UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA"

Transcripción

1 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 0 CICLO 0-0 I. II. NOMBRE DE LA PRACTICA: Teoremas Res LUGAR DE EJECUCIÓN: Laboratorio Fundamentos Generales (edificio, aula.) TIEMPO ESTIMADO: horas ASIGNATURA: INSTRUCTOR(ES): Tania Martínez/ Francisco Hernánz/ Xochilt Urrutia OBJETIVOS Establecer voltaje y resistencia Thevenin a partir mediciones realizadas con un multímetro. Verificar que el circuito original y el equivalente Thevenin encontrado proporcionan la misma corriente y tensión a la carga. Verificar el teorema superposición a partir mediciones corriente y tensión. Verificar el teorema máxima transferencia potencia. INTRODUCCIÓN TEÓRICA EL TEOREMA DE THEVENIN El teorema Thevenin se usa para convertir a cualquier red terminales en un circuito equivalente formado por una fuente tensión en serie con una resistencia. Figura.. Circuito Equivalente Thevenin. Para hacer la conversión, primero se be calcular la tensión l circuito abierto. Este valor se nomina voltaje Thevenin (VTH). Luego se hace un cortocircuito a todas las fuentes tensión y sin conectar ninguna carga a la salida, se calcula el valor la resistencia vista s bornes salida. Este valor se nomina resistencia Thevenin (RTH). EL TEOREMA DE SUPERPOSICIÓN Muchas veces bemos analizar circuitos con varias fuentes tensión. El método superposición permite hacerlo con una sola fuente por vez, consirando que todas las más fuentes están en cortocircuito. Para conocer la tensión entre dos puntos cualesquiera l circuito o la corriente en cualquier rama, se calcula la tensión o corriente seada para cada fuente y luego se suman algebraicamente, terminando el valor buscado. EL TEOREMA DE LA TRANSFERENCIA MÁXIMA DE POTENCIA En circuitos resistivos, se transfiere potencia máxima a la carga cuando la resistencia la carga es igual a la resistencia Thevenin la fuente, o resistencia interna. En este caso las potencias disipadas en la carga y en la fuente son iguales. III. MATERIALES Y EQUIPO

2 N º IV. Requerimientos Cantidad Unidad PU-000 Tarjeta EB-0 Par puntas para multimetro PROCEDIMIENTO PARTE I. TEOREMA DE THEVENIN. Introduzca la tarjeta EB-0 en el módulo PU Encienda el modulo, y ajuste las fuentes variables a +/-V.. Busque el circuito la figura.a. Conecte un puente entre R y +V. Fig... [a] Circuito Original (izquierda); [b] Circuito Equivalente Thevenin (recha).. Incremente el índice experimentos a, tecleando * una sola vez.. Mida y anote la tensión salida la red. Esta tensión es el voltaje Thevenin (V TH). VTHEVENIN V. Refiriéndose a la figura.b, ajuste la fuente por al valor l voltaje Thevenin (V TH).. Para medir la resistencia Thevenin (R TH) se be reemplazar a la fuente V con un cortocircuito. IMPORTANTE, esto no significa que terminales la fuente ben cortocircuitarse, para ello, sconecte R la fuente V y conecte a tierra el terminal izquierdo R. Conecte el multímetro a bornes salida l circuito, mida y anote la resistencia. Este valor es la resistencia Thevenin (R TH). RTHEVENIN Ω 8. Desconecte el cortocircuito R a tierra. 9. Conecte el multímetro como óhmetro entre RV+R (es cir, la resistencia serie RV con R) y ajuste el valor RV hasta que la resistencia medida sea igual a la resistencia Thevenin. 0. Por el momento usted habrá ajustado a la fuente por PS- y a las resistencias RV + R para que formen el circuito equivalente Thevenin l circuito original compuesto por la fuente V, R, R y R.

3 . Para verificar que ambos circuitos son equivalentes, comience cargando el circuito original con R, luego con R y finalmente con un cortocircuito. Para cada carga mida el voltaje salida (V SAL) y corriente salida (ISAL), y anote sus resultados en las tablas.. CARGA R VSAL ISAL R Cortocircuito Tabla.. Mediciones en la carga con circuito original.. Repita dichas mediciones en el circuito equivalente Thevenin y anote resultados en la tabla.. CARGA R VSAL ISAL R Cortocircuito Tabla.. Mediciones en la carga con el circuito equivalente Thevenin. PARTE II. TEOREMA DE SUPERPOSICIÓN. Ajuste el índice experimentos a 8.. Arme el circuito mostrado en la figura.. Fig... Circuito para verificar el teorema superposición.. Ajuste PS- a,v. Note que la fuente PS- por ahora be quedar en cortocircuito.. Mida VSAL e ISAL con PS- en cortocircuito (CONSULTE A SU DOCENTE ANTE CUALQUIER DUDA) y anote resultados en la tabla.. Para medir I SAL sconecte el puente en serie con R y reemplácelo por el amperímetro. FUENTE DE TENSIÓN Causado solamente por PS- VSAL (V) Causado solamente por PS- Total Tabla.. Tensiones y corrientes en el circuito superpuesto. ISAL (ma)

