Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - "Osciloscopio"

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - "Osciloscopio""

Transcripción

1 Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - "Osciloscopio" Práctica L1-2 - Estudio de un circuito : estado de carga de un condensador e tegración de señales - Inducción electromagnética Objetivo Aprendizaje del uso del osciloscopio y del voltímetro aplicado a: 1 Estudio del estado de carga de un condensador 2 Integración de señales mediante un circuito 3 Estudio de la ley de ducción de Faraday Material Osciloscopio, generador de funciones, voltímetro digital, solenoides, caja de resistencias, caja de condensadores, cables 1 Estado de carga de un condensador Introducción: V V out Figura 1: Esquema de circuito para el estudio del estado de carga de un condensador onsideremos el circuito mostrado en la figura 1 La ecuación que describe el comportamiento de este circuito cuando se aplica un voltaje dc V es: V + V + V = V = V Hemos usado las relaciones: La ecuación diferencial anterior tiene por solución determada por las condiciones iciales dv dq V = I, I =, Q = V t / V = V + Ae, donde la constante A viene t / Si en t= V =V y V =, entonces A=-V, y V V ( e ) V alcanzará el valor V cuando decaerá hacia ese nuevo valor con una exponencial tiempo del circuito Experimento: = 1 t >> Si entonces cambiamos V a algún otro valor, digamos, V t e / El producto se llama constante de on el material necesario montar un circuito equivalente al mostrado en la figura 1 Utilizar el generador de funciones para sumistrar la señal de entrada V Usaremos una señal cuadrada para producir el efecto de cambio del estado de carga del condensador ealizar las conexiones necesarias para observar en el osciloscopio tanto la señal de entrada (anal 1) como la de salida (anal 2) La señal de salida se corresponde con la diferencia de potencial entre los extremos del condensador Elegir los valores de,, y frecuencia de la señal cuadrada de entrada de forma que se observen claramente en el osciloscopio los procesos de carga y descarga del condensador (Usar >1 kω ) Dibujar en papel milimetrado un período completo de la señal de entrada y el período correspondiente de la señal de salida Obsérvese el comportamiento de la señal de salida cuando se aumenta la resistencia

2 Dar una explicación de la señal de salida observada Determar experimentalmente la constante de tiempo del sistema y comparar con el valor esperado Qué ocurre cuando se aumenta mucho la resistencia? Por qué? En las disttas situaciones estudiadas, utilizar el voltímetro digital para medir la diferencia de potencial de las señales de entrada y salida omparar, en cada caso, estas medidas con las obtenidas utilizando el osciloscopio ecordar : ω rad / s, ν = ω / 2π s 1 Hz 2 ircuitos : tegración de señales Introducción: onsideremos el circuito mostrado en la figura 1 Se aplica una señal V, y deseamos conocer cómo es V out en función de, y V La ecuación que describe el comportamiento del circuito es: V = V + V V = V V Usando las relaciones dq V = I I =, Q = V, podemos escribir V = = V V En el caso de que la señal de entrada varíe de forma periódica en el tiempo, se tiene que en el límite Por tanto podemos escribir: ω >> 1, V << V dv dv 1 1 V V, es decir, V ( t) V ( t) Esto dica que la diferencia de potencial medida en el condensador, ( tegral de la señal aplicada, V Experimento: out dv V V ), es proporcional a la on el material necesario montar un circuito equivalente al mostrado en la figura 1 Utilizar el generador de funciones para sumistrar la señal de entrada V ealizar las conexiones necesarias para observar en el osciloscopio tanto la señal de entrada (anal 1) como la de salida (anal 2) La señal de salida se corresponde con la diferencia de potencial entre los extremos del condensador Seleccionar como señal de entrada una onda susoidal de amplitud mayor que 1 voltio Elegir los valores de,, y frecuencia de la señal de entrada de forma que se cumpla la relación deseada, ω >> 1, y se observen claramente en el osciloscopio las dos señales (Usar >5 kω ) Dibujar en papel milimetrado un período completo de la señal de entrada y el período correspondiente de la señal de salida Dar una explicación de la señal de salida observada Describir el comportamiento de la señal de salida cuando se dismuye la resistencia Medir el cociente entre la amplitud de la señal de entrada y la señal de salida ocide con el valor teórico? En las disttas situaciones estudiadas, utilizar el voltímetro digital para medir la diferencia de potencial de las señales de entrada y salida omparar, en cada caso, estas medidas con las obtenidas utilizando el osciloscopio ecordar : ω rad / s, ν = ω / 2π s 1 Hz

