Ejercicios de integración

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios de integración"

Transcripción

1 1. Calcular las siguientes integrales: 1) ) 8) + 1 d ) d 5) ) d 8) + Ejercicios de integración d ) d 6) ( + 1) + + d + d 9) ( + + 1) ln d ) d 11) d 1) d + 1 1) d 1) d 15) ( + 1) d + + e e + e 16) d 17) d 18) d e ) d ) (1 + tg ) d 1) arc tg d + 9 ) (1 1 ) cos ln d ) d ) sen d 1 + 5) ln d 6) d 7) d (cos + sen cos ) d 9) d ) d ) d ) ( + ) cos d ) d ) ) 6) sen d 5) d 6) + + d cos ) d 8) d 9) sen d d 1) d ) e sen d + ( 1)( 1) d ) ) d arc tg d 5) 1 ( )( 1) + 1 ln( + 1) d 7) d 8) cos d ( + 1) + 9) + 1 5) d 5) + 1 d 5) + 1 ( + ) e 5 d 51) e d d d 1

2 . Calcular el área del recinto limitado por las curvas y = 1, y = 11 y el eje OX. Dibujar el recinto.. Hallar el área del recinto plano delimitado por las curvas de ecuación: y = e y =. Dibujar el recinto.. Calcular el área de la región plana limitada por la curva f() = y la recta y = 1. Dibujar el recinto. 5. Hallar el área del recinto limitado por la gráfica de la función f() = + y las tangentes a dicha gráfica en los puntos en que ésta corta al eje de abscisas. Dibujar el recinto. 6. Dada la parábola y la recta y = a) Dibuja las gráficas de la parábola y de la recta. b) Señala el recinto plano comprendido entre las dos gráficas anteriores. c) Calcula el área del recinto plano señalado. 7. Dibuja el recinto delimitado por las curvas y = + + e y = + 1. Halla el área del recinto. 8. Dada la función y = e y las rectas = 1 e y = a) Dibuja la gráfica de la función para y la de las rectas. b) Señala el recinto plano comprendido entre las tres gráficas anteriores. c) Calcula el área del recinto plano señalado. 9. Halla la ecuación de la recta tangente a la curva de ecuación y = en el punto de abscisa = 1. Calcula el área del recinto limitado por la recta tangente y la curva dada. 1. Dada la curva de ecuación y = + y la recta y = + a) Dibuja la gráfica de la parábola y de la recta. b) Señala el recinto plano comprendido entre ambas. c) Calcula el área del recinto plano señalado. 11. Dada la curva y = y la recta y = 6: a) Dibuja la gráfica de ambas. b) Señala el recinto plano comprendido entre ellas. c) Calcula el área del recinto señalado. 1. Calcula la siguiente integral: e e L d (L = logaritmo neperiano)

3 1. De la función f de R en R definida por f() = a + b + c + d, se sabe que tiene un máimo relativo en = 1 y un punto de infleión en (, ), y que 1. Dadas las curvas de ecuaciones y = ; y = 1 : a) Dibuja sus gráficas. 1 b) Señala el recinto plano comprendido entre ambas. c) Calcula el área de dicho recinto. f()d = 5. Calcula a, b, c y d. 15. La curva y = divide al cuadrado de vértices A(, ), B(1, ), C(1, 1) y D(, 1) en dos recintos. a) Dibuja dichos recintos. b) Halla el área de cada uno de ellos. 16. Considera la función f() = +. Calcula: a) Puntos de corte con los ejes. b) Máimos y mínimos. c) Puntos de infleión. d) Halla el área encerrada por la gráfica y el eje X. si < Considera la función f() = + si 1 a) Haz un dibujo aproimado de su gráfica. b) Calcula el área encerrada por la gráfica y el eje X. 18. Considera las funciones f() = + 8; g() = + 8 a) Dibuja sus gráficas utilizando los mismo ejes. b) Halla el área de la región encerrada por ellas. 19. Determina un polinomio P () de segundo grado sabiendo que: P () = P () = 1 y que P ()d = 1. Dada la función f() = (+1) e +, determina la función g() tal que g () = f(), con la condición de que su gráfica pase por el punto (, ). 1. Considera la función f : R R definida por f() = ( ) e a) Determina los intervalos en los que la función f es creciente. b) Dibuja la región limitada por la gráfica de f, el eje de abscisas y las rectas de ecuaciones = 1 y =.