4 . Conecte un cortocircuito a terminales PS- como se indica en la figura.. Ajuste PS- en -,V. Fig... Segundo circuito para el teorema superposición.. Anote en la tabla. las lecturas VSAL e ISAL, causadas solamente por PS-.. Desconecte el puente PS- y ajuste dicha fuente a,v. Mida y anote V SAL e ISAL. VSAL = ISAL = PARTE III. EL TEOREMA DE LA TRANSFERENCIA MÁXIMA DE POTENCIA. Ajuste el índice experimentos a.. Arme el circuito la figura.. Coloque PS- en V. Fig... Circuito para mostración l teorema máxima transferencia potencia.. El potenciómetro conectado como reóstato sirve carga variable a la fuente tensión. El valor R en serie con la resistencia interna PS- representan el equivalente Thevenin la resistencia interna.. Mida la tensión y la corriente l potenciómetro carga para varias posiciones l potenciómetro, como se indica en la tabla.. Para medir I SAL reemplace el puente en serie con R por el amperímetro.

5 . En cada posición l potenciómetro calcule la resistencia la carga y la potencia salida. Anótelas en la tabla.. GIRO 0% VSAL (V) ISAL (ma) RCARGA (Ω) PSAL (mw) 0% 0% 0% 80% 00% Tabla.. Mediciones transferencia potencia.. En ejes la figura. grafique V SAL, ISAL y la potencia salida PSAL en función la resistencia la carga. Fig... Transferencia potencia a la carga.

6 V. DISCUSIÓN DE RESULTADOS PARTE I. TEOREMA DE THEVENIN. Obtenga, a partir un análisis teórico, el circuito equivalente Thevenin l circuito la figura.a. Los valores son iguales a medidos? Compare y explique sus resultados.. Obtenga el circuito equivalente Thevenin la figura. y compruebe sus resultados con el circuito original y el circuito equivalente Thevenin armado en breadboard (circuito se evaluara en la próxima sesión laboratorio). Fig... Circuito para comprobar el Teorema Thevenin. PARTE II. TEOREMA DE SUPERPOSICIÓN. Realice el análisis teórico l circuito la figura. y compare resultados obtenidos con las mediciones realizadas. Se aproximan valores medidos a calculados? Explique su respuesta. PARTE III. EL TEOREMA DE LA TRANSFERENCIA MÁXIMA DE POTENCIA. A partir las gráficas la figura. explique la relación que existe entre P SAL, ISAL y VSAL con la resistencia carga (RCARGA) VI. BIBLIOGRAFÍA [] FLOYD, T.L. Principios circuitos eléctricos, Pearson, México 00. [] BOYLESTAD, R. Análisis introductorio circuitos. Prentice Hall, México 998.

7 HOJA DE COTEJO GUÍA 0. TEOREMAS DE REDES ESTUDIANTE: MESA: DOCENTE: GL: FECHA: EVALUACIÓN % CONOCIMIENT O 0 % APLICACIÓN DEL CONOCIMIENT O 0 % ACTITUD 0 TOTAL 0 0 Conocimiento ficiente siguientes fundamentos teóricos: Enuncia el teorema Thevenin Enuncia el teorema superposición Cumple con uno o ninguno siguientes criterios: Mi correctamente la resistencia y voltaje Thevenin la red analizada. Realiza las conexiones y mediciones necesarias para la comprobación l teorema superposición. Obtiene correctamente las mediciones y cálcu para la comprobación l teorema transferencia potencia máxima. Es un observador pasivo, es ornado pero no hace uso acuado recursos. Conocimiento y explicación incompleta fundamentos teóricos. Cumple solamente dos criterios. Participa ocasionalmente pero sin coordinarse con su compañero, no es ornado pero hace uso acuado recursos NOTA Conocimiento completo y explicación clara fundamentos teóricos. 8 9 Cumple con criterios NOTA cuatro 0 Participa forma activa e integral durante el sarrollo la práctica, haciendo un uso responsable recursos en un entorno trabajo ornado. NOTA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA CICLO: I/215 GUIA DE LABORATORIO #8 Nombre de la Practica: Circuitos Rectificadores de Onda Lugar de Ejecución: Fundamentos

Más detalles

1. Conecte la tarjeta EB-111 introduciéndola por las guías del PU-2000 hasta el conector.

1. Conecte la tarjeta EB-111 introduciéndola por las guías del PU-2000 hasta el conector. 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO ZENER Objetivos específicos Trazar la curva característica

Más detalles

UNIVERSIDAD DON BOSCO

UNIVERSIDAD DON BOSCO CICLO 02-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 02 NOMBRE DE LA PRACTICA: Diodo de Unión Bipolar LUGAR DE EJECUCIÓN:

Más detalles

Electrónica II. Guía 4

Electrónica II. Guía 4 Electrónica II. Guía 4 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). COMPARADORES Objetivo General Verificar

Más detalles

PARTE I. CURVA CARACTERISTICA

PARTE I. CURVA CARACTERISTICA 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO ZENER Objetivos generales Analizar el comportamiento del

Más detalles

Verificar experimentalmente la operación teórica de dos tipos de reguladores de voltaje.