3 3 Estudio de la ley de ducción de Faraday Introducción La ley de ducción de Faraday establece que la fuerza electromotriz ε ducida en un circuito es igual al valor negativo de la rapidez con la cual está cambiando el flujo magnético, Φ, que atraviesa el circuito: ε = dφ Si la ecuación anterior se aplica a una boba de vueltas y radio r, en cada vuelta aparece una fuerza electromotriz ducida, de forma que la fuerza electromotriz ducida total es dφ d( Bπ r ε = = 2 ) = π r 2 db En este experimento el campo magnético variable en el tiempo está creado por una boba exterior, concéntrica con la primera, de n vueltas por unidad de longitud y por la que circula una corriente I variable en el tiempo Esta corriente se obtiene tras aplicar una voltaje variable en el tiempo al circuito formado por la mencionada boba exterior y una resistencia en serie (=1 kω) Por tanto, de acuerdo con la ley de ducción de Faraday, se tiene que 2 µ n dvext ( t) ε ( t) = π r Donde hemos usado las expresiones B ( t) µ n I( t) Experimento = y I ( t) = Vext ( t) / on el material necesario montar un circuito equivalente al mostrado en la figura 2 Utilizar el generador de funciones para sumistrar la señal de la boba externa V ext ealizar las conexiones necesarias para observar en el osciloscopio tanto la señal aplicada a la boba externa (anal 1) como la correspondiente a la fuerza electromotriz ducida en la boba terna, ε (anal 2) Figura 2: Esquema del circuito de medida de la ducción electromagnética Seleccionar una onda triangular en el generador de funciones Para una frecuencia fija, estudiar cómo varía la amplitud de la fuerza electromotriz ducida, ε, en función de la amplitud de la señal aplicada a la boba externa, V ext Obtener la expresión teórica para ε /V ext omprobar el cumplimiento de la ley de ducción de Faraday mediante la representación de ε frente a V ext Ajustar a una recta los datos obtenidos, y a partir de la pendiente de la recta calcular µ omparar con el valor real Hacer lo mismo con una onda susoidal En las disttas situaciones estudiadas, utilizar el voltímetro digital para medir la diferencia de potencial de las señales de entrada y salida omparar, en cada caso, estas medidas con las obtenidas utilizando el osciloscopio

4 Alumno: Grupo: Tutor: Fecha: Informe previo : Práctica L1-2 - Estudio de un circuito : estado de carga de un condensador e tegración de señales - Inducción electromagnética Se ha seleccionado en un generador de funciones una señal susoidal de 4 voltios de amplitud y frecuencia igual a 5 Hz Dibujar dos periodos completos de esta señal Indicar en el gráfico las escalas vertical (voltaje/división) y horizontal (tiempo/división), así como el nivel V = Si escribimos V = V sen ( ω ), cuánto valen V y ω? t Escala vertical : Escala horizontal : Frecuencia : ω = rad/s Periodo: T = V = La señal anterior se aplica a la entrada, V, del circuito siguiente Las resistencias tienen los valores 1 = 1 kω y 2 = 3 kω 1 uál es el valor máximo del voltaje medido en la resistencia 1? V 2 V out uál es la amplitud de la señal de salida V out? uál es la expresión para la corriente que circula por el circuito? uál es el valor máximo de la corriente?

5 Alumno: Grupo: Tutor: Fecha: Informe de Laboratorio: Práctica L1-2 - Estudio de un circuito : estado de carga de un condensador e tegración de señales - Inducción electromagnética 1 Estado de carga de un condensador Valores de y usados: onstante de tiempo esperada: onstante de tiempo obtenida: Dibujo de un período completo de la señal de entrada y el período correspondiente de la señal de salida Indicar la constante de tiempo Escala vertical : Escala horizontal : Frecuencia : ω = rad/s Periodo: T =

6 2 ircuitos : tegración de señales Valores de y usados: Amplitud y frecuencia de la señal de entrada: Amplitud y frecuencia de la señal de salida: Dibujo de un período completo de la señal de entrada y el período correspondiente de la señal de salida Escala vertical : Escala horizontal : Frecuencia : ω = rad/s Periodo: T = ociente de amplitudes experimental: ociente de amplitudes esperado: 3 Estudio de la ley de ducción de Faraday ε frente a V ext Gráfica de Frecuencia usada: Pendiente estimada: Valor estimado de µ :

Objetivo Aprendizaje del uso de osciloscopios, multímetros y generadores de funciones, aplicado al estudio de señales eléctricas en un circuito RC.

Objetivo Aprendizaje del uso de osciloscopios, multímetros y generadores de funciones, aplicado al estudio de señales eléctricas en un circuito RC. Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - "Osciloscopio" Práctica L1-1 - Estudio de señales eléctricas en un circuito R Objetivo Aprendizaje del uso de osciloscopios, multímetros

Más detalles

Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - "Osciloscopio"

Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - Osciloscopio Laboatoio de Técnicas Expeimentales II - º Física Laboatoio L - "Osciloscopio" Páctica L- - Estudio de un cicuito : estado de caga de un condensado y filtos de fecuencia - Inducción electomagnética Objetivo

Más detalles

Inducción electromagnética

Inducción electromagnética Inducción electromagnética 29 de abril de 2009 1. Objetivos Comprobación de la ley de inducción entre dos solenoides. 2. Material 1 osciloscopio 1 generador de funciones 2 bobinas cilíndricas 1 resistencia

Más detalles

Práctica L1-1 Aplicaciones de los circuitos RC: filtros de frecuencia Inducción electromagnética

Práctica L1-1 Aplicaciones de los circuitos RC: filtros de frecuencia Inducción electromagnética Laboatoio de Técnicas Expeimentales II - º Física Laboatoio L - Osciloscopio Páctica L- Aplicaciones de los cicuitos : filtos de fecuencia Objetivo Apendizaje del uso del osciloscopio aplicado a dos expeimentos:.

