Ecuación Característica del diodo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ecuación Característica del diodo"

Transcripción

1 Ecuación Característica del diodo La ecuación característica del diodo de acuerdo al modelo Shockley es: ( ) con ; k = Constante de Boltzmann, q = Carga del electrón y T = temperatura. En este documento se analiza como se deduce la ecuación característica del diodo. a. Ley Masa-acción Cuando un cristal semiconductor puro o intrínseco es sometido a cierta temperatura, se generan pares electrón-hueco, y con ello, la concentración de electrones 1 libres ( ) es igual a la concentración de huecos ( ): (el subíndice i, indica que se trata de un material intrínseco) Esta concentración de electrones (o huecos) depende de la temperatura como se muestra en el gráfico (donde es la brecha de energía que existe entre la capa de valencia y la capa de conducción). A la temperatura ambiente en el caso del silicio, se tiene una concentración de 1.5x10 10 electrones libres/cm x10 10 electrones Si se considera que en un cristal de silicio hay 5x10 22 átomos/cm 3, entonces uno de cada 3.3 billones de átomos libera un electrón a la temperatura ambiente. Si se hace el mismo ejercicio para el caso del germanio, con 4.4x10 22 átomos/cm 3 y una concentración de 2.5x10 13 electrones libres/cm 3, se tiene que hay un electrón libre por cada 1760 millones de átomos. De acuerdo con la ley masa-acción, el producto misma temperatura. debe ser siempre constante para una 1 Concentración de electrones: Cantidad de electrones libres (banda de conducción) por metro cúbico.

2 Si se toma un material semiconductor de silicio intrínseco y se dopa con átomos trivalentes al %, tenemos que la concentración de átomos aceptores, que dan un hueco extra, será aproximada de 1 por cada 100 millones de átomos (vs un electrón libre por cada 3.3 billones de átomos en el material original). Con ello los portadores mayoritarios serán los huecos en el nuevo material p. Sea, la concentración de electrones libres (portadores minoritarios) y sea la concentración de huecos en el material p, debido únicamente a la generación de pares electrón-hueco por efectos de la temperatura. Entonces la concentración total de huecos en el material p será. Y por la ley masa-acción: (valor constante a una temperatura dada). Entonces la concentración de portadores minoritarios (electrones) en el material p será (1.1). Si se hace un proceso similar dopando otro silicio intrínseco con una concentración de átomos donadores pentavalentes. Entonces la concentración de portadores minoritarios (huecos) en el material n será (1.2). b. Barrera de potencial en la unión El material N posee aproximadamente electrones libres/cm 3 moviéndose en forma aleatoria en diferentes direcciones como resultado de la energía térmica. Este movimiento aleatorio produce una corriente promedio total igual a 0. P N A n p N D p n n Pero al unir el material tipo n con el material tipo p se obtiene un diodo con una barrera de potencial en la unión. V x La razón de ello, es que algunos de los electrones del material N que están cerca de la unión moviéndose en forma aleatoria terminan pasando al otro lado de la unión hacia el material p (también algunos electrones del material P en la banda de valencia pasan la unión hacia el material N), pero como, pasaran más electrones de N a P que de P a N en la banda de conducción. Al pasar los electrones del material N al material P, se da una distribución no uniforme en la concentración de electrones en el material P, produciendo un gradiente de concentración (la concentración de electrones disminuye al alejarse de la unión). Se dice entonces que hay una difusión de electrones de N hacia P en la banda de conducción y una corriente de difusión respectiva, cuya densidad de corriente será proporcional al gradiente de concentración y ( ) donde se conoce como la constante de difusión.

3 De igual manera para los huecos que pasan de P a N (electrones en la banda de valencia), se tiene una densidad de corriente de difusión y ( ) donde. La corriente total de difusión será dirección (de P a N). ya que ambas corrientes van en la misma Al pasar electrones de N a P, algunos átomos que están cerca de la unión en el lado del material N pierden estos electrones y se vuelven iones positivos y del otro lado de la unión, los átomos que ganan estos electrones se vuelven iones negativos. Esta ionización produce una diferencia de potencial (o barrera de potencial) que provoca una corriente de conducción en la unión cuya densidad es por la ley de ohm. Esta corriente va de N a P y contrarresta la corriente de difusión de forma tal que la corriente total en equilibrio es 0. Para el caso de los electrones libres en la banda de conducción = 0. La conductividad se puede expresar en términos de la movilidad de los electrones en la banda de conducción ( ) como. De esta forma se obtiene la relación (2.1). De la teoría del campo se sabe que. Como solamente estamos en una dimensión la relación anterior se puede expresar como (2.2) y combinando (2.1) y (2.2) se tiene o. Pero si entonces. A esta fórmula es necesario aplicarle un factor de corrección, que para corrientes pequeñas como el silicio y corrientes mayores como el germanio, entonces la fórmula anterior queda Al integrar la fórmula anterior de P a N con sus respectivas concentraciones de electrones. A partir de la fórmula 1.1, se tiene que barrera de potencial es, y sustituyendo, se tiene que el voltaje de la Ejemplo: Si se hace un dopado con átomos pentavalentes y trivalentes de una parte en 10 8 átomos de silicio y al considerar que en un cristal de silicio hay 5x10 22 átomos/cm 3, entonces la concentración de portadores mayoritarios tanto en el material N como en el material P, será, ( ).