Verificar experimentalmente la operación teórica de dos tipos de reguladores de voltaje. Electrónica II. Guía 9 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). REGULADORES DE VOLTAJE Objetivo

Más detalles

Tema: Tiristores. Objetivos. Recomendaciones. Introducción. Radiología. GUÍA 01 Pág. 1

Tema: Tiristores. Objetivos. Recomendaciones. Introducción. Radiología. GUÍA 01 Pág. 1 Tema: Tiristores Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Objetivos SCR Determinar las características de un Tiristor Conectar el SCR para que conduzca en

Más detalles

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo Electrónica II. Guía 4 FILTROS ACTIVOS DE PRIMER ORDEN Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.2 (Edificio

Más detalles

Filtros Activos de Primer Orden

Filtros Activos de Primer Orden Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Filtros Activos de Primer Orden Objetivos Específicos Medir las tensiones de entrada y salida

Más detalles

Electrónica II. Guía 2

Electrónica II. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). SUMADOR Y RESTADOR Objetivo general Verificar el correcto funcionamiento

Más detalles

Filtros Activos de Segundo Orden

Filtros Activos de Segundo Orden Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Filtros Activos de Segundo Orden Objetivos Específicos Medir las tensiones de entrada y

Más detalles

CARACTERÍSTICAS DEL FET EN DC.

CARACTERÍSTICAS DEL FET EN DC. Electrónica I. Guía 10 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). CARACTERÍSTICAS DEL FET EN DC. Objetivos

Más detalles

EL AMPLIFICADOR CON BJT

EL AMPLIFICADOR CON BJT 1 Facultad: Estudios Tecnologicos. Escuela: Electrónica. Asignatura: Electronica Analogica Discresta. EL AMPLIFICADOR CON BJT Objetivos específicos Determinar la ganancia de tensión, corriente y potencia

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION Electrónica I. Guía 1 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO DE UNION Objetivos generales Identificar

Más detalles

UNIVERSIDAD DON BOSCO

UNIVERSIDAD DON BOSCO CICLO 01-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 06 NOMBRE DE LA PRACTICA: Análisis de Circuitos en Corriente Alterna

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO LABORATORIO 2: USO DE INSTRUMENTOS DE MEDICIÓN ELÉCTRICA (PARTE II) I. OBJETIVOS OBJETIVO

Más detalles

OSCILADORES SENOIDALES

OSCILADORES SENOIDALES 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). OSCILADORES SENOIDALES Objetivo general Verificar el correcto

Más detalles

RECTIFICACIÓN. Objetivos específicos. Materiales y equipo. Procedimiento

RECTIFICACIÓN. Objetivos específicos. Materiales y equipo. Procedimiento Electrónica I. Guía 3 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). RECTIFICACIÓN Objetivos específicos Observar

Más detalles

Verificar experimentalmente la operación teórica de dos tipos de reguladores de voltaje.

Verificar experimentalmente la operación teórica de dos tipos de reguladores de voltaje. Electrónica II. Guía 8 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). REGULADORES DE VOLTAJE Objetivo

Más detalles

AMPLIFICADOR INVERSOR Y NO INVERSOR

AMPLIFICADOR INVERSOR Y NO INVERSOR 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). AMPLIFICADOR INVERSOR Y NO INVERSOR Objetivo general Determinar

Más detalles

GL: No. de Mesa: Fecha: CARNET INTEGRANTES (Apellidos, nombres) FIRMA SECCION NOTA

GL: No. de Mesa: Fecha: CARNET INTEGRANTES (Apellidos, nombres) FIRMA SECCION NOTA UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR FACULTAD DE INFORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADAS DEPARTAMENTO DE MATEMATICA Y CIENCIAS CATEDRA DE FISICA FISICA III, CICLO 02-2015 LABORATORIO

Más detalles

INTRODUCCIÓN A LOS AMPLIFICADORES OPERACIONALES. Objetivo general. Objetivos específicos. Materiales y equipo. Introducción Teórica

INTRODUCCIÓN A LOS AMPLIFICADORES OPERACIONALES. Objetivo general. Objetivos específicos. Materiales y equipo. Introducción Teórica Electrónica II. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). INTRODUCCIÓN A LOS AMPLIFICADORES

Más detalles

AMPLIFICADOR INVERSOR Y NO INVERSOR. Objetivo general. Objetivos específicos. Prelaboratorio. Materiales y equipo

AMPLIFICADOR INVERSOR Y NO INVERSOR. Objetivo general. Objetivos específicos. Prelaboratorio. Materiales y equipo Electrónica II. Guía 3 1 AMPLIFICADOR INVERSOR Y NO INVERSOR Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21

Más detalles

Tema: SÍNTESIS DE CIRCUITOS LÓGICOS.

Tema: SÍNTESIS DE CIRCUITOS LÓGICOS. Sistemas Digitales. Guía 5 1 Tema: SÍNTESIS DE CIRCUITOS LÓGICOS. Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas digitales Lugar de Ejecución: Fundamentos Generales. Objetivo general Sintetizar

Más detalles

CARACTERISTICAS DEL JFET.

CARACTERISTICAS DEL JFET. Electrónica I. Guía 4 1 / 1 CARACTERISTICAS DEL JFET. Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21).