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES PRÁCTICA 2 CAMPO MAGNÉTICO Y F.E.M. INDUCIDA Jesús GÓMEZ

Más detalles

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 6 PRÁCTICA Nº 8 : EL VATÍMETRO DIGITAL CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 6 PRÁCTICA Nº 8 : EL VATÍMETRO DIGITAL CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 6 PRÁCTICA Nº 8 : EL VATÍMETRO DIGITAL CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO VATIMETRO DIGITAL SUNEQUIPLO DWM-03060 EXPERIMENTO DEMOSTRATIVO

Más detalles

Aplicaciones de los circuitos RC: Diferenciadores, integradores y filtros de frecuencia

Aplicaciones de los circuitos RC: Diferenciadores, integradores y filtros de frecuencia Aplicaciones de los circuitos RC: Diferenciadores, integradores y filtros de frecuencia 21 de mayo de 2008 1. Objetivos Estudio de la carga y descarga de un condensador. Construcción de un diferenciador

Más detalles

EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRÁCTICA Nº 9 : EL VATÍMETRO CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO

EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRÁCTICA Nº 9 : EL VATÍMETRO CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRÁCTICA Nº 9 : EL VATÍMETRO CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO VATIMETRO DIGITAL SUNEQUIPLO DWM-03060 EXPERIMENTO DEMOSTRATIVO DE LA PRÁCTICA 8 En

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Práctica 10. Coeficientes de inducción mutua y autoinducción 10.1. Objeto de la práctica

Más detalles

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 8 PRÁCTICA Nº 8 : EL VATÍMETRO DIGITAL VATIMETRO DIGITAL SUNEQUIPLO DWM-03060

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 8 PRÁCTICA Nº 8 : EL VATÍMETRO DIGITAL VATIMETRO DIGITAL SUNEQUIPLO DWM-03060 EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 8 PRÁCTICA Nº 8 : EL VATÍMETRO DIGITAL CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO VATIMETRO DIGITAL SUNEQUIPLO DWM-03060 TRANSFORMADOR MONOFÁSICO

Más detalles

1. MOTOR DE CORRIENTE CONTINUA Y DINAMO

1. MOTOR DE CORRIENTE CONTINUA Y DINAMO 1. MOTO DE COIENTE CONTINUA Y DINAMO 1.1. OBJETIVO El propósito de esta práctica es estudiar el comportamiento de un motor DC pequeño cuando opera directamente y en reversa como generador o dinamo. En

Más detalles

Electromagnétismo II: aplicación de la Ley de Faraday. Versión 1.0

Electromagnétismo II: aplicación de la Ley de Faraday. Versión 1.0 Electromagnétismo II: aplicación de la Ley de Faraday. Versión 1.0 Antonio Alfonso Rodríguez-Rosales 1 Héctor Cruz Ramírez 2 y 1 Centro de Investigación Científica y Tecnológica de Guerrero (CICTEG) 2

Más detalles

Ley de inducción de Faraday

Ley de inducción de Faraday Ley de inducción de Faraday Galarza Jorge A., Sardelli Gastón, Scalise Guido, Valli Mauricio e-mail: jagal41@hotmail.com o mauriciolaplata@sinectis.com.ar e-mail: jagal41@hotmail.com o mauriciolaplata@sinectis.com.ar

Más detalles

PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN

PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)

Más detalles

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR.

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR. eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA OBJETIVOS: Estudio del fenómeno de autoinducción y de inducción mutua a partir del cáclulo de las siguientes magnitudes: 1. El coeficiente de autoinducción, L, de una bobina

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA. OBJETIVO Estudio de la inducción magnética entre dos bobinas (primaria y secundaria) en función de diferentes parámetros geométricos y de operación. 2. DESARROLLO TEÓRICO Cuando

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA OBJETIVOS: Estudio del fenómeno de autoinducción y de inducción mutua a partir del cálculo de las siguientes magnitudes: 1. El coeficiente de autoinducción, L, de una bobina

Más detalles

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY 1. Objetivos Departamento de Física Laboratorio de Electricidad y Magnetismo FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY Observar el efecto producido al introducir un imán en una bobina.

Más detalles

PRÁCTICA 3 DE FÍSICA GENERAL II

PRÁCTICA 3 DE FÍSICA GENERAL II PRÁCTCA 3 DE FÍSCA GENERAL CURSO 2016-17 Departamento de Física Aplicada e ngeniería de Materiales GRADO EN NGENERÍA DE ORGANZACÓN Coordinador: Rafael Muñoz Bueno rafael.munoz@upm.es Práctica 3 Corriente

Más detalles

1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 6 1/17

1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 6 1/17 1º E.U.I.T.I.Z. Curso 2004 05. Electricidad y Electrometría. Problemas resueltos tema 6 1/17 4.- Calcular el vector inducción magnética, B, en el punto O, creado por una corriente eléctrica de intensidad

Más detalles

Experimento de laboratorio No. 6 Estudio de la ley de Faraday en un transformador.

