El teorema de Torriccelli te da la manera de calcular la velocidad con la que sale el agua por el agujero. La fórmula de Torriccelli es :
|
|
- César Rey Montoya
- hace 2 años
- Vistas:
Transcripción
1 - 1 - EJEMPLOS DE APLICACIÓN DEL TEOREMA DE BERNOULLI ( IMPORTANTE ) Hay algunas situaciones que a veces toman en los parciales. Pueden ser preguntas teóricas o pueden ser problemas en donde haya que aplicar Bernoulli. Fijate: 1 -TEOREMA DE TORRICCELLI Imaginate un tanque con agua. Le hacés un agujero a una profundidad h por debajo de la superficie. El agua va a empezar a salir con cierta velocidad. El teorema de Torriccelli te da la manera de calcular la velocidad con la que sale el agua por el agujero. La fórmula de Torriccelli es : En esta fórmula g es la aceleración de la gravedad. V s es la velocidad con la que sale el agua en m/s. Hache es la profundidad del agujero. Va en metros y se mide desde la superficie del agua. Atención: El agujero puede estar en las paredes o en el fondo del tanque. Ejemplo: UN FRASQUITO CONTIENE ALCOHOL DE DENSIDAD 0,8 g /cm 3. SE LE HACE UN AGUJERITO DE 1 mm DE RADIO EN EL COSTADO A UNA DISTANCIA DE 0 cm POR DEBAJO DE LAS SUPERFICIE DEL LIQUIDO. CALCULAR CON QUÉ VELOCIDAD SALE EL ALCOHOL POR EL AGUJERITO. ALCOHOL 0 cm FRASCO Acá sale Solución: Aplico el teorema de Torriccelli. La velocidad de salida es raíz de ge hache. Entonces: Vs =.10 m/s. 0, m
2 - - Vs = m/s VELOCIDAD DE SALIDA NOTA: La velocidad con que la que sale el agua no depende de la densidad del líquido ni del tamaño del agujerito. Por ejemplo, V SALIDA es la misma si pongo agua o pongo mercurio. - SIFON Para la física, un sifón es un cañito que se usa para pasar líquidos de un lado a otro. Vendría a ser una cosa así: Lo que uno puede calcular aplicando Bernoulli es la velocidad con que va a salir el agua. Al igual que pasa en el teorema de Torriccelli, acá también la velocidad de salida es raíz de ge hache: Atención: Acá h es la distancia que va desde la parte de abajo del tubo hasta la superficie del agua. ( Ver dibujo ) EJEMPLO: CALCULAR CON QUE VELOCIDAD SALE ACEITE DE DENSIDAD 0,8 g/cm 3 POR UN SIFON DE RADIO 1 cm. ACEITE h = 0, m Solución: Aplico la fórmula para el sifón. La velocidad de salida es raíz de ge hache. Entonces: Vs =.10 m/s. 0, m
3 - 3 - Vs = m/s VELOCIDAD DE SALIDA NOTA: Fijate que la velocidad de salida no depende de la densidad del líquido. ( Ojo ). Tampoco depende del diámetro del tubo, de la forma del tubo o cosas por el estilo. 3- VIENTO SOBRE UN CARTEL Imaginate que tenés un cartel o alguna superficie plana en donde pega el viento. El viento ejerce una fuerza al pegar sobre el cartel. Esa fuerza se puede calcular por Bernoulli suponiendo que la velocidad del viento al llegar al cartel es CERO. Queda: En esta ecuación δ AIRE es la densidad del aire ( = 1,3 kg/m 3 ). V A es la velocidad del aire en m/seg. Sup C es la superficie del cartel en m. EJEMPLO CALCULAR QUE FUERZA EJERCE UN VIENTO DE 36 Km / h SOBRE UN CARTEL DE 1 m DE SUPERFICIE Solución: La fuerza del aire sobre el cartel es: F = 1. δ AIRE.(V Aire Sup F = 0,5 x 1,3 kg / m 3 x (10 m/seg) x 1 m ) x F = 65 N = 6,5 Kgf FUERZA QUE EJERCE EL VIENTO SOBRE EL CARTEL
4 4 FLUIDO HUMANO A veces se puede comparar el fluido humano o el fluido de autos con los líquidos. Si mirás una autopista desde arriba, vas a ver miles de autos circulando. Si considerás que cada auto representa una molécula de líquido, entonces se podría hablar de un una especie de " fluido de autos que circula ". Algo parecido pasa a la salida de la cancha o de un recital. Fijate que cuando hay un auto parado en la autopista, todo el tráfico se frena y la presión entre los autos aumenta. Esto pasa ATRÁS de la obstrucción. Pero en el lugar mismo de la obstrucción, los autos van rápido y la presión es chica. Lo mismo pasa a la salida de un recital: El lugar donde más apretada está la gente es del lado de adentro. En la puerta donde la sección de salida es chica, la presión es baja y la velocidad del fluido humano es alta. Ves cómo es la cosa? Advertencia: con estas comparaciones hay que tener cuidado. Los líquidos NO son compresibles. Los autos en una autopista o el fluido humano, sí. ( Las personas o los autos se pueden acercar unos a otros ). 5 - ARTERIA O VENA CON UNA OBSTRUCCION Parece que en la medicina es bastante común que las arterias o las venas se taponen con cosas tipo colesterol y demás. Concretamente la situación es esta: Si se le pregunta a una persona que cree que va a ocurrir con la arteria cuando se obstruye, la respuesta más común es esta: Y bueno, al chocar con la obstrucción, la sangre se va a frenar y va a empezar a presionar hacia fuera porque quiere pasar. Por lo tanto la arteria se va a dilatar y se va a formar como un globo.