4 c) Halla el área de la región descrita en el apartado anterior.. De la función f : R R definida por f() = a + b + c + d se sabe que tiene un máimo relativo en = 1, un punto de infleión en (, ) y que. a) Halla el valor positivo de a para que a 1 1 f() d = 5. Calcula a, b, c y d. ( + 1) d = 9. b) Calcula el área de la superficie comprendida entre el eje OX, la recta y = + 1 y las rectas = y =.. Dadas las funciones f() = 1 y g() = 1 : a) Esboza el recinto encerrado entre sus gráficas. b) Calcula el área de dicho recinto. 5. Dibuja aproimadamente las gráficas de las funciones f() = y g() =, y sombrea el área que queda encerrada entre ellas. Calcula el valor de dicha área. 6. Calcula el valor de la integral 7. Para la función f() = ln 1 se pide: arc tg 1 + d (siendo arc tg 1 = π a) Determina las asíntotas horizontales de dicha función. y arc tg = ) b) Calcula el área comprendida entre la gráfica de la función f(), el eje de abscisas, y las rectas = e y = e. (Observa que f() es positiva en el intervalo [e, e ]) 8. Halla el área encerrada entre la curva y = + +, y la recta y =. 9. Sea la función f() = a e + b con a R, a > y b R, b >. Calcula a y b para que la recta tangente a la gráfica de f() en = tenga pendiente 1, y que además se cumpla que el área comprendida entre la gráfica de la función f(), el eje de abscisas, y las rectas = y = 1 sea u. (Obsérvese que como a > y b > entonces f() en [, 1]). Dadas las funciones f() = 1 y g() = + 5, se pide: a) Esboza sus gráficas y sombrea el recinto encerrado entre ellas. b) Calcula el área de dicho recinto. 1. Esboza las gráficas de las parábolas f() = y g() = +, sombreando el recinto cerrado que determinan. Calcula el área de dicho recinto.. Sea a R una constante real no nula, y considera la parábola f() = a a. Encuentra el valor de a para que se verifiquen simultáneamente las dos siguientes condiciones: 1), que el área comprendida entre la parábola y el eje de abscisas sea de unidades cuadradas; ), que la función f() sea cóncava hacia arriba ( ).

5 . Encuentra una primitiva de f() = sen que pase por el origen de coordenadas.. Considera la parábola f() = +. Se pide: a) Calcula las ecuaciones de las rectas tangentes a f() en = y en =, esbozando una gráfica con la parábola y las dos rectas tangentes. b) Calcula el área comprendida entre la parábola y dichas rectas tangentes. 5. Calcula la integral definida π e sen d 6. De la función f() = ( + a) sen, donde a es un número real, se sabe que la integral definida π f() d es tres veces el valor de la pendiente de la recta tangente a f() en =. Calcula el valor de a. 7. Definición de primitiva de una función. Sabiendo que F () = e es una primitiva de la función f(): a) Comprueba que f() es una función creciente en R. b) Calcula el área determinada por la gráfica de f(), el eje de abscisas, y las rectas = 1 y = Enuncia la regla de Barrow. Calcula la integral definida 1 ( + ) e d. 9. Calcula el área determinada por la gráfica de la función f() = 9 y el eje de abscisas. + e. Calcula la integral definida d (puede ayudarte hacer un cambio de variable) si < 1 1. a) Estudia la continuidad y derivabilidad de la función f() = 1 si 1 b) Determina el área encerrada por la gráfica de la función f() y el eje de abscisas.. Determina una función f : R R sabiendo que cumple que f () = e +, f () = 7, f () = y f(1) = (e +1).. Halla una primitiva F () de la función f() = 8 +, que cumpla que F () para todo R, y de forma que el área comprendida entre la gráfica de F (), el eje de abscisas y las rectas = y = 1 sea a) Representa gráficamente las parábolas f() = 1 y g() = b) Calcula el área del recinto limitado por ambas gráficas. 5. a) Calcula el dominio de la función f() = + 1. b) Calcula la integral definida: 1 f() d. 5

6 6. a) Dado un número real a > m calcula el área del recinto encerrado entre la gráfica de la función f() = 1, el eje de abscisas y las rectas = a y = a + 1. b) Eplica razonadamente que cuando a tiende a, dicho área tiende a cero. 7. Calcula a R, siendo a >, para que el área de la región limitada por la gráfica de la función f() = 6, el eje de abscisas y la recta = a sea igual a u. 8. a) Representa gráficamente la región del primer cuadrante limitada por las gráficas de las funciones f() = 1 y g() = 1, y la recta =. b) Calcula el área de dicha región. 9. Sean las funciones f() = y g() = a, con a R, a >. Calcula el valor del parámetro a para que el área encerrada entre las gráficas de las funciones f() y g() sea. 5. a) Representa gráficamente la región limitada por las gráficas de las funciones f() = y g() = 1, el eje de abscisas y la recta = e. b) Calcula el área de dicha región. 51. a) Representa gráficamente la región encerrada por las gráficas de las funciones f() = y g() = + z. b) Calcula el área de dicha región. 5. Calcular el área de la figura plana limitada por las gráficas de y = + 1; y = Calcular el área encerrada por la gráfica de y = 1 +, el eje de abscisas y las rectas = y =. 5. Calcular el volumen del cuerpo engengrado al girar alrededor del eje OX el recinto limitado por las gráficas de y = 6 ; y =. 55. Dibujar el recinto limitado por las gráficas de y = ; y = 8. Calcular el área de dicho recinto. 56. Hallar el área del recinto limitado por las gráficas de las funciones y = sen ; y = cos en el intervalo [, π]. Indicar otros dos intervalos para los cuales el área sea la misma. 57. Dibujar la región del plano limitada por las curvas y = ; y = ; y =. Calcular su área. 58. Representa el recinto plano limitado por las gráficas de y = ; y = ; y = 1. Calcular su área. 59. Representar la región del plano limitada por y = ln ; su recta tangente en = e y el eje OX. Calcular su área. 6. Calcular el área del recinto limitado por la gráfica de y = y su recta tangente en = Calcular el área limitada por las gráficas y = ; y = e ; = ; =. 6