Experimento de laboratorio No. 6 Estudio de la ley de Faraday en un transformador. Experimento de laboratorio No. 6 Estudio de la ley de Faraday en un transformador. AUTOR(ES): Aurea D. Rodríguez Llerena, OBJETIVOS 1. Estudiar el fenómeno de inducción electromagnética en un transformador.

Más detalles

PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT

PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética

Más detalles

Experimento 6: Transistores MOSFET como conmutadores y compuertas CMOS

Experimento 6: Transistores MOSFET como conmutadores y compuertas CMOS Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Sergio Morales, Ing. Pablo Alvarado, Ing. Eduardo Interiano Laboratorio de Elementos Activos II Semestre 2006 I Experimento

Más detalles

Unidad Nº 10. Magnetismo

Unidad Nº 10. Magnetismo Unidad Nº 10 Magnetismo 10.1. Definición y propiedades del campo magnético. Fuerza magnética en una corriente. Movimiento de cargas en un campo magnético. 10.2. Campos magnéticos creados por corrientes.

Más detalles

Instituto Nacional de Astrofísica, Óptica y Electrónica. INAOE.

Instituto Nacional de Astrofísica, Óptica y Electrónica. INAOE. Instituto Nacional de Astrofísica, Óptica y Electrónica. INAOE. Curso propedéutico de teoría electromagnética. Cuarto examen parcial Viernes 30 de junio de 2017 INSTRUCCIONES: 1. Lee atentamente los problemas.

Más detalles

Laboratorio N 3 Estudio de Corriente Alterna y de Inductancias

Laboratorio N 3 Estudio de Corriente Alterna y de Inductancias Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física FI2003-6 Métodos Experimentales Laboratorio N 3 Estudio de Corriente Alterna y de Inductancias Integrantes: Carlos

Más detalles

PRÁCTICA 3 DE FÍSICA GENERAL II

PRÁCTICA 3 DE FÍSICA GENERAL II PRÁCTCA 3 DE FÍSCA GENERAL CURSO 2017-18 Departamento de Física Aplicada e ngeniería de Materiales Juan Antonio Porro González Francisco Cordovilla Baró Rafael Muñoz Bueno Beatriz Santamaría Práctica 3

Más detalles

es e valor máximo de la fem

es e valor máximo de la fem U Tópicos apítulo de : Electricidad orriente Alterna y Magnetismo J. Pozo, J. Pozo, A. A. eón eón y.m. y.m. horbadjian. APÍTUO OENTE ATENA (A.. ntroducción Para generar corriente alterna, se puede considerar

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA OBJETIVOS: Estudio del fenómeno de autoinducción y de inducción mutua a partir del cáclulo de las siguientes magnitudes: 1. El coeficiente de autoinducción, L, de una bobina

Más detalles

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN RESUMEN 1. LEY DE FARADAY 2. LEY DE LENZ 3. INDUCTANCIA 4. ENERGÍA DEL CAMPO MAGNÉTICO 5. CIRCUITOS RL 6. OSCILACIONES. CIRCUITO LC 7. CORRIENTE ALTERNA. RESONANCIA

Más detalles

CURVAS CARACTERÍSTICAS DE LA CARGA Y DESCARGA DE UN CONDENSADOR

CURVAS CARACTERÍSTICAS DE LA CARGA Y DESCARGA DE UN CONDENSADOR Física II PRÁTIAS DE FÍSIA: Guiones de prácticas \ 1 URVAS ARATERÍSTIAS DE LA ARGA Y DESARGA DE UN ONDENSADOR OBJETIVO onstruir las gráficas de la intensidad de corriente que circula por un condensador

Más detalles

Introducción a la Física Experimental Ley de inducción de Faraday aplicada a un imán que atraviesa una bobina

Introducción a la Física Experimental Ley de inducción de Faraday aplicada a un imán que atraviesa una bobina Introducción a la Física Experimental Ley de inducción de Faraday aplicada a un imán que atraviesa una bobina Departamento de Física Aplicada Universidad de Cantabria Febrero 6, 007 Resumen Se ha obtenido

Más detalles

Faraday tenía razón!! María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999

Faraday tenía razón!! María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Faraday tenía razón!! María Paula Coluccio y Patricia Picardo aboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En el presente trabajo repetimos la experiencia que

Más detalles

Práctica número 5. Cálculo experimental de la respuesta en frecuencias en un circuito resonante. Introducción teórica

Práctica número 5. Cálculo experimental de la respuesta en frecuencias en un circuito resonante. Introducción teórica Práctica número 5 Cálculo experimental de la respuesta en frecuencias en un circuito resonante Dentro de los circuitos de corriente con elementos eléctricos pasivos, es decir, resistencias (R), condensadores