5 - 5 - Este razonamiento es muy lindo y muy intuitivo pero está MAL. Lo que pasa es justo al revés. Fijate. El caudal que manda el corazón es constante. Este caudal no se frena por ningún motivo. Para poder pasar por la obstrucción lo que hace la sangre es aumentar su velocidad. ( La velocidad aumenta porque el diámetro de la arteria disminuye ). Entonces, qué es lo que pasa? Y bueno, razonemos con la frase salvadora de la hidrodinámica. Esta frase es: Conclusión: al aumentar la velocidad dentro de la arteria, la presión adentro tiene que disminuir. Pero afuera de la arteria la presión sigue siendo la misma. Entonces la presión de afuera le gana a la presión de adentro y la arteria se comprime. Y qué pasa al comprimirse la arteria? Rta: La obstrucción se cierra más. Esto provoca un aumento de la velocidad dentro de la obstrucción, lo que a su vez obliga a la arteria a cerrarse más todavía. De esta manera, la arteria se va cerrando más y más hasta que sobreviene el COLAPSO. Esto significa que la arteria tiende a cerrarse del todo e impide el pasaje de sangre. Parece que esto es lo que pasa a veces cuando una persona tiene un ataque cardíaco. Creo que también se da en el cerebro y en otros lados. Los médicos lo llaman trombosis o algo así. Esta es una de las pocas aplicaciones verdaderas verdaderas que tiene la biofísica a la medicina. ( No me digas que no está bueno! ) Fin Hidrodinámica
Actividad: Qué es capilaridad?
Qué es capilaridad? Nivel: 3º medio Subsector: Ciencias físicas Unidad temática: Ver video Capilaridad Actividad: Qué es capilaridad? Los fluidos son un conjunto de moléculas distribuidas al azar que se
EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI
EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI 1) A través del medidor Venturi de la figura fluye hacia abajo aceite con gravedad específica de 0,90. Si la deflexión del manómetro h
PROBLEMAS DE FLUIDOS. CURSO 2012-2013
PROBEMAS DE FUIDOS. CURSO 0-03 PROBEMA. Principio de Arquímedes. Un bloque metálico de densidad relativa 7.86 se cuelga de un dinamómetro y se mide su peso. Después se introduce en un recipiente lleno
FLUIDOS IDEALES EN MOVIMIENTO
FLUIDOS IDEALES EN MOVIMIENTO PREGUNTAS 1. En que principio esta basado la ecuación de Bernoulli. 2. La velocidad del agua en una tubería horizontal es de 6 cm. de diámetro, es de 4 m/s y la presión de
TEMA 2.PROPIEDADES CARACTERISTICAS. SUSTANCIAS Y MEZCLAS
TEMA 2.PROPIEDADES CARACTERISTICAS. SUSTANCIAS Y MEZCLAS Al observar los objetos que nos rodean en seguida advertimos la diferencia que existe entre el objeto y la sustancia que lo forma. Así, de la misma
Colegio : Liceo Miguel de Cervantes y Saavedra Dpto. Física (3 ero Medio) Profesor: Héctor Palma A.