4 Para el cálculo anterior hay que recordar que ambiente su valor es es constante y para el caso de la temperatura (ver gráfico de la sección a). c. Variación de la concentración de electrones en función del voltaje aplicado al diodo. P N A n p N D p n N Por el proceso de difusión algunos electrones del material N pasan al material P, produciendo la barrera de potencial V En la sección anterior se obtuvo la relación la cual se puede expresar también como (3.1) Si es la concentración de electrones en la unión del lado del material P, y el diodo se polariza a favor aplicándole una tensión V como se muestra en la figura, que reduce la barrera de potencial y produce una zona de agotamiento, al hacer una integral similar a la de la sección anterior, se tiene P n p N A N D n p p n V V Zona de agotamiento N + - V Y se puede expresar como (3.2) Igualando (3.1) y (3.2) se obtiene la variación de la concentración de electrones en la unión en función del voltaje V aplicado al diodo (3.3) De (3.3) se ve claramente que la concentración de electrones en el material P (cerca de la unión) aumenta en forma exponencial con la tensión aplicada a favor V. Esto quiere decir que hay más electrones pasando del material N al material P (debido a que la barrera de potencial se redujo) y es de esperar que esto resulte en una mayor corriente en el diodo que depende de esta concentración y por ende del voltaje aplicado. La corriente va a depender del movimiento de estos electrones en la banda de conducción, pero también de los huecos en la banda de valencia que al aplicar un análisis similar se obtiene (3.4).

5 d. La ecuación de continuidad. En un material semiconductor que este en equilibrio térmico y no tenga ninguna fuente de excitación exterior (como es la luz o inyección de cargas), es de esperar que la generación espontánea de pares electrón-hueco permanezca constante. En el material P, la concentración de electrones está dada por y por tanto la generación de los pares electrón hueco por unidad de tiempo será: (4.1) donde es el tiempo promedio de recombinación de los pares electrón-hueco y puramente térmicos. es la concentración de electrones en el material p debido a factores Por otro lado la disminución de la concentración de electrones en el material P debe ser igual a la generación de está concentración, para garantizar la operación en estado estable (en equilibrio térmico). Uno de los factores que produce la disminución de la concentración de electrones es la recombinación natural de los electrones-huecos. Esta disminución estará dada por (4.2) Sin embargo otra causa en la disminución de la concentración de electrones en el material P, cuando se está cerca de la unión NP del diodo, es el gradiente de concentración de electrones, en el material P, que hace que la concentración de electrones no sea constante, siendo mayor cerca de la unión y disminuyendo conforme nos alejamos de la unión en el lado del material P. En este caso la disminución en la concentración de electrones será, donde es el exceso en la concentración de electrones que se da por el proceso de difusión (paso de electrones del material n al material p) que es adicional a la concentración producida por la generación térmica, de tal forma que la concentración total de electrones en el material P será. Sea dq el diferencial de carga que se tiene en un diferencial de volumen, y sea este diferencial de volumen con un área constante A de forma tal que. La carga total Q será igual a la carga de q de un electrón multiplicado por el número de electrones. Para ello, se tiene que el número de electrones en este diferencial de volumen dv debido a la difusión 2 es y por tanto Si definimos un diferencial de corriente de difusión producto de la variación de está carga en el tiempo, entonces. Entonces la disminución de la concentración de electrones que se da, producto del proceso de difusión será, donde es la corriente de difusión y, es la densidad de corriente de difusión de los electrones que pasan del material n al material p, y con ello (4.3). 2 La concentración de electrones es el número de electrones por m 3

6 En la sección b, se definió la densidad de corriente de difusión como (4.4) y ( ) donde es la constante de difusión. Entonces sustituyendo (4.4) en (4.3), queda que la disminución de la concentración de electrones producto del proceso de difusión será: (4.5) Al principio de esta sección se dijo que la disminución de la concentración de electrones en el material P debe ser igual a la generación de está concentración, para garantizar la operación en estado estable (en equilibrio térmico). De lo que se ha analizado hasta el momento, la generación se da por emisión espontánea, debido a factores térmicos. Pero la disminución se debe a dos diferentes factores: a. Factores térmicos: b. Proceso de difusión: Entonces en estado estable se puede obtener la siguiente ecuación conocida como ecuación de continuidad, que está basada en el hecho de que la carga no puede ser creada ni destruida y permite representar la concentración de electrones en el material p, en función tanto del tiempo como de la distancia:. Puesto que la concentración total de electrones en el material P es, entonces la ecuación queda. La cual se puede también expresar como, con conocida como Longitud de difusión y representa la distancia promedio que viajan los electrones en el material p antes de recombinarse. La solución de esta ecuación de continuidad será: (4.6). e. La ecuación del diodo. A partir de la ecuación (4.4) de la sección anterior, se puede definir la densidad de corriente debida al exceso de electrones en el material p producidos por la difusión como (5.1). Pero derivando (4.6) en (5.1) se tiene que la densidad de corriente es (5.2). Del resultado anterior, se puede definir la corriente que pasa por la unión (x=0) como dado por, pero como la densidad de electrones total en el material p está, la corriente que pasa por la unión será entonces. En la sección c, se definió y entonces:.

7 El proceso de difusión en la unión, se da tanto para los electrones que pasan del material n al material p, provocando la corriente que se acaba de obtener, pero también se debe a los huecos que pasan del material p al material n, provocando una corriente total. Si por un proceso similar al estudiado en este documento se obtiene que, entonces la corriente total en el diodo será: ( ) Si se define la corriente de saturación inversa como ( ) entonces se obtiene la ecuación bien conocida del diodo: ( ) con. f. La corriente de saturación inversa. En la sección anterior se definió la corriente de saturación inversa como ( ) y en la sección a. se definió la concentración de portadores minoritarios (electrones) en el material p como (1.1) y la concentración de portadores minoritarios (huecos) en el material n como (1.2). Entonces la corriente de saturación inversa se puede definir como ( ). Luego en al sección d. se definió y para el caso de los electrones. Si se considera una situación similar para los huecos: ( ), con, o finalmente: ( ) con De aquí vemos que la corriente de saturación inversa (corriente no deseada ya que es debida a los portadores minoritarios) va a depender de: 1. Características propias del material semiconductor utilizado: la corriente de saturación aumenta al aumentar la movilidad de las cargas μ y el tiempo medio de recombinación par electrón-hueco τ; y disminuye al aumentar la brecha de energía entre la capa de conducción y valencia (por eso la corriente de saturación inversa de un diodo de silicio, con, es menor a la de un diodo de germanio con ). 2. Características de construcción del diodo: la corriente de saturación inversa aumenta al aumentar el área transversal del diodo A, pero disminuye al aumentar el dopado con átomos donadores y aceptores.

