidad computacional y verificación de programas

Computabilidad, complejidad computacional y verificación de programas Libros de Cátedra Computabilidad, complejidad computacional y verificación de programas Ricardo Rosenfeld Jerónimo Irazábal FACULTAD DE INFORMÁTICA COMPUTABILIDAD, COMPLEJIDAD COMPUTACIONAL Y VERIFICACIÓN

Más detalles

Análisis Matemático I: Numeros Reales y Complejos

Análisis Matemático I: Numeros Reales y Complejos Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.

Más detalles

Propiedades de lenguajes independientes del contexto

Propiedades de lenguajes independientes del contexto Capítulo 12. Propiedades de lenguajes independientes del contexto 12.1. Identificación de lenguajes independientes del contexto Lema de bombeo. 12.2. Propiedades Cierre, Complemento de lenguajes, Sustitución,

Más detalles

Tema 2: Los Autómatas y su Comportamiento

Tema 2: Los Autómatas y su Comportamiento Departamento de Computación Universidade da Coruña Bisimulación y procesos concurrentes Tema 2: Los Autómatas y su Comportamiento Carmen Alonso Montes carmen@dc.fi.udc.es Noelia Barreira Rodríguez noelia@dc.fi.udc.es

Más detalles

DIVERSAS REPRESENTACIONES DE UN AUTÓMATA FINITO DETERMINISTA DIVERSE REPRESENTATIONS OF A DETERMINISTIC FINITE AUTOMATON. Humberto Robles Guzmán 1

DIVERSAS REPRESENTACIONES DE UN AUTÓMATA FINITO DETERMINISTA DIVERSE REPRESENTATIONS OF A DETERMINISTIC FINITE AUTOMATON. Humberto Robles Guzmán 1 DIVERSAS REPRESENTACIONES DE UN AUTÓMATA FINITO DETERMINISTA DIVERSE REPRESENTATIONS OF A DETERMINISTIC FINITE AUTOMATON Humberto Robles Guzmán 1 RESUMEN En este artículo se describen las diversas representaciones

Más detalles

Teoría de Autómatas y Lenguajes Formales. Laura M. Castro Souto

Teoría de Autómatas y Lenguajes Formales. Laura M. Castro Souto Teoría de Autómatas y Lenguajes Formales Laura M. Castro Souto Primer Cuatrimestre Curso 2000/2001 2 Índice de Tablas 3 4 ÍNDICE DE TABLAS Capítulo 0 Introducción En la asignatura de Teoría de Autómatas

Más detalles

Teoría de Lenguajes. Teoría de la Programación I

Teoría de Lenguajes. Teoría de la Programación I Teoría de Lenguajes Soluciones Consideraciones generales i) Escriba nombre y C.I. en todas las hojas. ii) Numere todas las hojas. iii) En la primera hoja indique el total de hojas. iv) Comience cada ejercicio

Más detalles

Carrera: SCM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Carrera: SCM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Teoría de la computación Ingeniería en Sistemas Computacionales SCM - 0434 3-2-8

Más detalles

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 Teoría de Lenguajes Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 aterial compilado por el Profesor Julio Jacobo, a lo largo de distintas ediciones

Más detalles

GRAMATICAS LIBRES DEL CONTEXTO

GRAMATICAS LIBRES DEL CONTEXTO GRMTICS LIBRES DEL CONTEXTO Estas gramáticas, conocidas también como gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.

Más detalles