Tópico Generativo: La presión en vasos comunicantes. Aprendizajes Esperados: 1.-Aplicar la definir conceptual de presión y aplicarla a vasos comunicante. 2.- Caracterizar la presión en función de la fuerza
TRABAJO Y ENERGIA. Trabajo de una fuerza
TRABAJO Y ENERGIA ASIMOV - 9 - TRABAJO Y ENERGIA TRABAJO Y ENERGIA Trabajo de una fuerza Uno suele pensar que una fuerza es la acción que uno ejerce con la mano al tirar o empujar una cosa. Por ejemplo,
VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10
VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 Instrucciones: Al final de este examen se encuentra la hoja de respuestas que deberá contestar. o ponga su nombre en ninguna de las hojas, escriba
Hidrodinámica en la Medicina Flujo de Fluidos en el Cuerpo Practica
Hidrodinámica en la Medicina Flujo de Fluidos en el Cuerpo Practica Dr. Willy H. Gerber Instituto de Ciencias Físicas y Matemáticas Facultad de Ciencias Universidad Austral de Chile Valdivia, Chile 1 Fuente
Agustin Martin Domingo
Mecánica de fluidos. Física y Mecánica de las Construcciones.. Martín. Grupo F. ETSM-UPM 1 1. gua de mar de densidad 1,083 g/cm 3 alcanza en un depósito grande una altura de1,52 m. El depósito contiene
Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real
Tema 1. Hidráulica. Generalidades 1. Definición. Propiedades fundamentales de los líquidos 3. Conceptos previos: Peso, Densidad, Peso específico, Presión 4. Compresibilidad de un líquido 5. Tensión superficial
Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia.
INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA I. CUESTIONARIO GENERAL IV PERIODO. NOTA: Es importante que cada una de las cuestiones así sean tipo Icfes, deben ser
b) Determinar la densidad de un líquido, aplicando el principio de igualdad de presiones en puntos a igual profundidad en un fluido en reposo.
1 Departamento: Ciencias Básicas Laboratorio: Física y Química Asignatura: Física. PRESIÓN MANOMÉTRICA Objetivos específicos a) Medir las diferentes alturas y presión que se indique. b) Determinar la densidad
GUÍA DE EXPERIENCIAS MECÁNICA DE FLUÍDOS
GUÍA DE EXPERIENCIAS MECÁNICA DE FLUÍDOS 1. DENSIDAD Materiales: Cilindro de Arquímedes Dinamómetro La densidad de un cuerpo se define como la cantidad de materia por unidad de volumen, sus unidades son
Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola ESTÁTICA DE FLUIDOS
Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola ESTÁTICA DE FLUIDOS CAMPUS TECNOLÓGICO DE LA UNIVERSIDAD DE NAVARRA. NAFARROAKO UNIBERTSITATEKO
EL AREA DEL GRAFICO DE F EN FUNCION DE d ES EL L REALIZADO
- 1 - EL AREA DEL GRAFICO DE F EN FUNCION DE d ES EL L REALIZADO Suponete que tenés un carito que tiene una fuerza aplicada. La fuerza empuja y el carrito acelera. Al moverse la fuerza F está realizando
TEMA II.2. Medición de Presiones. Dr. Juan Pablo Torres-Papaqui
TEMA II.2 Medición de Presiones Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus
JUAN ZITNIK Manual de vuelo del PIPER PA-11 Aerodinámica AERODINAMICA
Definición AERODINAMICA Es la rama de la mecánica de fluidos que se ocupa del movimiento del aire y otros fluidos gaseosos, y de las fuerzas que actúan sobre los cuerpos que se mueven en dichos fluidos.
= m V. recordemos que el volumen de una esfera es de V = 4 3 r3
Estatica de Fluidos Problema. Calcule la masa de una esfera sólida de hierro que tiene un diamétro de 3:00cm: Solución. La masa la calcularemos a partir del volumen de la esfera y la densidad del hierro,
MECANICA DE FLUIDOS PARA BACHILLERATO. Jorge Parra Vargas cod 20012135001 Jaime Niño Rocha cod 20012135023. Introducción
MECANICA DE FLUIDOS PARA BACHILLERATO Jorge Parra Vargas cod 20012135001 Jaime Niño Rocha cod 20012135023 Introducción Una tendencia en nuestro país es la de enseñar física en cursos de educación básica.
PRÁCTICA: TUNEL DE VIENTO
PRÁCTICA: TUNEL DE VIENTO htttp://www.uco.es/moodle Descripción de los equipos y esquema de la instalación El equipo utilizado en esta práctica es un túnel de aerodinámico subsónico HM 70 con un tramo
Tema: Fluidos Eje temático: Física. Mecánica - Fluidos Contenido: Leyes de Bernoulli; Roce y velocidad límite; Presión sanguínea.
Tema: Fluidos Eje temático: Física. Mecánica - Fluidos Contenido: Leyes de Bernoulli; Roce y velocidad límite; Presión sanguínea. Hidrodinámica En este capítulo estudiaremos lo que sucede cuando los fluidos
CAPÍTULO SIETE. HIDROSTÁTICA E HIDRODINÁMICA
CAPÍTULO SIETE. HIDROSTÁTICA E HIDRODINÁMICA Los fluidos son sustancias que se pueden escurrir o fluir, mediante una aplicación apropiada de fuerzas. En términos generales podemos clasificar los fluidos
Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación.