8 3. Condiciones de operación: la corriente de saturación inversa aumenta con la temperatura T (aproximadamente se duplica por cada 10 C). Referencia: Millman y Halkias, Integrated Electronics: analog and digital circuits and systems, 1972, McGraw-Hill. Capítulos 1,2,3 y 19.

Apuntes sobre la capacitancia del diodo

Apuntes sobre la capacitancia del diodo Apuntes sobre la capacitancia del diodo Considérese un material de silicio dopado tipo N que posee aproimadamente N D electrones libres/cm moviéndose en forma aleatoria en la capa de conducción en diferentes

Más detalles

ESTRUCTURA DEL ÁTOMO

ESTRUCTURA DEL ÁTOMO ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor

Más detalles

Tema 1: Teoría de Semiconductores INDICE

Tema 1: Teoría de Semiconductores INDICE INDICE 1. Semiconductor intrínseco 2. Conducción por huecos (h + ) y electrones (e - ) 3. Semiconductor extrínseco: material tipo N (MTN) y tipo P (MTP) 4. Deriva y difusión de portadores 5. La unión P-N:

Más detalles

Semiconductores. La característica común a todos ellos es que son tetravalentes

Semiconductores. La característica común a todos ellos es que son tetravalentes Semiconductores Un semiconductor es un dispositivo que se comporta como conductor o como aislante dependiendo del campo eléctrico en el que se encuentre. Elemento Grupo Electrones en la última capa Cd

Más detalles

ELECTRONICA GENERAL. Tema 2. Teoría del Diodo.

ELECTRONICA GENERAL. Tema 2. Teoría del Diodo. Tema 2. Teoría del Diodo. 1.- En un diodo polarizado, casi toda la tensión externa aplicada aparece en a) únicamente en los contactos metálicos b) en los contactos metálicos y en las zonas p y n c) la

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA. FÍSICA DE SEMICONDUCTORES

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA. FÍSICA DE SEMICONDUCTORES TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA. FÍSICA DE SEMICONDUCTORES TTEEMAA 11: :: IINTTRRODUCCCCIIÓN AA LLAA EELLEECCTTRRÓNIICCAA... FFÍÍSSIICCAA DEE SSEEMIICCONDUCCTTORREESS 11 1) Cuál de los siguientes

Más detalles

El Diodo TEMA 3. ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL

El Diodo TEMA 3. ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL TEMA 3 El Diodo El Diodo ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL 3.4. FENÓMENOS DE AVALANCHA Y ZENER 3.5. OTROS TIPOS DE DIODOS. MODELOS

Más detalles

Movilidad en semiconductores extrínsecos

Movilidad en semiconductores extrínsecos Movilidad en semiconductores etrínsecos µ (Movilidad) f(concentracion de Impurezas) f(tipo de Impurezas) μ = μ min + μ MAX μ min 1 + N N r α 1 µ (Movilidad) Dispersión de los portadores en la red Xtalina

Más detalles

SEMICONDUCTORES. Silicio intrínseco

SEMICONDUCTORES. Silicio intrínseco Tema 3: El Diodo 0 SEMICONDUCTORES Silicio intrínseco 1 SEMICONDUCTORES Conducción por Huecos A medida que los electrones se desplazan a la izquierda para llenar un hueco, el hueco se desplaza a la derecha.

Más detalles

Distribución y Transporte de Portadores de Carga

Distribución y Transporte de Portadores de Carga Distribución y Transporte de Portadores de Carga Lección 01.2 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge

Más detalles

MATERIALES ELECTRICOS JUNTURA PN

MATERIALES ELECTRICOS JUNTURA PN MATERIALES ELECTRICOS JUNTURA PN Consideremos por separado un Semiconductor Tipo N y un semiconductor tipo P. Analicemos el Diagrama de Bandas de cada uno por separado. El semiconductor Tipo N tendrá una

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo

Más detalles

Distribución y Transporte de Portadores de Carga

Distribución y Transporte de Portadores de Carga Distribución y Transporte de Portadores de Carga Lección 01.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Distribución

Más detalles

TEMA 2. Semiconductores

TEMA 2. Semiconductores TEMA 2 ÍNDICE 2.1. CONDUCTORES, SEMICONDUCTORES Y AISLANTES 2.2. ESTRUCTURA CRISTALINA. MODELO DE ENLACE COVALENTE 2.3. CONCEPTO DE PORTADOR. CONCEPTO DE CAMPO ELÉCTRICO 2.4. MOVILIDAD DE PORTADORES POR

Más detalles

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo 1. La densidad específica del tungsteno es de 18,8 g/cm 3 y su peso atómico es 184. La concentración de electrones libres es 1,23 x 10 23 /cm 3.Calcular el número de electrones libres por átomo. 2. Dadas

Más detalles

Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.

Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor. Electrónica Tema 1 Semiconductores Contenido Consideraciones previas: Fuentes de corriente Teorema de Thevenin Teorema de Norton Conductores y Semiconductores Unión p-n Fundamentos del diodo 2 Fuente de

Más detalles

TEMA 3 TEORIA DE SEMICONDUCTORES

TEMA 3 TEORIA DE SEMICONDUCTORES TEMA 3 TEORIA DE SEMICONDUCTORES (Guía de clases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica CONTENIDO PARTÍCULAS CARGADAS Átomo Electrón Ión Hueco TEORÍA DE LAS BANDAS DE ENERGÍA

Más detalles

TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA

TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA 17 de febrero de 2015 TEMA 1.1 SEMICONDUCTORES Introducción. Metales, aislantes y semiconductores Modelo enlace covalente

Más detalles

Sistemas de comunicaciones vía Fibra Óptica II

Sistemas de comunicaciones vía Fibra Óptica II Sistemas de comunicaciones vía Fibra Óptica II UNIVERSIDAD TECNOLOGICAS DE LA MIXTECA INGENIERÍA EN ELECTRÓNICA NOVENO SEMESTRE DICIEMBRE 2005 M.C. MARIBEL TELLO BELLO TRANSMISORES DE FIBRA ÓPTICA TRANSMISORES

Más detalles

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III CAPÍTULO III ESTADÍSTICA DE LOS PORTADORES DE CARGA DEL SEMICONDUCTOR 1. Introducción. Cada material suele presentar varias bandas, tanto de conducción (BC) como de valencia (BV), pero las más importantes

Más detalles

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES.

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. Tema 4. SEMICONDUCTORES. Las características físicas que permiten distinguir entre un aislante, un semiconductor y un metal, están determinadas por la estructura

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Dispositivos Electrónicos AÑO: 010 TEMA 3: CONCEPTOS BÁSICOS DE SECONDUCORES Rafael de Jesús Navas González Fernando Vidal Verdú 1/15 TEMA 3: CONCEPTOS BÁSICOS DE SEMICONDUCTORES 3.1. Estructura de los

Más detalles

El Diodo. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica

El Diodo. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica El Diodo Lección 03.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez El Diodo 1 / 29 Contenido 1 Modelo del Diodo

Más detalles

TEMA 6: SEMICONDUCTORES

TEMA 6: SEMICONDUCTORES 6.3 Semiconductores extrínsecos Aquel semiconductor sin defectos cristalinos pero con impurezas añadidas (semiconductor dopado) Tipos de impurezas: Dadoras: Aquellas impurezas con 1 electrón de más en

Más detalles

Introducción a la Teoría de semiconductores y nivel de Fermi. Trabajo compilado por Willie R. Córdova Eguívar

Introducción a la Teoría de semiconductores y nivel de Fermi. Trabajo compilado por Willie R. Córdova Eguívar Introducción a la Teoría de semiconductores y nivel de Fermi Trabajo compilado por Willie R. Córdova Eguívar Conducción en los semiconductores Los semiconductores son materiales que ocupan una posición

Más detalles

TEMA2: Fundamentos de Semiconductores

TEMA2: Fundamentos de Semiconductores TEMA2: Fundamentos de Semiconductores Contenidos del tema: Modelos de enlace y de bandas de energía en sólidos: tipos de materiales Portadores de carga en semiconductores Concentración de portadores Procesos

Más detalles

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES Diapositiva 1 LA UNÓN PN La unión pn en circuito abierto FUNDAMENTOS DE DSPOSTOS ELECTRONCOS SEMCONDUCTORES A K Zona de deplexión Unión p n Contacto óhmico ones de impurezas dadoras ones de impurezas aceptoras

Más detalles

Práctica 1 del DIODOS. Objetivos Identificar y btener la curva característica del diodo

Práctica 1 del DIODOS. Objetivos Identificar y btener la curva característica del diodo Práctica 1 del DIODOS. Objetivos Identificar y btener la curva característica del diodo Material y equipo Diodo 1N4148, Protoboard, fuente de voltaje DC, Manual ECG, Volmetro Marco Teórico 1. TEORIA DEL

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia se define como la razón entre la caída de tensión, entre los dos extremos de una resistencia, y la corriente que circula por ésta, tal que 1 Teniendo en cuenta que si el voltaje

Más detalles

UNIVERSIDAD DE LEON. Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES

UNIVERSIDAD DE LEON. Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES UNIVERSIDAD DE LEON Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES Electrónica Básica, Industrial e Informática Luis Ángel Esquibel Tomillo Introducción Para

Más detalles

Sesión 7 Fundamentos de dispositivos semiconductores

Sesión 7 Fundamentos de dispositivos semiconductores Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

Introducción a la Electrónica

Introducción a la Electrónica Física de los Semiconductores Estructura atómica De acuerdo al modelo mecanocuántico del átomo, existen niveles energéticos discretos en los cuales pueden residir los electrones. Cada uno de estos niveles

Más detalles

CONDUCCION ELECTRICA

CONDUCCION ELECTRICA CONDUCCION ELECTRICA Corriente Eléctrica [ I ] Carga eléctrica q (Coulomb) por unidad de tiempo que atraviesa un plano Unidad de corriente eléctrica: Ampere 1 Ampere = 1 Coulomb /seg Carga Elemental [

Más detalles

Transporte de Portadores Marzo de Movimiento térmico de portadores 2. Arrastre de portadores 3. Difusión de portadores

Transporte de Portadores Marzo de Movimiento térmico de portadores 2. Arrastre de portadores 3. Difusión de portadores 86.03/66.25 - Dispositivos Semiconductores Clase 3-1 Clase 3 1 - Física de semiconductores (II) Transporte de Portadores Marzo de 2017 Contenido: 1. Movimiento térmico de portadores 2. Arrastre de portadores

Más detalles

Física de los Semiconductores. 28 de abril de Sitio web: www3.fi.mdp.edu.ar/fes/semic.html

Física de los Semiconductores. 28 de abril de Sitio web: www3.fi.mdp.edu.ar/fes/semic.html Física de los Semiconductores 28 de abril de 2017 Sitio web: www3.fi.mdp.edu.ar/fes/semic.html Dinámica de los portadores de Carga Flujo de corriente en presencia de E y B Cantidad de Portadores (electrones

Más detalles

La gran mayoría de los dispositivos de estado sólido que actualmente hay en el mercado, se fabrican con un tipo de materiales conocido como

La gran mayoría de los dispositivos de estado sólido que actualmente hay en el mercado, se fabrican con un tipo de materiales conocido como 1.- Introducción 2.- Clasificación de los materiales. 3.- Semiconductores intrínsecos. Estructura cristalina. 4.- Semiconductores extrínsecos. Impurezas donadoras y aceptadoras. 4.1.- Semiconductores tipo

Más detalles

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19 Ejercicios relativos al semiconductor 1. Se dispone de una muestra de material semiconductor del que se conocen los siguientes datos a temperatura ambiente: kt = 0,025 ev n i = 1,5 10 10 cm -3 N A = 10

Más detalles

Principios Básicos Materiales Semiconductores

Principios Básicos Materiales Semiconductores Principios Básicos Materiales Semiconductores Definición De Semiconductor Los semiconductores son materiales cuya conductividad varía con la temperatura, pudiendo comportarse como conductores o como aislantes.