Más detalles

Laboratorio #3 VERIFICACIÓN EXPERIMENTAL DE MÉTODOS Y TEOREMAS DE CIRCUITOS

Laboratorio #3 VERIFICACIÓN EXPERIMENTAL DE MÉTODOS Y TEOREMAS DE CIRCUITOS Miguel illalobos O. Laboratorio #3 ERIFICACIÓN EXPERIMENTAL DE MÉTODOS Y TEOREMAS DE CIRCUITOS OBJETIOS: Aplicación y comprobación experimental del método de Mallas, de los teoremas de Superposición, Thevenin

Más detalles

Tema: USO DE CODIFICADORES Y DECODIFICADORES.

Tema: USO DE CODIFICADORES Y DECODIFICADORES. Sistemas Digitales. Guía 6 1 Tema: USO DE CODIFICADORES Y DECODIFICADORES. Objetivo general Aplicar codificadores y decodificadores Objetivos específicos Utilizar codificadores para la introducción de

Más detalles

Amplificador inversor y no inversor

Amplificador inversor y no inversor Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Amplificador inversor y no inversor Objetivo General Implementar los circuitos amplificadores

Más detalles

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO 2: CIRCUITOS SERIE

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO 2: CIRCUITOS SERIE PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO 2: CIRCUITOS SERIE UNIDAD 1: CIRCUITO SERIE TEORÍA El circuito serie es el circuito que más se encuentra en el análisis de circuitos eléctricos y electrónicos,

Más detalles

Verificar experimentalmente la operación teórica del oscilador basado en el puente de Wien.

Verificar experimentalmente la operación teórica del oscilador basado en el puente de Wien. Electrónica II. Guía 6 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). OSCILADOR DE PUENTE DE WIEN

Más detalles

UNIVERSIDAD DON BOSCO

UNIVERSIDAD DON BOSCO CICLO 02-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 01 NOMBRE DE LA PRÁCTICA: Generalidades y Fundamentos de Electrónica.

Más detalles

Tema: Amplificador de Instrumentación

Tema: Amplificador de Instrumentación Instrumentación Industrial. Guía 1 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Instrumentación Industrial Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta) Tema: Amplificador

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION. Electrónica I. Guía 2 1

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION. Electrónica I. Guía 2 1 Electrónica I. Guía 2 1 DIODO DE UNION Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). Objetivos generales

Más detalles

Modelado de un motor de corriente continua.

Modelado de un motor de corriente continua. Sistemas de Control Automático. Guía 8 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). Modelado

Más detalles

I. RESULTADOS DE APRENDIZAJE

I. RESULTADOS DE APRENDIZAJE UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA CICLO: 01-2013 GUIA DE LABORATORIO # 1 Nombre de la Práctica: Uso del óhmetro Parte I. Lugar de Ejecución: Laboratorio

Más detalles

INTEGRADOR Y DERIVADOR

INTEGRADOR Y DERIVADOR 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). INTEGRADOR Y DERIVADOR Objetivo general Verificar el funcionamiento

Más detalles

Verificar experimentalmente la operación teórica de dos osciladores controlados por voltaje (VCO)

Verificar experimentalmente la operación teórica de dos osciladores controlados por voltaje (VCO) Electrónica II. Guía 7 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). OSCILADOR CONTROLADO POR

Más detalles

Bioinstrumentación, Guía 2

Bioinstrumentación, Guía 2 1 Tema: TERMOMETRÍA Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Objetivos Conocer el principio de funcionamiento del termómetro analógico. Emplear de manera

Más detalles

CURSO: CIRCUITOS ELÉCTRICOS UNIDAD 3: CIRCUITO PARALELO - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. INTRODUCCIÓN

CURSO: CIRCUITOS ELÉCTRICOS UNIDAD 3: CIRCUITO PARALELO - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. INTRODUCCIÓN CURSO: CIRCUITOS ELÉCTRICOS UNIDAD 3: CIRCUITO PARALELO - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. INTRODUCCIÓN En esta unidad, usted aprenderá a analizar un circuito paralelo, a aplicar la Ley de Kirchhoff

Más detalles

Tema: Sistemas de lazo abierto y lazo cerrado

Tema: Sistemas de lazo abierto y lazo cerrado 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). Se hará en dos sesiones Tema: Sistemas

Más detalles

Tema: Fuente de Alimentación de Rayos X

Tema: Fuente de Alimentación de Rayos X Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Tema: Fuente de Alimentación de Rayos X Objetivos Analizar la fuente de alimentación de un sistema de rayos X Conocer

Más detalles

I. RESULTADOS DE APRENDIZAJE

I. RESULTADOS DE APRENDIZAJE CICLO I-15 MEDICIONES ELECTRICAS UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA GUIA DE LABORATORIO # 1 :Mediciones de potencia electrica I. RESULTADOS DE

Más detalles

Prácticas de Análisis de Circuitos Eléctricos I

Prácticas de Análisis de Circuitos Eléctricos I TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISION DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA NOMBRE DEL MATERIAL DIDÁCTICO: Prácticas de Análisis de Circuitos Eléctricos I ASIGNATURA: Análisis de Circuitos

Más detalles

LAB ORATORIO DE CIRCUITOS ELECTRIC OS

LAB ORATORIO DE CIRCUITOS ELECTRIC OS REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE EDUCACIÓN SUPERIOR UNIVERSIDAD POLITÉCNICA TERRITORIAL DE ARAGUA LA VICTORIA ESTADO ARAGUA DEPARTAMENTO DE ELECTRICIDAD LABORATORIO DE CIRCUITOS ELECTRICOS