Problema.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. F = 99871 N z = 1,964 cm Problema. Un dique tiene la forma que se indica
3. CÁLCULO HIDRÁULICO
3. CÁLCULO HIDRÁULICO Fig. 3.60- Instalación pag. 3.23 CÁLCULO HIDRÁULICO SELECCIÓN DE DIÁMETRO Y CLASE DE LOS TUBOS DE PRESIÓN La selección del diámetro y clase de presión depende de los siguientes factores:
EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O.
EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O. La finalidad de esta colección de ejercicios resueltos consiste en que sepáis resolver las diferentes situaciones que se nos plantea en el problema. Para ello seguiremos
SE CONSERVA LA ENERGÍA
95 CHOQUE ELASTICO Tengo un choque elástico cuando los cuerpos chocan y no se pierde energía en el choque. Es decir, en los choques elásticos SE CONSERVA LA ENERGÍA. ( Atento con esto porque es el concepto
Al desarrollar los cuestionarios, tener en cuenta los procesos desarrollados en clase, cada respuesta debe tener justificación.
AREA DE CIENCIAS NATURALES Y EDUCACIÓN AMBIENTAL Asignatura: FÍSICA Curso DÉCIMO Bimestre SEGUNDO Fecha 4.03.11 Elaboró Prof. LUIS ALBERTO GONZÁLEZ VEGA Revisó Prof. CAROLINA CHAVEZ V. HACIA UN PENSAMIENTO
I. GENERALIDADES. Ec.N 1 4. donde: A = Área de la sección de la tubería (m 2 ) p = 3.14159 D = Diámetro interno (m)
HIRÁULICA E TUBERIAS I. GENERALIAES Las tuberías pueden estar construidas por varios materiales. Poseen un diámetro que es aquel que define una sección o área para que circule el agua. Según sea el diámetro,
FÍSICA Y QUÍMICA 3º ESO
FÍSICA Y QUÍMICA 3º ESO CUADERNO DE FICHAS Alumno: ---------------------------------------------------------------------------------------------------- 1 2 PRESENTACIÓN 1. Al estudiar el movimiento de
Módulo 3: Fluidos. Fluidos
Módulo 3: Fluidos 1 Fluidos Qué es un fluido? En Física, un fluido es una sustancia que se deforma continuamente (fluye) bajo la aplicación de una tensión tangencial, por muy pequeña que sea. Es decir,
ASIMOV FISICA PARA EL CBC, Parte 2
FISICA PARA EL CBC, Parte LF- FISICA Para el CBC - PARTE - DINAMICA - TRABAJO Y ENERGIA DINAMICA LEYES DE NEWTON - DIAGRAMAS DE CUERPO LIBRE - CUERPOS VIN- CULADOS - PLANO INCLINADO - ROZAMIENTO - DINAMICA
Capítulo 6. Fluidos reales
Capítulo 6 Fluidos reales 1 Viscosidad El rozamiento en el movimiento de los fluidos se cuantifica a través del concepto de viscosidad, η, que se define como: F A = η v d El coeficiente de viscosidad tiene
2 Sistemas materiales
EJERCICIOS PROPUESTOS 2.1 Indica cuáles de las siguientes expresiones definen sistemas materiales y cuáles se refieren a sus propiedades. Una hoja de papel, el butano de un encendedor, el sabor amargo,
ASIMOV BIOFISICA PARA EL CBC, Parte 1
ASIMOV BIOFISICA PARA EL CBC, Parte 1 LBIO-1 BIOFISICA Para el CBC - PARTE 1 - * CINEMATICA, DINAMICA, TRABAJO Y ENERGIA * HIDROSTATICA, HIDRODINAMICA, VISCOSIDAD * DIFUSION, OSMOSIS, HUMEDAD RELATIVA
Calibración del termómetro
Calibración del termómetro RESUMEN En esta práctica construimos un instrumento el cual fuera capaz de relacionar la temperatura con la distancia, es decir, diseñamos un termómetro de alcohol, agua y gas
Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría.
Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría. Como proceder: a.-imprima los contenidos de esta guía, el mismo contiene tablas y gráficas importantes para el desarrollo de
P cabeza Sca 5 1 0 6 m 2 2 10 6 Pa. beza. 6 m 2 10 8 Pa unta
Pág. 1 16 Ejercemos una fuerza de 10 N sobre un clavo. Si la superficie de su cabeza es de 5 mm y la de la punta 0,1 mm, qué presión se ejercerá al aplicar la fuerza sobre uno u otro de sus extremos? La
CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS
CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS SISTEMA TERRENAL Normas generales Las antenas para la captación de las señales terrenales se montarán sobre mástil o torreta, bien arriostradas
Mecánica de Fluidos y Máquinas Hidráulicas
Mecánica de Fluidos y Máquinas Hidráulicas Tema 04. Dinámica de Fluidos Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo Licencia:
INTERCAMBIO MECÁNICO (TRABAJO)
Colegio Santo Ángel de la guarda Física y Química 4º ESO Fernando Barroso Lorenzo INTERCAMBIO MECÁNICO (TRABAJO) 1. Un cuerpo de 1 kg de masa se encuentra a una altura de 2 m y posee una velocidad de 3
CALCULAR EL MODULO DE ELASTICIDAD DE UN RESORTE, AL CUAL SE LE APLICA UN ESFUERZO DE 600 N Y SE DEFORMA 20CM. RESP: K= 3000 N/mts
EJERCICIOS DE ELASTICIDAD. 1.- cuando una masa de 500 g cuelga de un resorte, éste se alarga 3 cm.? Cual es la constante elástica?: R.- 1.63 N/M 2.- Cuál es el incremento del alargamiento en el resorte
Mecánica de Fluidos Trabajo Práctico # 10 - Capa límite, Flujos desarrollados - Problemas Resueltos
Mecánica de Fluidos Trabajo Práctico # 10 - Capa límite, Flujos desarrollados - Como Proceder: Lea los contenidos de la parte Teórica correspondiente al Módulo 09 y 10, haga un resumen de conceptos y de
TERMODINAMICA 1 Conceptos Basicos
TERMODINAMICA 1 Conceptos Basicos Prof. Carlos G. Villamar Linares Ingeniero Mecánico MSc. Matemáticas Aplicada a la Ingeniería 1 CONTENIDO DEFINICIONES BASICAS Definición de Termodinámica, sistema termodinámico,
- 1 - HUMEDAD RELATIVA
- 1 - ALGO FLOTA EN EL AMBIENTE HUMEDAD RELATIVA Mirá el aire que te rodea. Parece ser solo aire, pero en realidad también tiene vapor de agua. Ese vapor no se ve, pero flota en el ambiente. Está en forma
FLUJO DE FLUIDOS. - m sal = DE VC. o m. m ent. - E sal. E ent. o E FUNDAMENTO DEL FLUJO DE FLUIDOS
FUNDAMENTO DEL FLUJO DE FLUIDOS Los tres principios fundamentales que se aplican al flujo de fluidos son: El principio de de la conservación de la masa, a partir de del cual se establece la ecuación de
Protocolo de Distribución de Partículas del Suelo por Tamaño
Protocolo de Distribución de Partículas del Suelo por Tamaño Objetivo General Medir la distribución de las partículas de suelo de diferente tamaño que hay en cada horizonte de un perfil de suelo. Visión
θ re Medias 34 ± 1 30.6 ± 0.9 Tabla 1: Resultados para los ángulos máximo y de reposo para la arena θ max
Estudio y aplicación de medios granulares - Oscilador de Masa Variable L. Ferreyra (basilisco@hotmail.com) - J. Flores (jose_uba@yahoo.com) y G. Solovey (gsolovey@arnet.com.ar) Laboratorio 5, Departamento
Hidrostática. agua Hg
Hidrostática 1. Aspirando a fondo, la presión manométrica en los pulmones puede reducirse a 80 mm Hg. Cuál es la altura máxima a la que puede ser sorbida el agua en una pajita? [Solución: 1,09 m ] 2. Un
Fuerza = Masa X aceleración. 1 N = 1 kgx 1 m/s 2
OLEOHIDRÁULICA. La energía hidráulica emplea fluidos circulantes para producir diversas acciones en maquinas equipos, maquinaria agrícola, maquinaria vial, movimientos en buques, grúas, etc. Esas acciones
TUBERIAS. Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS
TUBERIAS Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS INDICE 1.- MATERIALES... 3 2.- PERDIDAS DE CARGA... 4 2.1.- FACTORES QUE INFLUYEN EN LAS PERDIDAS DE CARGA... 4 2.2.- REGIMENES
CINEMÁTICA I FYQ 1º BAC CC.
www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula
PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA.
PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. Con unos costos de la energía en aumento y con unas limitaciones cada vez mayores a la emisión de gases de efecto invernadero, el diseño de equipos e instalaciones
PRUEBAS PARA LA OBTENCIÓN DIRECTA DEL TÍTULO DE GRADUADO EN EDUCACIÓN SECUNDARIA OBLIGATORIA MODELO DE PRUEBA ÁMBITO CIENTÍFICO TECNOLÓGICO
PRUEBAS PARA LA OBTENCIÓN DIRECTA DEL TÍTULO DE GRADUADO EN EDUCACIÓN SECUNDARIA OBLIGATORIA MODELO DE PRUEBA ÁMBITO CIENTÍFICO TECNOLÓGICO 1.- Qué fracción del cuadrado global de la figura dada son las
FISICA GRADO DECIMO TRABAJO - ENERGIA - POTENCIA
FISICA GRADO DECIMO CUARTO PERIODO TEMAS Trabajo Energía Potencia Hidromecánica Contenido TRABAJO - ENERGIA - POTENCIA Trabajo de una fuerza. Energía cinética. Energía potencial. Fuerzas conservativas
PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES
Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES MATERIAL - Dinamómetro de 1 N - Bolas de péndulo (3 al menos)
TEMA 4: NEUMÁTICA E HIDRÁULICA
TEMA 4: NEUMÁTICA E HIDRÁULICA 1. Sistemas hidráulicos y neumáticos 1.1. Mecánica de fluidos 1.2. Sistemas hidráulicos 1.3. Sistemas neumáticos 2. Componentes de los sistemas neumáticos 2.1. Compresor
CURSO DE HIDRAULICA BASICA PARA BOMBEROS
BOMBEROS CURSO DE HIDRAULICA BASICA PARA BOMBEROS FERNANDEZ LORENZO, JOSE LUIS Jefe de Equipo-Cabo del S.E.I.S. del Ayto. de Valladolid BALBAS MADRAZO, JOSE FELIX Jefe de Subgrupo-Sargento del S.E.I.S.
TALLER DE EFICIENCIA ENERGÉTICA EN SISTEMAS DE BOMBEO DE AGUA DE SERVICIO PÚBLICO MUNICIPAL. M. en I. Ramón Rosas Moya
TALLER DE EFICIENCIA ENERGÉTICA EN SISTEMAS DE BOMBEO DE AGUA DE SERVICIO PÚBLICO MUNICIPAL M. en I. Ramón Rosas Moya CARACTERÍSTICAS HIDRÁULICAS Uno de los aspectos más relevantes a definir con respecto
Comencemos recordando que es una REDUCTORA de PRESION
POSIBLES SOLUCIONES A LA REDUCCIÓN DE PRESIÓN EN SITUACIONES DE ALTOS VALORES DE DIFERENCIAL. LA CAVITACION. A partir de apuntes tomados en capacitaciones dictadas por Giora Heimann Technical Consultant
CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA
PROGRAMA INTEGRAL DE ASISTENCIA TÉCNICA Y CAPACITACIÓN PARA LA FORMACIÓN DE ESPECIALISTAS EN AHORRO Y USO EFICIENTE DE ENERGÍA ELÉCTRICA DE GUATEMALA CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA
EJEMPLOS DE CUESTIONES DE EVALUACIÓN
EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes
PRESIÓN ATMOSFÉRICA (I)
PRESIÓN ATMOSFÉRICA (I) Introducción y objetivos En este tema vamos a definir el concepto de presión y de presión hidrostática y estudiaremos cómo actúa y cómo varía en el seno de los líquidos en reposo.
http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html
PRACTICA NO. 1 CALIBRACION DE TRASNMISORES http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html Transductor de presión de silicio difundido Cuando no hay presión,
(Fig. 43a). La presión en el fondo de la columna izquierda es p + ρgy 1. p + ρgy 1. + ρgy 2. = ρg (y 2. p - p atm. - y 1. = ρgy
3. El medidor de presión más simple es el manómetro de tubo abierto y consiste en lo siguiente: un tubo en forma de U contiene un líquido, comúnmente mercurio o agua; un extremo del tubo se conecta a un
FÍSICA Y QUÍMICA 3º ESO Apuntes: La materia
1(16) 1 PROPIEDADES DE LA MATERIA Llamamos materia a todo aquello que tiene masa y volumen. Constituye el objeto de estudio de la física y la química. 1.1 Propiedades generales de la materia La masa y
SECUENCIA DIDÁCTICA HIDRODINÁMICA
SECUENCIA DIDÁCTICA HIDRODINÁMICA Área/espacio curricular Fundamentación y propósitos Ciencias Naturales / Física Ciclo Orientado La modificación de los procesos de enseñanza y de aprendizaje en relación
Movimiento de fluidos ideales
Movimiento de fluidos ideales Problema 6.1 Una avioneta vuela a una velocidad de 150 km/h a una altitud de 1.200 m. En un punto A del ala, la velocidad del aire relativa a la misma es de 65 m/s. Suponiendo
PRÁCTICA 1 PARTE 1: CAPILARIDAD, VISCOSIDAD, TENSIÓN SUPERFICIAL PARTE 2: MEDIDA DE PRESIONES
PRÁCTICA 1 PARTE 1: CAPILARIDAD, VISCOSIDAD, TENSIÓN SUPERFICIAL PARTE 2: MEDIDA DE PRESIONES 1 de 14 CAPILARIDAD OBJETIVO Comprender el fundamento de la capilaridad. Aplicar la fórmula de Jurin para calcular
Laboratorio orio de Operaciones Unitarias I
Laboratorio orio de Operaciones Unitarias I 1 República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio
CHOQUE.(CANTIDAD DE MOVIMIENTO )
APUNTES Materia: Tema: Curso: Física y Química Momento Lineal 4º ESO CHOQUE.(CANTIDAD DE MOVIMIENTO ) CANTIDAD DE MOVIMIENTO Si un cuerpo de masa m se está moviendo con velocidad v, la cantidad de movimiento
2. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN
. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN CONDUCCIONES A PRESIÓN.1. Introducción.. Descripción de la instalación fluidomecánica.3. Descripción de la actividad práctica.4. Conceptos
CONTENIDOS MÍNIMOS FÍSICA 4º ESO. - Fórmulas del movimiento rectilíneo uniformemente acelerado y de la caída libre.