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia eléctrica de un resistor se define como la razón entre la caída de tensión, entre los extremos del resistor, y la corriente que circula por éste, tal que Teniendo en cuenta que

Más detalles

UNIDAD 2 Semiconductores

UNIDAD 2 Semiconductores UNIDAD 2 Semiconductores Semiconductores Material capaz de conducir la electricidad mejor que un material aislante, pero no tan bien como un metal, entonces se puede decir que se encuentra a la mitad entre

Más detalles

Si un material tipo P y otro de tipo N se juntan mecánicamente para formar un único cristal, esa juntura se llama juntura PN o diodo de juntura.

Si un material tipo P y otro de tipo N se juntan mecánicamente para formar un único cristal, esa juntura se llama juntura PN o diodo de juntura. CURSO: SEMICONDUCTORES UNIDAD 1: EL DIODO - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. INTRODUCCIÓN Los dispositivos de estado sólido, tales como los diodos de juntura y los transistores se fabrican de

Más detalles

TECNOLOGIA Y COMPONENTES ELECTRONICOS Y FOTONICOS PROBLEMAS DE SEMICONDUCTORES

TECNOLOGIA Y COMPONENTES ELECTRONICOS Y FOTONICOS PROBLEMAS DE SEMICONDUCTORES 1 er CURSO I. T. TLCOMUNICACIÓN CURSO 29-21 TCNOLOGIA Y COMPONNTS LCTRONICOS Y FOTONICOS PROBLMAS D SMICONDUCTORS 1.- Para un semiconductor especial a T=3 K, se sabe que G =1,45 e, N C =1, 1 18 cm -3,

Más detalles

4.- PROPIEDADES ELÉCTRICAS DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II

4.- PROPIEDADES ELÉCTRICAS DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II 4.- DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II 4. Propiedades eléctricas de los sólidos Conductividad eléctrica. Metales, semiconductores y aislantes. Semiconductores intrínsecos y extrínsecos. Dieléctricos.

Más detalles

AMPLIFICADOR DIFERENCIAL BÁSICO CON EL AMPLIFICADOR OPERACIONAL IDEAL

AMPLIFICADOR DIFERENCIAL BÁSICO CON EL AMPLIFICADOR OPERACIONAL IDEAL AMPLIFICADOR DIFERENCIAL BÁSICO CON EL AMPLIFICADOR OPERACIONAL IDEAL Vo = A( v + i vi ) Realimentación negativa Con A =, el voltaje de salida distinto de cero implica v i + = vi = vi Entonces: V 2 v i

Más detalles

INTRODUCCIÓN A LOS SEMICONDUCTORES.

INTRODUCCIÓN A LOS SEMICONDUCTORES. Tema 1 INTRODUCCIÓN A LOS SEMICONDUCTORES. 1.- Introducción 2.- Clasificación de los materiales. 3.- Semiconductores intrínsecos. Estructura cristalina. 4.- Semiconductores extrínsecos. Impurezas donadoras

Más detalles

Semiconductores. Lección Ing. Jorge Castro-Godínez

Semiconductores. Lección Ing. Jorge Castro-Godínez Semiconductores Lección 01.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez Semiconductores

Más detalles

Semiconductores. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica

Semiconductores. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica Semiconductores Lección 01.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Semiconductores 1 / 54 Contenido Semiconductores

Más detalles

Código de colores. Resistencias

Código de colores. Resistencias Resistencias La función de las resistencias es oponerse al paso de la comente eléctrica.su magnitud se mide en ohmios ( ) y pueden ser variables o fijas. El valor de las resistencias variables puede ajustarse

Más detalles

CAPÍTULO 2. DISPOSITIVOS ELECTRÓNICOS Y FOTÓNICOS

CAPÍTULO 2. DISPOSITIVOS ELECTRÓNICOS Y FOTÓNICOS CAPÍTULO 2. DISPOSITIVOS ELECTRÓNICOS Y FOTÓNICOS TEMA 4. PRINCIPIOS FÍSICOS DE LOS SEMICONDUCTORES. 4.1 INTRODUCCIÓN Las características físicas que permiten distinguir entre un aislante, un semiconductor

Más detalles

EL TRANSISTOR BIPOLAR DE UNIÓN

EL TRANSISTOR BIPOLAR DE UNIÓN L TRANSSTOR POLAR D UNÓN 1. ntroducción V V P N P V N P N V V V = 0 V = V V V V Región activa Región de saturación Región activa inversa Región de corte V V Región de corte Región activa inversa Transistor

Más detalles

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica Otros tipos de Diodos Diodo Schottky Se forma uniendo un metal como platino o aluminio a un silicio tipo p o n. Utilizado en circuitos integrados en donde se requiera conmutación a altas velocidades Voltaje

Más detalles

Tema 3: COMPONENTES NO LINEALES: DIODOS

Tema 3: COMPONENTES NO LINEALES: DIODOS Tema 3: COMPOETES O LIEALES: DIODOS Mª del Carmen Coya Párraga Fundamentos de Electrónica 1 Índice: 3.1) Introducción a los elementos de circuitos no lineales: Propiedades básicas. Análisis gráfico con