Más detalles

UNIDADES: 3 HORAS TEORÍA PRÁCTICA TRAB. SUPERV. LABORATORIO SEMINARIO TOTALES DE ESTUDIO 2 1

UNIDADES: 3 HORAS TEORÍA PRÁCTICA TRAB. SUPERV. LABORATORIO SEMINARIO TOTALES DE ESTUDIO 2 1 . CÓDIGO: PAG.: 1 PROPÓSITO Al término de esta asignatura los estudiantes estarán en capacidad de comprender la teoría básica de los circuitos eléctricos necesarios para el uso de máquinas eléctricas utilizadas

Más detalles

INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales de los instrumentos de medición AC.

INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales de los instrumentos de medición AC. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 2286 PRACTICA Nº 7 Objetivos INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Usar adecuadamente

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO : RESISTIVIDAD ELÉCTRICA Determinar la resistividad eléctrica

Más detalles

CIRCUITOS RECTIFICADORES

CIRCUITOS RECTIFICADORES Electrónica I. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES Objetivos generales

Más detalles

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA Laboratorio de Circuitos/ Electrotecnia PRÁCTICA 2 LABORATORIO DE CIRCUITOS/ELECTROTECNIA PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA OBJETIVOS Analizar el funcionamiento de circuitos resistivos conectados

Más detalles

Práctica No. 3 Equivalente de Thévenin y superposición

Práctica No. 3 Equivalente de Thévenin y superposición Práctica No. Equivalente de Thévenin y superposición Objetivo Hacer una comprobación experimental del equivalente de Thévenin y el principio de superposición. Material y Equipo Resistencias de 0Ω, 50Ω,

Más detalles

Tema: USO DE MULTIPLEXORES Y DEMULTIPLEXORES.

Tema: USO DE MULTIPLEXORES Y DEMULTIPLEXORES. Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas digitales Lugar de Ejecución: Fundamentos Generales. Tema: USO DE MULTIPLEXORES Y DEMULTIPLEXORES. Objetivo general Aplicar dispositivos MSI

Más detalles

Aplicación de un sistema de control de velocidad en un motor hidráulico.

Aplicación de un sistema de control de velocidad en un motor hidráulico. Sistemas de Control Automático. Guía 8 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Hidráulica y Neumática (Edificio 6, 2da planta). Aplicación

Más detalles

COMPARADORES. Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica

COMPARADORES. Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica Electrónica II. Guía 4 1/1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21). COMPARADORES. Objetivos

Más detalles

AMPLIFICADOR INVERSOR Y NO INVERSOR. Objetivo general. Objetivos específicos. Prelaboratorio. Materiales y equipo

AMPLIFICADOR INVERSOR Y NO INVERSOR. Objetivo general. Objetivos específicos. Prelaboratorio. Materiales y equipo Electrónica II. Guía 3 1 AMPLIFICADOR INVERSOR Y NO INVERSOR Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN ELECTRÓNICA Y BIOMÉDICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN ELECTRÓNICA Y BIOMÉDICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN ELECTRÓNICA Y BIOMÉDICA CICLO: 01-2013 GUIA DE LABORATORIO # 3 Nombre de la Práctica: Optoelectrónica Lugar de Ejecución: Laboratorio

Más detalles

I. RESULTADOS DE APRENDIZAJE

I. RESULTADOS DE APRENDIZAJE UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA CICLO: 01-2013 GUIA DE LABORATORIO # 3 Nombre de la Práctica: Instrumentos de Medición: Amperímetro y Voltímetro.

Más detalles

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones Tabla 1.1. Materiales y equipo.

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones Tabla 1.1. Materiales y equipo. Contenido Facultad: Estudios Tecnologicos Escuela: Electronica y Biomedica Asignatura: Electrónica de Potencia Curvas de operación del PUT y Osciladores de Relajación. Objetivos Específicos Analizar el

Más detalles

El valor efectivo del voltaje de C.A. se puede determinar como sigue:

El valor efectivo del voltaje de C.A. se puede determinar como sigue: OBJETIVO: 1.- Medir el valor efectivo de un voltaje alterno. 2.- Aprender a usar los Voltímetros y Amperímetros en C.A. 3.- Verificar la ley de Ohm en los circuitos de C.A. 4.- Calcular la potencia de

Más detalles

UNIDAD 5. Técnicas útiles del análisis de circuitos

UNIDAD 5. Técnicas útiles del análisis de circuitos UNIDAD 5 Técnicas útiles del análisis de circuitos 5.2 Linealidad y superposición En cualquier red resistiva lineal, la tensión o la corriente a través de cualquier resistor o fuente se calcula sumando

Más detalles

INTEGRANTES (Apellido, nombres) FIRMA SECCION NOTA

INTEGRANTES (Apellido, nombres) FIRMA SECCION NOTA UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR FACULTAD DE INFORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADASDEPARTAMENTO DE MATEMATICA Y CIENCIAS CATEDRA FISICA ASIGNATURA: FUNDAMENTOS DE FISICA APLICADA