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUIÓN ELETROMAGNÉTIA Ley de Ampére La ley de Ampère, relaciona la componente tangencial del campo magnético, alrededor de una curva cerrada, con la corriente I c que atraviesa dicha curva. r r B dl =

Más detalles

Interacción electromagnética. 3. Calcula la fuerza electromotriz inducida en una espira si el flujo que la atraviesa disminuye uniformemente

Interacción electromagnética. 3. Calcula la fuerza electromotriz inducida en una espira si el flujo que la atraviesa disminuye uniformemente Ley de Gauss Campo Magnético 1. Calcula el flujo magnético a través de una espira de 400 cm 2 de superficie situada en un plano perpendicular a un campo magnético uniforme de 0 2 T. 2. Un solenoide, de

Más detalles

UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL LABORATORIO DE FÍSICA BÁSICA III

UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL LABORATORIO DE FÍSICA BÁSICA III UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL LABORATORIO DE FÍSICA BÁSICA III I. DATOS DE IDENTIFICACIÓN Nombre de la materia: Laboratorio de Física Básica III Código: 2006087

Más detalles

PROBLEMA EXPERIMENTAL 1

PROBLEMA EXPERIMENTAL 1 Física Aplicada a Farmacia. //00 PROBLEMA EXPERIMENTAL 3 puntos El constantán es una aleación de cobre y níquel cuya resistividad es constante en un amplio rango de temperaturas. Esta resistividad debe

Más detalles

7. Circuitos de corriente alterna. Corriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff.

7. Circuitos de corriente alterna. Corriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff. 7. ircuitos de corriente alterna. orriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff. 0. uál es la capacidad de un circuito oscilante si la carga máxima

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

INTRODUCCIÓN A LA CORRIENTE ALTERNA. USO DEL OSCILOSCOPIO

INTRODUCCIÓN A LA CORRIENTE ALTERNA. USO DEL OSCILOSCOPIO INTRODUCCIÓN A LA CORRIENTE ALTERNA. USO DEL OSCILOSCOPIO OBJETIVO Estudio de las diferentes partes de un osciloscopio y realización de medidas con este instrumento. Introducción Un osciloscopio consta

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA.

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA. PRÁCTCA NÚMERO 6. ESTUDO DE UN CRCUTO RLC EN CORRENTE ALTERNA. 6.. Análisis Teórico del Circuito. En las prácticas anteriores se ha analizado el comportamiento del circuito RLC cuando este es alimentado

Más detalles

Convocatoria de Junio. Parcial II. 16 de junio de apartado anterior, representar gráficamente VH indicando claramente su desfase

Convocatoria de Junio. Parcial II. 16 de junio de apartado anterior, representar gráficamente VH indicando claramente su desfase Electricidad y Electrometría 1º Electrónicos Convocatoria de Junio. Parcial II. 16 de junio de 2.003 Parte Primera. 1.- Tres espiras circulares iguales, de radio R, están recorridas por corrientes iguales

Más detalles

Práctica de Inducción electromagnética.

Práctica de Inducción electromagnética. Práctica Práctica de Inducción electromagnética. Luis Íñiguez de Onzoño Sanz 1. Introducción Teórica II. Materiales III 3. Descripción de la práctica IV 4. Procedimiento IV 5. Resultados V 6. Errores IX

Más detalles

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 4 PRÁCTICA Nº 5 MEDICIONES CON EL OSCILOSCOPIO

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 4 PRÁCTICA Nº 5 MEDICIONES CON EL OSCILOSCOPIO EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 4 PRÁCTICA Nº 5 MEDICIONES CON EL OSCILOSCOPIO CONSTRUCCIÓN DE UN CÍRCULO CON UNA SEÑAL SENO Y UNA COSENO IMAGEN EN LA PRESENTACIÓN X - Y FUNCIONES

Más detalles

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS PRÁCTICA DE LABORATORIO II-09 TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS OBJETIVOS Estudiar los fenómenos transientes que se producen en circuitos RC de corriente directa.

Más detalles

TUBO DE QUINCKE ONDAS ESTACIONARIAS

TUBO DE QUINCKE ONDAS ESTACIONARIAS TUBO DE QUINCKE ONDAS ESTACIONARIAS 1.- OBJETIVO Estudio de ondas acústicas y su propagación en el interior del tubo de Quincke. Cálculo de la velocidad de propagación del sonido en el aire. 2.- FUNDAMENTO

Más detalles

Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador

Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador Material y Equipo Resistencias de varios valores Capacitores de cerámicos,

Más detalles

La ley circuital de Ampere relaciona la circulación del campo magnético con la corriente que lo origina: B dl = µ 0 j ds (1) C

La ley circuital de Ampere relaciona la circulación del campo magnético con la corriente que lo origina: B dl = µ 0 j ds (1) C c Alberto Pérez Izquierdo, Francisco Medina y Rafael R. Boix 1 PRÁCTICA 4 CAMPO MAGNÉTICO EN EL INTERIOR DE UN CONDUCTOR 1. Objetivos En esta práctica se estudia el campo magnético en el interior de un

Más detalles

PRÁCTICA NÚMERO 5. ESTUDIO DE UN CIRCUITO RLC OSCILATORIO AMORTIGUADO.