Más detalles

Tecnología Microelectrónica Pagina 1 Elementos de Microelectrónica Sección 1

Tecnología Microelectrónica Pagina 1 Elementos de Microelectrónica Sección 1 Tecnología Microelectrónica Pagina 1 Elementos de Microelectrónica Sección 1 1- ELEMENTOS DE MICROELECTRÓNICA 1.1- Cristal PN sin Excitar El cristal de tipo P se caracteriza por poseer una gran cantidad

Más detalles

Física de semiconductores

Física de semiconductores Física de semiconductores Clasificación de los materiales En función de su conductividad se clasifican en: Conductores Semiconductores Aislantes Sin embargo la conductividad está sujeta a la influencia

Más detalles

3.1. Conceptos básicos sobre semiconductores

3.1. Conceptos básicos sobre semiconductores 1 3.1. Conceptos básicos sobre semiconductores Estructura interna de los dispositivos electrónicos La mayoría de los sistemas electrónicos se basan en dispositivos semiconductores Resistencia: R=ρL/S Materiales

Más detalles

Dispositivos Semiconductores 2do Cuatrimestre de 2012

Dispositivos Semiconductores  2do Cuatrimestre de 2012 DIODOS ESPECIALES Introducción Este apunte es una introducción general a diversos diodos con propiedades eléctricas especiales. Para comprender en detalle el funcionamiento de estos dispositivos se requieren

Más detalles

TRANSISTOR BIPOLAR: TEMA 2.1

TRANSISTOR BIPOLAR: TEMA 2.1 TRANSISTOR BIPOLAR: TEMA 2.1 Zaragoza, 12 de noviembre de 2013 ÍNDICE TRANSISTOR BIPOLAR Tema 2.1 Introducción Las corrientes en el BJT Ecuaciones de Ebers Moll TRANSISTOR BIPOLAR Tema 2.1 Introducción

Más detalles

TEMA 4 (Parte III) EL ENLACE QUÍMICO. METÁLICO

TEMA 4 (Parte III) EL ENLACE QUÍMICO. METÁLICO TEMA 4 (Parte III) EL ENLACE QUÍMICO. METÁLICO Mª PILAR RUIZ OJEDA BORJA MUÑOZ LEOZ Contenidos: 1. Introducción 2. Propiedades de los metales 3. Teoría del mar de electrones 4. Teoría de bandas: 4.1. Conductores

Más detalles

ESTRUCTURA DE BANDAS (REPASO)

ESTRUCTURA DE BANDAS (REPASO) Problemas de Electrónica Física 1 ESTRUCTURA DE BANDAS (REPASO) 1. En la aproximación del electrón fuertemente ligado se obtiene, para la primera banda de conducción de un sólido con estructura cúbica,

Más detalles

GUIA DIDACTICA DE ELECTRONICA N º6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE SEGUNDO 6

GUIA DIDACTICA DE ELECTRONICA N º6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE SEGUNDO 6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

GUIA DIDACTICA DE ELECTRONICA N º6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S.

GUIA DIDACTICA DE ELECTRONICA N º6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

Contactos semiconductor - semiconductor

Contactos semiconductor - semiconductor Contactos semiconductor semiconductor Lección 02.2 Ing. Jorge CastroGodínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge CastroGodínez

Más detalles

UD6.- TEORIA DE SEMICONDUCTORES EL DIODO

UD6.- TEORIA DE SEMICONDUCTORES EL DIODO UD6. TEORIA DE SEMICONDUCTORES EL DIODO Centro CFP/ES CONSTITUCIÓN INTERNA DE LA MATERIA Moléculas y Átomos 1 CONSTITUCIÓN INTERNA DE LA MATERIA Clasificación de los cuerpos CONSTITUCIÓN INTERNA DE LA

Más detalles

TEMA 7: Desviaciones respecto a la ecuación de Shockley: el diodo real

TEMA 7: Desviaciones respecto a la ecuación de Shockley: el diodo real Índice TEMA 7: Desviaciones respecto a la ecuación de Shockley: el diodo real 7.1 7.1. INTRODUCCIÓN 7.1 7.2. DESIACIONES BAJO POLARIZACIÓN DIRECTA 7.3 7.3. DESIACIONES BAJO POLARIZACIÓN INERSA 7.6 7.3.1.

Más detalles

Corriente Eléctrica. Alfonso Zozaya. Julio de 2003

Corriente Eléctrica. Alfonso Zozaya. Julio de 2003 Corriente Eléctrica Alfonso Zozaya Julio de 2003 Índice Índice 1 1. Densidad de corriente 2 1.1. Conservación de la carga o continuidad de la corriente, 3. 1.2. Tiempo de expansión o de relajación, 3.

Más detalles

Física de semiconductores. El diodo

Física de semiconductores. El diodo Fundamentos Físicos y Tecnológicos de la Informática Física de semiconductores. El diodo - Clasificación de los materiales. Teoría del electrón libre y teoría de bandas. Semiconductores extrínsecos e intrínsecos.

Más detalles

DEPARTAMENTO: Electrónica ASIGNATURA: CÓDIGO: PAG.: 1 Electrónica I REQUISITOS: Redes Eléctricas I. (2107)

DEPARTAMENTO: Electrónica ASIGNATURA: CÓDIGO: PAG.: 1 Electrónica I REQUISITOS: Redes Eléctricas I. (2107) CÓDIGO: PAG.: 1 I Redes s I. (2107) PROPÓSITOS Esta asignatura es la continuación de los estudios en electrónica que deben cursar los estudiantes del ciclo común en el plan de estudio de y es requisito

Más detalles

Clase Física de semiconductores (I) Marzo de Índice de temas:

Clase Física de semiconductores (I) Marzo de Índice de temas: 86.03/66.25 - Dispositivos Semiconductores - 1 o Cuat. 2015 Clase 2-1 Clase 2 1 - Física de semiconductores (I) Marzo de 2015 Índice de temas: 1. Modelo de enlace del Silicio: electrones y huecos 2. Generación

Más detalles

1] Indique una secuencia posible de operaciones que permita obtener un diodo como el esquematizado.