Más detalles

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática Circuitos Electrónicos Otoño 2000

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática Circuitos Electrónicos Otoño 2000 Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática 6.002 Circuitos Electrónicos Otoño 2000 Práctica 1: Equivalentes Thevenin / Norton y puertas lógicas Boletín F00-018

Más detalles

Teoría de Circuitos (1º de ITI) Práctica 1

Teoría de Circuitos (1º de ITI) Práctica 1 Práctica 1: Aparatos de medida y medidas eléctricas básicas. Las leyes de Ohm y de Kirchoff en corriente continua. Asociación de resistencias en serie y en paralelo. Teorema de Thevenin y de máxima transferencia

Más detalles

PRÁCTICA NÚMERO 6 ASOCIACIÓN DE RESISTENCIAS Y POTENCIA ELÉCTRICA

PRÁCTICA NÚMERO 6 ASOCIACIÓN DE RESISTENCIAS Y POTENCIA ELÉCTRICA PRÁCTICA NÚMERO 6 ASOCIACIÓN DE RESISTENCIAS Y POTENCIA ELÉCTRICA I. Objetivos. 1. Estudiar la asoaciación de resisitencias en serie y en paralelo. 2. Estudiar la potencia que consumen dos elementos colocados

Más detalles

PRÁCTICA NÚMERO 13 ASOCIACIÓN DE RESISTENCIAS Y POTENCIA ELÉCTRICA

PRÁCTICA NÚMERO 13 ASOCIACIÓN DE RESISTENCIAS Y POTENCIA ELÉCTRICA PRÁCTICA NÚMERO 13 ASOCIACIÓN DE RESISTENCIAS Y POTENCIA ELÉCTRICA I. Objetivos. 1. Estudiar la asociación de resistencias en serie y en paralelo. 2. Estudiar la potencia que consumen dos elementos colocados

Más detalles

Realizado por: Dra. Ing. Esperanza Ayllón Fandiño, CIPEL, Instituto Superior Politécnico José Antonio Echeverría, CUJAE. Cuba

Realizado por: Dra. Ing. Esperanza Ayllón Fandiño, CIPEL, Instituto Superior Politécnico José Antonio Echeverría, CUJAE. Cuba Teoremas de los circuitos lineales. Primera parte Objetivos 1. Explicar el Teorema de Thévenin para determinar el equivalente de Thévenin de cualquier red lineal, ejemplificando su aplicación en el análisis

Más detalles

LABORATORIO No 8. TEOREMA DE THEVENIN y TEOREMA DE NORTON

LABORATORIO No 8. TEOREMA DE THEVENIN y TEOREMA DE NORTON LABORATORIO No 8 TEOREMA DE THEENIN y TEOREMA DE NORTON 7.1. OBJETIO GENERAL. Finalizada la presente práctica, estaremos en condiciones de encarar circuitos lineales de un par de terminales con ayuda de

Más detalles

2. VERIFICACIÓN DE LEY DE OHM 3. COMPROBACIÓN DE LA LEY DE TENSIONES DE KIRCHHOFF 4. COMPROBACIÓN DE LA LEY DE CORRIENTES DE KIRCHHOFF

2. VERIFICACIÓN DE LEY DE OHM 3. COMPROBACIÓN DE LA LEY DE TENSIONES DE KIRCHHOFF 4. COMPROBACIÓN DE LA LEY DE CORRIENTES DE KIRCHHOFF Tabla de contenido 1. MEDICIÓN DE LA RESISTENCIA DE ENTRADA Y DE TRANSFERENCIA 2. VERIFICACIÓN DE LEY DE OHM 3. COMPROBACIÓN DE LA LEY DE TENSIONES DE KIRCHHOFF 4. COMPROBACIÓN DE LA LEY DE CORRIENTES

Más detalles

Tarea 1 1-Calcular la potencia en cada uno de los elementos. E = 36 V. 7-Calcular la tensión V ab. Respuesta: - 2 V

Tarea 1 1-Calcular la potencia en cada uno de los elementos. E = 36 V. 7-Calcular la tensión V ab. Respuesta: - 2 V Tarea 1 1-Calcular la potencia en cada uno de los elementos. 2- Calcular la potencia en todos los resistores. Datos: Vab = Vac = 4 V 4 W, 8 W, 6 W, 12 W, 0 W 3-Calcular E. E = 36 V Dato: I 0 = 5 A Respuesta:

Más detalles

PRINCIPIOS FUNDAMENTALES DE MEDICIONES ELÉCTRICAS INSTRUMENTOS DE MEDICION PARA CORRIENTE DIRECTA (DC)

PRINCIPIOS FUNDAMENTALES DE MEDICIONES ELÉCTRICAS INSTRUMENTOS DE MEDICION PARA CORRIENTE DIRECTA (DC) UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRÓNICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELÉCTRICAS EC 1281 PRACTICA Nº 2 PRINCIPIOS FUNDAMENTALES DE MEDICIONES ELÉCTRICAS INSTRUMENTOS DE MEDICION PARA

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO SÍLABO ASIGNATURA: LABORATORIO DE CIRCUITOS ELÉCTRICOS I CÓDIGO: 8F0033 1. DATOS GENERALES 1.1. DEPARTAMENTO ACADÉMICO: 1.2. ESCUELA PROFESIONAL: 1.3. CICLO DE ESTUDIOS: 1.4. CRÉDITOS: 1.5. CONDICIÓN:

Más detalles

La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo.