PRÁCTICA NÚMERO 5. ESTUDIO DE UN CIRCUITO RLC OSCILATORIO AMORTIGUADO. PRÁCTICA NÚMERO 5. ESTUDIO DE UN CIRCUITO RLC OSCILATORIO AMORTIGUADO. 5.1. Análisis Teórico del Circuito. En esta práctica estamos formalmente ante el mismo circuito que en la práctica anterior, y que

Más detalles

Aplicaciones de la ley de Faraday

Aplicaciones de la ley de Faraday Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Aplicaciones de la ley de Faraday Elaborado por: Jorge A. Pérez y Miguel A. Serrano Introducción Los transformadores de

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PUEBAS DE ACCESO A A UNVESDAD.O.G.S.E. CUSO 008-009 CONVOCATOA DE JUNO EECTOTECNA E AUMNO EEGÁ UNO DE OS DOS MODEOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico

Más detalles

Fundamento teórico CIRCUITO DE CORRIENTE ALTERNA SORPRENDENTE

Fundamento teórico CIRCUITO DE CORRIENTE ALTERNA SORPRENDENTE IRUITO DE ORRIENTE ALTERNA SORPRENDENTE En este experimento se ha diseñado un circuito de corriente alterna cuyo esquema es el de la figura inferior. La fuente de corriente alterna suministra un voltaje

Más detalles

1 Puente de Wheatstone. Uso del polímetro como voltímetro y como amperímetro.

1 Puente de Wheatstone. Uso del polímetro como voltímetro y como amperímetro. PRÁCTICA 2 NOMBRE: NOMBRE: NOMBRE: GRUPO: FECHA: 1 Puente de Wheatstone. Uso del polímetro como voltímetro y como amperímetro. 1.1 Objetivos Se pretende comprobar la ley de equilibrio de un puente de Wheatstone.

Más detalles

x x x x x x x x x x x x x x x x P x x x x x x x x x x x x x x x x x x x x x x x x x x x x B x x x x x x x x x x x x x x V x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x P x x x x x x x x x x x x x x x x x x x x x x x x x x x x B x x x x x x x x x x x x x x V x x x x x x x x x x x x x Ejercicio resuelto nº 1 Tenemos el sistema siguiente: x x x x x x P x x x x x x x x B x x x x x x x x x x x x x x V x x x x x x x x Q x x x x x Qué sentido tiene la corriente inducida al desplazar el conductor

Más detalles

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt ircuitos y en estado estable ircuito Supongamos un circuito como el mostrado en la figura. Suponga que se desea calcular la corriente i(t) que circula por el circuito. De acuerdo con la ey de Kirchoff

Más detalles

TECNOLOGÍA ELECTRÓNICA

TECNOLOGÍA ELECTRÓNICA TENOLOGÍA ELETRÓNIA Boletín de problemas de: Tema 2. arga y descarga del condensador Tema 3. ircuitos eléctricos en alterna Ejercicios a entregar por el alumno en clase de tutorías en grupo emana 19/10

Más detalles

Guía 11a. Circuitos de corriente variable

Guía 11a. Circuitos de corriente variable Guía 11a. ircuitos de corriente variable Guía de Estudio 1) arga y descarga de un capacitor (circuitos en serie) a) Escriba la ecuación diferencial para la carga q en los capacitores de los circuitos que

Más detalles

Relación de problemas

Relación de problemas Relación de problemas Cuaderno V Inducción electromagnética 1. Una bobina, compuesta por 400 espiras cuadradas de 3 cm de lado, se encuentra situada en un campo magnético uniforme de 2 T. El eje de la

Más detalles

Guía 11. Circuitos de corriente variable

Guía 11. Circuitos de corriente variable Guía 11. ircuitos de corriente variable Parte a. Guía de estudio arga y descarga de un capacitor (circuitos en serie) 1. Escriba la ecuación diferencial para la carga q en los capacitores de los circuitos

Más detalles

Laboratorio #4 Ley de Ohm

Laboratorio #4 Ley de Ohm Laboratorio #4 Ley de Ohm Objetivo: Estudiar la relación entre la diferencia de potencial V y la intensidad de corriente I en una resistencia eléctrica R conectada en un circuito de corriente continua.

Más detalles

CAMPO MAGNÉTICO DE UNA CORRIENTE RECTILÍNEA

CAMPO MAGNÉTICO DE UNA CORRIENTE RECTILÍNEA Laboratorio de Física General Primer Curso (Electromagnetismo) CAMPO MAGNÉTICO DE UNA CORRIENTE RECTILÍNEA Fecha: 07/02/05 1. Objetivo de la práctica Estudio del campo magnético creado por una corriente

Más detalles

APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN

APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN Andrés González 393 APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN 1. Por qué el núcleo del transformador es de hierro o acero? Podría ser de otro material? El núcleo

Más detalles

Iniciación a la corriente alterna I Fundamento

Iniciación a la corriente alterna I Fundamento Iniciación a la corriente alterna I Fundamento Un generador de corriente continua se caracteriza porque entre sus bornes se establece una diferencia de potencial constante con el tiempo. Un borne está