1] Indique una secuencia posible de operaciones que permita obtener un diodo como el esquematizado. GUIA DE LECTURA/PROBLEMAS. DIODOS. CONTENIDOS La unión p-n, zona de carga espacial, polarización directa e inversa, curvas características, capacidad asociada a la unión p-n y circuitos con diodos. Resolución:

Más detalles

1. Identificar los electrodos de un diodo (de Silicio o de Germanio).

1. Identificar los electrodos de un diodo (de Silicio o de Germanio). EL DIODO SEMICONDUCTOR Objetivos 1. Identificar los electrodos de un diodo (de Silicio o de Germanio). 2. Probar el estado de un diodo utilizando un ohmetro. 3. Obtener curvas características de un diodo.

Más detalles

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos.

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Diapositiva 1 Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Característica: n p n ii Clasificación: Tipo-n Tipo-p Diapositiva 2

Más detalles

Introducción a los Semiconductores

Introducción a los Semiconductores Introducción a los Semiconductores Un semiconductor es un elemento material cuya conductividad eléctrica puede considerarse situada entre las de un aislante y la de un conductor, considerados en orden

Más detalles

TEMA 3 TEORIA DE SEMICONDUCTORES

TEMA 3 TEORIA DE SEMICONDUCTORES TEMA 3 TEORIA DE SEMICONDUCTORES PARTÍCULAS CARGADAS 8ÁTOMO Menor artícula de un elemento químico que osee sus roiedades 4ELECTRÓN Partícula elemental del átomo cargada negativamente Masa: m = 9,11 1-31

Más detalles

Corriente, Resistencia y Fuerza Electromotriz

Corriente, Resistencia y Fuerza Electromotriz Corriente Corriente, Resistencia y Fuerza Electromotriz La unidad de corriente en MKS es:1 Ampere(A)=1 C s La dirección de la corriente es la dirección de movimiento de las cargas positivas Corriente Eléctrica

Más detalles

(1) dt dq es la carga que pasa a través de la sección transversal

(1) dt dq es la carga que pasa a través de la sección transversal La corriente y la resisitencia Hasta ahora, se han estudiado muchos casos de la electrostática. Ahora se estudiará la corriente eléctrica que consiste en considerar a las cargas en movimiento. La corriente

Más detalles

Práctica Nº 4 DIODOS Y APLICACIONES

Práctica Nº 4 DIODOS Y APLICACIONES Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente

Más detalles

Funcionamiento 2 Diodo como rectificador 1

Funcionamiento 2 Diodo como rectificador 1 DIODOS 1.DIODO DE VACÍO Sir John Ambrose Fleming (1848-1945) físico e ingeniero eléctrico británico. El 16 de noviembre de 1904 registró la patente de su invento, el diodo o válvula termoiónica usando

Más detalles

UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica. Fecha de Elaboración Fecha de Revisión.

UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica. Fecha de Elaboración Fecha de Revisión. UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica Elaboró Revisó Nelson Enrique Vera [Escriba aquí el nombre] Fecha de Elaboración Fecha de Revisión 9 de agosto

Más detalles

Hoja de Problemas 6. Moléculas y Sólidos.

Hoja de Problemas 6. Moléculas y Sólidos. Hoja de Problemas 6. Moléculas y Sólidos. Fundamentos de Física III. Grado en Física. Curso 2015/2016. Grupo 516. UAM. 13-04-2016 Problema 1 La separación de equilibrio de los iones de K + y Cl en el KCl

Más detalles

Semiconductores. Cristales de silicio

Semiconductores. Cristales de silicio Semiconductores Son elementos, como el germanio y el silicio, que a bajas temperaturas son aislantes. Pero a medida que se eleva la temperatura o bien por la adicción de determinadas impurezas resulta

Más detalles

DIODO. Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido

DIODO. Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido DIODO Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido Símbolo y convenciones V - I: V F - - V R I F I R DIODO Ideal vs. Semiconductor DIODO

Más detalles

TEMA 5: INTROD. AL ESTADO SÓLIDO

TEMA 5: INTROD. AL ESTADO SÓLIDO 5.3 Electrones libres en metales: modelo de Drude Se pretende explicar las propiedades de los metales a partir de diferentes modelos (5.3: Drude y 5.4: bandas) Propiedades de los metales: Todos, excepto

Más detalles

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRICIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Prof. Rafael Martín Lamaison 5 de Marzo de 2004 COTEIDO Introducción: conceptos básicos Átomos Electrones

Más detalles

Electrónica Analógica. Conferencia #4 Funcionamiento y características del transistor bipolar.

Electrónica Analógica. Conferencia #4 Funcionamiento y características del transistor bipolar. Electrónica Analógica Conferencia #4 Funcionamiento y características del transistor bipolar. Transistor bipolar. Principio de funcionamiento. Modelos y representación del BJT. Modos de operación. Bibliografía:

Más detalles

Diodos, Tipos y Aplicaciones

Diodos, Tipos y Aplicaciones Diodos, Tipos y Aplicaciones Andrés Morales, Camilo Hernández, David Diaz C El diodo ideal es un componente discreto que permite la circulación de corriente entre sus terminales en un determinado sentido,

Más detalles

Electrónica y Semiconductores. Importancia

Electrónica y Semiconductores. Importancia Electrónica y Semiconductores Importancia Materia de vanguardia Constantes cambios y avances Miniaturización La electrónica es la responsable del avance tecnológico humano de los últimos tiempos 1 Historia

Más detalles

TEORÍA DEL DIODO. Tema Unión p-n. Diodo sin polarizar 2.- Polarización del diodo Polarización inversa Polarización directa.