La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo. FIS-1525 Ley de Ohm Objetivo Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que circula. Probar el cumplimiento de la ley de Ohm para dos

Más detalles

EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO. Página 1 de 6

EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO. Página 1 de 6 EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO Página 1 de 6 OBJETIVOS 1. Conocer las relaciones de voltaje y corriente de un transformador. 2. Estudiar las corrientes de excitación, la capacidad

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica CARACTERISTICAS DEL BJT. Electrónica I.

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica CARACTERISTICAS DEL BJT. Electrónica I. Electrónica I. Guía 6 1 / 9 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). CARACTERISTICAS DEL BJT

Más detalles

Medir las contribución de potencia por fuentes paralelas

Medir las contribución de potencia por fuentes paralelas 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de energía en telecomunicaciones TEMA: Fuentes de poder paralelas Contenido Fuentes de poder. Redundancia en las fuentes de poder. Objetivos

Más detalles

EL VATIMETRO ANALOGICO. CIRCUITOS TRIFASICOS: CONEXION EN ESTRELLA Y EN DELTA.

EL VATIMETRO ANALOGICO. CIRCUITOS TRIFASICOS: CONEXION EN ESTRELLA Y EN DELTA. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 2286 PRACTICA Nº 8 Objetivos EL VATIMETRO ANALOGICO. CIRCUITOS TRIFASICOS: CONEXION EN ESTRELLA

Más detalles

2 - Cables de varias medidas. 3 1 Resistencias de diversos valores. 4 1 Multimetro digital y/o analógico

2 - Cables de varias medidas. 3 1 Resistencias de diversos valores. 4 1 Multimetro digital y/o analógico Universidad Don Bosco Facultad de Ingeniería Escuela de Ingeniería Eléctrica Objetivos: Sistemas Eléctricos Lineales I Práctica No.8 Circuitos RLC * Conectar un circuito con elementos resistivos, capacitivos

Más detalles

Sistemas de lazo Abierto y lazo cerrado

Sistemas de lazo Abierto y lazo cerrado Sistemas de Control Automático. Guía 3 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta).

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: LABORATORIO DE CIRCUITOS ELÉCTRICOS I

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: LABORATORIO DE CIRCUITOS ELÉCTRICOS I SÍLABO ASIGNATURA: LABORATORIO DE CIRCUITOS ELÉCTRICOS I CÓDIGO: IEE209 1. DATOS GENERALES 1.1. DEPARTAMENTO ACADÉMICO: 1.2. ESCUELA PROFESIONAL: 1.. CICLO DE ESTUDIOS: 1.4. CRÉDITOS: 1.5. CONDICIÓN: 1.6.

Más detalles

FISICA III. Departamento de Física y Química Escuela de Formación Básica MEDICIÓN DE RESISTENCIAS DE RESISTORES EN SERIE Y EN PARALELO

FISICA III. Departamento de Física y Química Escuela de Formación Básica MEDICIÓN DE RESISTENCIAS DE RESISTORES EN SERIE Y EN PARALELO FISICA III Departamento de Física y Química Escuela de Formación Básica MEDICIÓN DE RESISTENCIAS DE RESISTORES EN SERIE Y EN PARALELO PRÁCTICO DE LABORATORIO Nº 3 FÍSICA III Comisión laboratorio: Docente:

Más detalles

Tema: Componentes Opto electrónicos

Tema: Componentes Opto electrónicos 1 Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Tema: Componentes Opto electrónicos Objetivos - Definir el funcionamiento de los diodos emisores de luz (LED)

Más detalles

Tema: S7-1200, Valores Analógicos.

Tema: S7-1200, Valores Analógicos. Autómatas Programables. Guía 7 1 Tema: S7-1200, Valores Analógicos. Objetivo General Conocer como se opera con valores analógicos en el PLC S7-1200 de Siemens Objetivos Específicos Conectar correctamente

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: LABORATORIO DE CIRCUITOS ELÉCTRICOS I

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: LABORATORIO DE CIRCUITOS ELÉCTRICOS I SÍLABO ASIGNATURA: LABORATORIO DE CIRCUITOS ELÉCTRICOS I CODIGO: 8F0069 1. DATOS GENERALES: DEPARTAMENTO ACADEMICO : Ingeniería Electrónica e Informática ESCUELA PROFESIONAL : Ingeniería Informática CICLO

Más detalles

Tema: Controladores tipo P, PI y PID

Tema: Controladores tipo P, PI y PID Sistemas de Control Automático. Guía 5 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta).