CONTENIDOS MÍNIMOS FÍSICA 4º ESO TEMA 1: EL MOVIMIENTO Y SU DESCRIPCIÓN - Definición de movimiento. 2. Magnitudes para describir un movimiento. - Fórmulas de los movimientos rectilíneo y circular. TEMA
ESTUDIO DEL MOVIMIENTO.
TEMA 1. CINEMATICA. 4º E.S.O. FÍSICA Y QUÍMICA Página 1 ESTUDIO DEL MOVIMIENTO. MAGNITUD: Es todo aquello que se puede medir. Ejemplos: superficie, presión, fuerza, etc. MAGNITUDES FUNDAMENTALES: Son aquellas
Máquinas hidráulicas. Bombas para líquidos
Máquinas hidráulicas Bombas para líquidos Desplazamiento positivo Bomba de paletas Desplazamiento positivo Bomba de lóbulos Desplazamiento positivo Bombas de pistón Desplazamiento positivo Bomba de diafragma
Problema 1 Subidón de adrenalina bajo el puente (4 puntos)
Problema 1 Subidón de adrenalina bajo el puente (4 puntos) Entre los llamados deportes de riesgo ha alcanzado gran popularidad el bungee jumping (en castellano goming, puenting). Consiste en dejarse caer
ACTIVIDADES 3º E.S.O. Tema 2.- Los estados de la materia. La teoría cinética.
ACTIVIDADES 3º E.S.O. Tema 2.- Los estados de la materia. La teoría cinética. Pág. 29 2. Qué afirmaciones te parecen verdaderas? Justifica tu respuesta. a) La materia es todo lo que nos rodea. Falso. Porque
PROYECTO CARRO HIDRAULICO
PROYECTO CARRO HIDRAULICO WILSON YESID GUERRA PAEZ COD 2901 SASKIA CATERIN MORATO HENAO COD 872 ESCUELA COLOMBIANA DE CARRERAS INDUSTRIALES (ECCI) TECNOLOGIA EN GESTION DE PROCESOS INDUSTRIALES SEMESTRE
Trabajo y Energía. Herramientas procedimentales
Trabajo y Energía Herramientas procedimentales Trabajo de una fuerza. Una manera de entender qué es una fuerza es pensar en una cañita voladora. Lo que quiero decir es: O sea, como si fuera una especie
Introducción a la Química. Sistemas Materiales y Conceptos Fundamentales. Seminario de Problemas N 1
Sistemas Materiales Introducción a la Química Seminario de Problemas N 1 1. Dibuja un esquema con los tres estados de la materia (sólido, líquido y gas) indicando el nombre de los cambios de estado. 2.
PRINCIPIO DE ARQUIMEDES
Física: 3 Medio Unidad 7: Principio de Arquímedes Profesor: Juan Pedraza Guía de Estudio F3_7 PRINCIPIO DE ARQUIMEDES Cómo lo hacen los submarinos y los peces para permanecer quietos a cierta profundidad,
MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN
MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN ÍNDICE Parámetros fundamentales y operaciones básicas en aire acondicionado Condiciones de bienestar o confort Cálculo de la carga térmica de refrigeración
Analizando el comportamiento de los fluidos podrás dar explicación a muchos hechos que puedes ver en tu entorno.