TEORÍA DEL DIODO. Tema Unión p-n. Diodo sin polarizar 2.- Polarización del diodo Polarización inversa Polarización directa. Tema 2 TEORÍA DEL DIODO. 1.- Unión p-n. Diodo sin polarizar 2.- Polarización del diodo. 2.1.- Polarización inversa. 2.2.- Polarización directa. 3.- Curva característica del diodo. 4.- El diodo como elemento

Más detalles

1.1 Definición de semiconductor

1.1 Definición de semiconductor Índice 1.- Introducción 1.1- Definición 1.2-Modelo de bandas de energía 1.3- Materiales intrínseco y extrínseco 2.-Tipos de materiales semiconductores 2.1- Estequiométricos (aislantes) 2.2- Imperfecciones

Más detalles

Transistor BJT. William Shockley, John Bardeen y Walter H. Brattain Nobel de Física en 1956

Transistor BJT. William Shockley, John Bardeen y Walter H. Brattain Nobel de Física en 1956 Transistor BJT William Shockley, John Bardeen y Walter H. Brattain 1947-48 Nobel de Física en 1956 Transistor BJT Tres terminales: Colector Base Emisor BJT: Bipolar Junction Transistor Se suelen usar más

Más detalles

FUNDAMENTO DE ELECTRÓNICA

FUNDAMENTO DE ELECTRÓNICA FUNDAMENTO DE ELECTRÓNICA REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN SUPERIOR INSTITUTO UNIVERSITARIO EXPERIMENTAL DE TECNOLOGÍA DE LA VICTORIA LA VICTORIA EDO. ARAGUA

Más detalles

CLASIFICACIÓN DE LOS MATERIALES POR SU CONDUCTIVIDAD. Mg. Ing. Ana María Echenique

CLASIFICACIÓN DE LOS MATERIALES POR SU CONDUCTIVIDAD. Mg. Ing. Ana María Echenique CLASIFICACIÓN DE LOS MATERIALES POR SU CONDUCTIVIDAD Mg. Ing. Ana María Echenique CONCEPTO DE ELECTRÓNICA Laelectrónica,esunaramadelafísicaquetieneuncampodeaplicaciónmuy amplio Es el campo de la Bioingeniería,

Más detalles

Observemos que sucede cuando juntamos el metal y el semiconductor desde el punto de vista del diagrama de bandas:

Observemos que sucede cuando juntamos el metal y el semiconductor desde el punto de vista del diagrama de bandas: JUNTURA METAL SEMICONDUCTOR: Diagrama de Banda de ambos materiales: E FM : Nivel de Fermi del metal. E FS : Nivel de Fermi del semiconductor. Observemos que sucede cuando juntamos el metal y el semiconductor

Más detalles

ELEN 3311 Electrónica I Prof. C. González Rivera Capítulo 1

ELEN 3311 Electrónica I Prof. C. González Rivera Capítulo 1 ELEN 3311 Electrónica I - 1 - I. Sección 1.1, 1.: Materiales Semiconductores y la Junta p-n A. Estructura atómica Un estudio de los materiales, incluyendo su estructura atómica, es indispensable al estudiar

Más detalles

DIODO DE UNIÓN P N TECNOLOGÍA ELECTRÓNICA (2009/2010) BRÉGAINS, JULIO IGLESIA, DANIEL LAMAS, JOSÉ TE (09/10). TEMA 2: DIODO DE UNIÓN PN.

DIODO DE UNIÓN P N TECNOLOGÍA ELECTRÓNICA (2009/2010) BRÉGAINS, JULIO IGLESIA, DANIEL LAMAS, JOSÉ TE (09/10). TEMA 2: DIODO DE UNIÓN PN. DIODO DE UNIÓN P N TECNOLOGÍELECTRÓNIC(2009/2010) BRÉGAINS, JULIO IGLESIA, DANIEL LAMAS, JOSÉ DEPARTAMENTO DE ELECTRÓNICA Y SISTEMAS SÍMBOLO Y ESTRUCTURAS DEL DIODO PN 2 DE 30 CIRCUITO ABIERTO UNIÓN P

Más detalles

Lección : El diodo de potencia

Lección : El diodo de potencia 2.1 Construcción y encapsulado UNIÓN -N DE SEMICONDUCTOR: CÁTODO N ÁNODO CÁTODO ÁNODO Ecuación de Shockley V VT i IS e 1 Tensión Térmica V T k T q k: Constante de Boltzmann q: Carga del electrón T: Temperatura

Más detalles

Transistor BJT: Fundamentos

Transistor BJT: Fundamentos Transistor BJT: Fundamentos Lección 05.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT 1 / 48 Contenido

Más detalles

GUIA DIDACTICA DE ELECTRONICA N º8 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6

GUIA DIDACTICA DE ELECTRONICA N º8 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

4. DIFUSION EN SÓLIDO

4. DIFUSION EN SÓLIDO 4. DIFUSION EN SÓLIDO MATERIALES 13/14 ÍNDICE 1. Conceptos generales. Mecanismos de difusión. 3. Leyes de Fick. 1. Estado estacionario.. Estado no estacionario. 4. Factores de difusión. 5. Aplicaciones

Más detalles

ELECTRICIDAD Y MAGNETISMO

ELECTRICIDAD Y MAGNETISMO 28-10-2011 UNAM ELECTRICIDAD Y MAGNETISMO TEMA TRES ING. SANTIAGO GONZALEZ LOPEZ CIRCUITOS ELECTRICOS OBJETIVO CARGAS ELECTRICAS EN REPOSO: ELECTROSTATICA CARGAS ELECTRICAS EN MOVIMIENTO: CORRIENTE ELECTRICAS

Más detalles