Más detalles

PRACTICA 1: INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES

PRACTICA 1: INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES Laboratorio de Circuitos/Electrotecnia I PRÁCTICA 1 LABORATORIO DE CIRCUITOS/ELECTROTECNIA PRACTICA 1: INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES OBJETIVO Enseñar a usar y en lo posible, familiarizar

Más detalles

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM OBJETIVO Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que genera. EQUIPAMIENTO 1. Circuito

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER OBJETIVOS 1. Evaluar e interpretar características fundamentales de transistores BJT. 2. Obtener la ganancia del circuito a partir del modelo en pequeña señal del transistor BJT. 3. Observar como varían

Más detalles

I. RESULTADOS DE APRENDIZAJE II. INTRODUCCIÓN

I. RESULTADOS DE APRENDIZAJE II. INTRODUCCIÓN UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA CICLO: 01-2013 GUIA DE LABORATORIO # 11 Nombre de la Práctica: Circuitos RL y RC Lugar de Ejecución: Laboratorio

Más detalles

Consulte y explique los conceptos de energía potencial gravitacional; energía potencial eléctrica, y explicar su analogía.

Consulte y explique los conceptos de energía potencial gravitacional; energía potencial eléctrica, y explicar su analogía. :: OBJETIVOS [2.1] Comprobar experimentalmente la ley de Ohm. Analizar las diferencias existentes entre elementos lineales (óhmicos) y no lineales (no óhmicos). Aplicar técnicas de análisis gráfico y ajuste

Más detalles

INSTITUTO TECNOLÓGICO DE ESTUDIOS SUPERIORES DE LOS CABOS

INSTITUTO TECNOLÓGICO DE ESTUDIOS SUPERIORES DE LOS CABOS SUPERIORES DE LOS CABOS RESPONSABLE: Dirección académica y de investigación HOJA: 1 de 5 Desarrollo de la Práctica Unidad de aprendizaje: Practica número: 5 y 6 Nombre de la practica: 5. Confirmación de

Más detalles

MEDICIONES DE CARACTERÍSTICAS DE CIRCUITOS ELECTRÓNICOS APLICACIÓN DEL AMPLIFICADOR DIFERENCIAL

MEDICIONES DE CARACTERÍSTICAS DE CIRCUITOS ELECTRÓNICOS APLICACIÓN DEL AMPLIFICADOR DIFERENCIAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRÓNICOS EC1113 PRACTICA Nº 1 MEDICIONES DE CARACTERÍSTICAS DE CIRCUITOS ELECTRÓNICOS APLICACIÓN DEL AMPLIFICADOR DIFERENCIAL

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Aeroespacial 2009-3 11352 Mediciones eléctricas y electrónicas PRÁCTICA No. 4 LABORATORIO DE NOMBRE DE LA

Más detalles

I. RESULTADOS DE APRENDIZAJE

I. RESULTADOS DE APRENDIZAJE UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA CICLO: 01-2013 GUIA DE LABORATORIO # 5 Nombre de la Práctica: Divisores. Lugar de Ejecución: Laboratorio de

Más detalles

GUIÓN 1. MEDIDAS DIRECTAS. ESTIMACIÓN DE INCERTIDUMBRES.

GUIÓN 1. MEDIDAS DIRECTAS. ESTIMACIÓN DE INCERTIDUMBRES. GUIÓN 1. MEDIDAS DIRECTAS. ESTIMACIÓN DE INCERTIDUMBRES. Objetivos En esta práctica se introducen conceptos básicos necesarios para el tratamiento y análisis de medidas de magnitudes físicas con especial

Más detalles

Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II. Contenidos. Objetivos Específicos

Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II. Contenidos. Objetivos Específicos Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II Tema: Fundamentos de motores síncronos Contenidos Operación de un motor a tensión nominal y en vacío.

Más detalles

Tema: Uso del analizador espectral.

Tema: Uso del analizador espectral. Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador

Más detalles

Obtener la curva de carga y descarga para baterías de ciclo profundo.

Obtener la curva de carga y descarga para baterías de ciclo profundo. 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de energía en telecomunicaciones TEMA: Carga y descarga de baterías. Contenido Ciclo de carga y descarga de la batería Objetivos Obtener

Más detalles

LABORATORIO 6: FUERZA ELECTROMOTRIZ, RESISTENCIA INTERNA Y POTENCIA

LABORATORIO 6: FUERZA ELECTROMOTRIZ, RESISTENCIA INTERNA Y POTENCIA UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 6: FUERZA ELECTROMOTRIZ, RESISTENCIA INTERNA Y POTENCIA Determine

Más detalles

Laboratorio Problemas introductorios Circuitos en corriente continua

Laboratorio Problemas introductorios Circuitos en corriente continua Laboratorio 66.02 Problemas introductorios Circuitos en corriente continua 1) Para el circuito de la figura, determine: a) Tensión en cada componente. b) Corriente en cada componente. c) Resistencia equivalente.

Más detalles

Guía apoyo Ingeniería en Automatización y Control Industrial

Guía apoyo Ingeniería en Automatización y Control Industrial Guía apoyo Ingeniería en Automatización y Control Industrial el enunciado de los teoremas de Thevenin y Norton el estudio de la red efectuado al aplicar el teorema de Thevenin a un circuito en serie equivalente

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA. Laboratorios Reales: Electricidad y Magnetismo II INTRODUCCIÓN

UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA. Laboratorios Reales: Electricidad y Magnetismo II INTRODUCCIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA Laboratorios Reales: Electricidad y Magnetismo II MAPEO DEL CAMPO MAGNETICO DE UN SOLENOIDE FINITO ELABORADO POR: ROBERTO

Más detalles