Más detalles

1. Estudiar la relación entre campo magnético variable y f.e.m. inducida en una bobina.

1. Estudiar la relación entre campo magnético variable y f.e.m. inducida en una bobina. UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA FS-415 Electricidad y Magnetismo II Práctica 4: Aplicaciones de la Introducción Durante mucho tiempo se pensó que los fenomenos

Más detalles

Técnicas Experimentales II: Módulo de Electromagnetismo

Técnicas Experimentales II: Módulo de Electromagnetismo Técnicas Experimentales II: Módulo de Electromagnetismo Dr. Victor Lavín della Ventura Dr. Vicente D. Rodríguez Armas Dr. Inocencio R. Martín Benenzuela Dpto. Física Fundamental y Experimental, Electrónica

Más detalles

Unidad Nº 10. Magnetismo

Unidad Nº 10. Magnetismo Unidad Nº 10 Magnetismo 10.1. Definición y propiedades del campo magnético. Fuerza magnética en una corriente. Movimiento de cargas en un campo magnético. 10.2. Campos magnéticos creados por corrientes.

Más detalles

Laboratorio Física II Práctica Nº 3 LEY DE OHM Y CIRCUITOS ELÉCTRICOS

Laboratorio Física II Práctica Nº 3 LEY DE OHM Y CIRCUITOS ELÉCTRICOS UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA MUNICIPALIZACIÓN TOCÓPERO ÁREA DE TECNOLOGÍA COORDINACIÓN DE LABORATORIOS DE FÍSICA Laboratorio Física II LEY DE OHM Y CIRCUITOS ELÉCTRICOS Adaptado

Más detalles

EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRELABORATORIO Nº 3 EL OSCILOSCOPIO ANALÓGICO. Señal sinusoidal en la pantalla de un osciloscopio

EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRELABORATORIO Nº 3 EL OSCILOSCOPIO ANALÓGICO. Señal sinusoidal en la pantalla de un osciloscopio EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRELABORATORIO Nº 3 EL OSCILOSCOPIO ANALÓGICO Señal sinusoidal en la pantalla de un osciloscopio OSCILOSCOPIO ANALÓGICO TUBO DE RAYOS CATÓDICOS DIAGRAMA DE BLOQUES

Más detalles

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras c d x x x x x x x b a n número de espiras por unidad de longitud L r r b r r c r r d r r a r r b r r dl µ 0I dl + dl + dl + dl dl L a b c d a enc I enc nli El número de espiras en el tramo L es nl L µ

Más detalles

Laboratorio 1 Medidas Eléctricas - Curso 2018

Laboratorio 1 Medidas Eléctricas - Curso 2018 Objetivo: Laboratorio 1 Medidas Eléctricas - Curso 2018 El objetivo de esta práctica es familiarizarse con el manejo del osciloscopio y los principios fundamentales de su funcionamiento. Materiales del

Más detalles

Relación Problemas Tema 7: Electromagnetismo

Relación Problemas Tema 7: Electromagnetismo Relación Problemas Tema 7: Electromagnetismo Problemas 1.- Un electrón que se mueve en el sentido positivo del eje OX con una velocidad de 5 10 4 m/s penetra en una región donde existe un campo de 0,05

Más detalles

Practica 3.- Aplicaciones del diodo de unión.

Practica 3.- Aplicaciones del diodo de unión. Practica 3.- Aplicaciones del diodo de unión. A.- Objetivos. Estudiar varias aplicaciones del diodo de unión como son el diodo como circuito recortador, rectificador con filtro y doblador de tensión con

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (10)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (10) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (10) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 1er. Semestre 2006 INDUCCION DE FARADAY Al cambiar el flujo magnético enlazado

Más detalles

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m]

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m] Física º Bach. Examen de Setiembre de 005 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [1½ PUNTOS / UNO] X 1. El cuerpo de la figura tiene masa m = 500 g, está apoyado sobre una superficie horizontal

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4192 Sevilla Examen de Campos electromagnéticos. 2 o Curso de Ingeniería Industrial. 3 de septiembre

Más detalles

PRACTICA Nº 3 APLICACIONES DEL AMPLIFICADOR OPERACIONAL

PRACTICA Nº 3 APLICACIONES DEL AMPLIFICADOR OPERACIONAL UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS EC3192 PRACTICA Nº 3 APLICACIONES DEL AMPLIFICADOR OPERACIONAL OBJETIVO * Familiarizar al estudiante con distintas aplicaciones

Más detalles

Examen FIS

Examen FIS Examen FIS 1533 1 213 Apellido, Nombre: Número en la lista: Advertencia: La sanción por copiar es un 1,1 final en el ramo + informe a Secretaría General. TIEMPO: 2 horas No puede usar apuntes ni calculadora

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA. OBJETIVO Estudio de la inducción magnética entre dos bobinas (primaria y secundaria) en función de diferentes parámetros geométricos y de operación. 2. DESARROLLO TEÓRICO Cuando

Más detalles

PRESENTACIÓN X-Y MEDICIONES CON EL OSCILOSCOPIO SOBRE CIRCUITOS RC Y RL

PRESENTACIÓN X-Y MEDICIONES CON EL OSCILOSCOPIO SOBRE CIRCUITOS RC Y RL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 5 Objetivos PRESENTACIÓN X-Y MEDICIONES CON EL OSCILOSCOPIO SOBRE CIRCUITOS RC

Más detalles

2. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia.

2. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia. CIDEAD. º BACHILLERATO. ELECTROTECNIA. Desarrollo del tema.. Concepto de elementos. Excitación sinusoidal.. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces

Más detalles

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO EL OSCILOSCOPIO DIGITAL Circuitos. Estudio del Régimen Transitorio.

Más detalles

Guía de ejercicios supletorio 2do BGU. 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo.

Guía de ejercicios supletorio 2do BGU. 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo. Guía de ejercicios supletorio 2do BGU 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo. a P A Parámetro Valor Unidad q a -6 µc q b +2 µc q c +1 µc a 50

Más detalles

PRÁCTICA N 6. Cómo influye el factor de atenuación X1 y X10 cuando se realiza una medida?

PRÁCTICA N 6. Cómo influye el factor de atenuación X1 y X10 cuando se realiza una medida? REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE EDUCACIÓN SUPERIOR INSTITUTO UNIVERSITARIO EXPERIMENTAL DE TECNOLOGÍA DE LA VICTORIA LA VICTORIA ESTADO ARAGUA DEPARTAMENTO DE ELECTRICIDAD LABORATORIO

Más detalles

FÍSICA GENERAL III - CURSO 2015 Práctica 7: Flujo magnético. Ley de Faraday. Autoinducción. Inducción mutua.

FÍSICA GENERAL III - CURSO 2015 Práctica 7: Flujo magnético. Ley de Faraday. Autoinducción. Inducción mutua. FÍSICA GENERAL III - CURSO 2015 Práctica 7: Flujo magnético. Ley de Faraday. Autoinducción. Inducción mutua. 1- Considere un circuito rígido por el que circula una corriente I. Naturalmente, en su entorno

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 1. La figura muestra la superficie de un cubo de arista a = 2 cm, ubicada en un campo uniforme B = 5i + 4j + 3k Tesla. Cual es el valor del flujo del campo magnético a través

Más detalles

Física 2016 (septiembre)

Física 2016 (septiembre) Física 2016 (septiembre) Opción A Pregunta 1.- Desde la superficie de un planeta de masa 6,42 1023 kg y radio 4500 km se lanza verticalmente hacia arriba un objeto. a) Determine la altura máxima que alcanza

Más detalles

GUÍA 6: CIRCUITOS MAGNÉTICOS Electricidad y Magnetismo

GUÍA 6: CIRCUITOS MAGNÉTICOS Electricidad y Magnetismo GUÍA 6: CIRCUITOS MAGNÉTICOS Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de

Más detalles

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso oletín Tema 6 Generador de corriente alterna 1. Un generador sencillo de corriente alterna consiste en una bobina girando en un campo magnético uniforme. La variación temporal del flujo que atraviesa a

Más detalles

Práctica 2: Equipos (II)

Práctica 2: Equipos (II) Práctica 2: Equipos (II) Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha 2.1 Material necesario Material básico del laboratorio de Electrónica y Circuitos. Generador de señales MTX-3240 o similar.

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

Laboratorio Circuitos no Lineales con AO

Laboratorio Circuitos no Lineales con AO Objetivos Laboratorio Circuitos no Lineales con AO Describir cómo funcionan los circuitos activos con diodos. Comprender el funcionamiento de una báscula Schmitt trigger Textos de Referencia Principios

Más detalles

USO DE LA PRESENTACION X-Y DEL OSCILOSCOPIO CARACTERISTICAS CORRIENTE- VOLTAJE DE ELEMENTOS LINEALES Y NO LINEALES

USO DE LA PRESENTACION X-Y DEL OSCILOSCOPIO CARACTERISTICAS CORRIENTE- VOLTAJE DE ELEMENTOS LINEALES Y NO LINEALES UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 5 Objetivos USO DE LA PRESENTACION X-Y DEL OSCILOSCOPIO CARACTERISTICAS CORRIENTE-

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores Introducción En este capítulo se presentan dos nuevos e importantes elementos pasivos de los circuitos lineales: el capacitor y el inductor. A diferencia

Más detalles

Material básico del laboratorio de Electrónica y Circuitos. Generador de señales MTX-3240 o similar. Osciloscopio digital TDS-210 o similar.

Material básico del laboratorio de Electrónica y Circuitos. Generador de señales MTX-3240 o similar. Osciloscopio digital TDS-210 o similar. Práctica 4: Teoremas Apellidos, nombre Grupo Puesto Fecha Apellidos, nombre 4.1 Material necesario Material básico del laboratorio de lectrónica y Circuitos. Generador de señales MTX-3240 o similar. Osciloscopio

Más detalles