Hasta ahora has trabajado solamente con sólidos, pero sabes que la materia se puede encontrar también en otros estados de agregación: líquido y gas, que reciben el nombre de fluidos, precisamente por su
PROBLEMAS PROPUESTOS DE OSCILACIONES
PROBLEMAS PROPUESTOS DE OSCILACIONES 1. La posición de un cuerpo puede describirse mediante x =A cos(ωt + δ). La frecuencia angular ω, la posición inicial x 0 y la velocidad v 0 son conocidas. Encuentre
Mecánica de Fluidos para Sistemas de Agua por Gravedad y Bombeo
Mecánica de Fluidos para Sistemas de Agua por Gravedad y Bombeo Indice Consulta 2 Glosario 3 Introducción 4 Conceptos Generales 4 De dónde salió la Ecuación de la Continuidad? 6 La Ecuación de la Continuidad
INSTRUMENTOS METEOROLÓGICOS
INSTRUMENTOS METEOROLÓGICOS Los Instrumentos son una herramienta vital en el trabajo meteorológico, el cual nos permite cuantificar parámetros ambientales bajo un convencimiento reglamentado, facilitando
Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012
Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012 Unidad 6: Hidrostática Programa analítico Definición de presión. Unidad de presión (SIMELA). Presión en el
Tipos de Stents en un
Página nº 1 Tipos de Stents en un Cateterismo Cardiaco La enfermedad coronaria se produce cuando la ateroesclerosis (acúmulo de lípidos o grasas y células inflamatorias paredes de las arterias provocados
PROBLEMAS DE ELECTROSTÁTICA
PROBLEMAS DE ELECTROSTÁTICA 1.-Deducir la ecuación de dimensiones y las unidades en el SI de la constante de Permitividad eléctrica en el vacío SOLUCIÓN : N -1 m -2 C 2 2.- Dos cargas eléctricas puntuales
Cómo Controlar Su Presión Arterial
Registro de Mi Presión Arterial Mi meta Valor Fecha/Hora Notas Dentro de Mi Meta? Sí Sí No No Sí Sí Sí Sí No No No No Cómo Controlar Su Presión Arterial Sí No Sí No Sí No Sí No Debo avisarle al médico
LADO DE ALTA PRESIÓN: Situadosalasalidadel compresor. Impide la transmisión de vibraciones del compresor. Refrigerante en fase vapor.
INTRODUCCIÓN ACCESORIOS DEL CIRCUITO FRIGORÍFICO Para la constitución de un equipo frigorífico son necesarios: compresor, condensador, evaporador, expansor y tuberías de interconexión. Estos son imprescindibles
Fuerza y Presión en los fluidos
4 Fuerza y Presión en los fluidos Objetivos Antes de empezar En esta quincena aprenderás a: Conocer el concepto de presión y manejar las unidades en que se mide. Comprender el efecto de la presión y la
EJERCICIOS PARA TERCER CERTAMEN MECÁNICA DE FLUIDOS
EJERCICIOS PR TERCER CERTMEN MECÁNIC DE FUIDOS. En el tubo en U de la figura, se ha llenado la rama de la derecha con mercurio y la de la izquierda con un líquido de densidad desconocida. os niveles definitivos
ANEJO 6 CALCULOS DEL EQUIPO DE BOMBEO
ANEJO 6 CALCULOS DEL EQUIPO DE BOMBEO INDICE 1. CALCULOS HIDRAULICOS... 3 1.1 DIÁMETRO DE LA TUBERÍA DE IMPULSIÓN DENTRO DEL POZO... 3 1.2 ALTURA MANOMÉTRICA... 4 2. CALCULOS ELÉCTRICOS - BAJA TENSION...
GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por
Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59
Terremoto: El Desafío
Terremoto: El Desafío Hay partes del mundo en que es importante edificar pensando en los terremotos. Los edificios deben estar diseñados para proteger sus estructuras como si fueran azotadas por uno de
TRABAJO Y ENERGIA MECANICA
TRABAJO Y ENERGIA MECANICA 1. Si una persona saca de un pozo una cubeta de 20 [kg] y realiza 6.000 [J] de trabajo, cuál es la profundidad del pozo? (30,6 [m]) 2. Una gota de lluvia (3,35x10-5 [kg] apx.)
EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO
EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO 1. GENERALIDADES La sencillez en la operación, la disponibilidad, la facilidad y la seguridad en el manejo de las herramientas y elementos neumáticos
MATERIA: PESO Y BALANCE A
MATERIA: PESO Y BALANCE A 1. QUÉ EFECTOS CAUSA LA POSICIÓN ATRASADA DEL CG EN UN AVIÓN? a. NARIZ ABAJO, SE REQUERIRÁ MAYOR FUERZA SOBRE EL ELEVADOR PARA MANTENER LA NARIZ ARRIBA b. EL AVIÓN SE HACE MÁS
MECÁNICA DE FLUIDOS. 80 Capítulo 5. Mecánica de fluidos.
5 Comprender las cosas que nos rodean es la mejor preparación para comprender las cosas que hay mas allá. Hipatía MECÁNICA DE FLUIDOS CONTENIDOS Presión Densidad y peso específico Flotación y empuje Teorema