7 6. Dibujar el recinto limitado por y = +, su recta tangente en el punto P (, ) y la recta y = +. Calcular su área. 6. Dibujar el recinto limitado por y = ; y = 1 ; y = y el eje OX. Calcular su área. 6. Dibuja el recinto limitado por y = ; y = 5. Calcular su área. 65. Dibujar el recinto limitado por las gráficas de y = 1 +, = y. Calcular su área. 66. Dibujar el recinto limitado por las gráficas de y =, y =. Calcular su área. 67. Halla la ecuación de la recta tangente a y = +, en el punto de abscisa = 1. Calcular el área del recinto limitado por y = +, la tangente anterior y el eje OY. 68. Calcular el área de la región del plano limitada por las gráficas de las funciones: y = + e y = Hallar el área del recinto limitado por las gráficas de las funciones y = e y = + Observaciones: Del ejercicio 1, las primeras integrales indefinidas se propusieron en los eámenes de selectividad entre junio de y septiembre de 11. Las integrales a 5 se propusieron entre 1989 y Los ejercicios desde el al 51 de integral definida y cálculo de áreas se propusieron entre junio de y septiembre de 11. Los ejercicios desde el 5 al 69, también de integral definida y cálculo de áreas, se propusieron entre 1989 y El ejercicio 5 es el único donde se propone el cálculo de un volumen a partir de una curva que gira alrededor del eje OX (actualmente este tipo de ejercicios no se pondrían pues no es un contenido mínimo). 7

8 Soluciones: 1. 1) 1 6 ln + 1 ln( ) ln( + ) 15 ) ln( + + ) arc tg + 1 ) + ln + 5 ln( + 1) 8 ln( ) ) ln( 1) ln( + 1) ) ln + 1 6) 1 ln 1 ln( ) 7) ln arc tg 8) 9 ln( + ) ln( 1) + 1 ( 1) ( ) 9) + + ln 9 1) 5 9 ln( + ) + 9 ln( 1) ( 1) 11) ln 1) ln( 1) 1 1) ln( + ) + 1 arc tg 1) ln( + 1) 15) ( + 1) = + 1 ( + 1) 16) 1 8 ln( + 9) + 1 arc tg 17) + e +C 18) 1 ln(1 + e ) + arc tg e +C 1 19) 18 ln( + 9 ) + 6 arc tg ) tg 1) arc tg 1 ln(1 + ) ( ) + 1 ) ln + 1 ) ln( ) ln( ) ) arc tg(sen ) 8

9 5) ln 6) ln( + 1) ln 1 7) ( + 1) = ( + ) + 1 sen 8) + sen sen cos. También es solución 9) + 9 ln( + ) ) ln( 1) + ln( ) + 1 1) arc tg + ln(1 + ) ) ( + ) sen + ( + 1) cos ) + ln(1 + ) ) cos + sen + cos 5) + ln + 5 ln( + 1) 8 ln( + ) 6) 1 ( ) + 1 ln( + + ) arc tg 1 7) sen 1 sen 8) 1 ln( + 1) + 1 9) ln( 1) 1 ln( 1) 1 ln( + 1) ) 1 5 ln( ) + 5 ln( + 1) + 8 arc tg 5 1) 1 ln( + 1) + 1 ln( 1) 1 ( 1) ) e ( sen cos ) 1 ) 1 ln( 1) 1 6 ln( + + 1) ) arc tg 6 + ln( + 1) 6 5) ln ln( 1) 1 1 6) ln(+1) 9 + 7) ln + ln( 1) 7 1 = (1 ) cos + sen ( ) + 1 arc tg ln(+1)+c = (8 + 1) ln( + 1) 9 + +C 6

10 8) ( ) sen + cos.. 9) + ln( + + 1) + ln( + 1) = + + ln( + 1) ln( + 1) Intenta comprobar que la anterior igualdad es, efectivamente, cierta (el programa Derive da como resultado de la integral la segunda parte de la igualdad). ( + ) e 5 5) e 5 = e 5 (5 + 11) ) 5 ln( 1) + ln( ) 5) + ln( + 1) ( ) arc tg ( ) 1 5) e u 57,17 u ( 8 ) u 1,77 u. 6 u u 1, u 8 u,67 u 9 u =,5 u 8. 1 u u = 6,75 u 9 u 15 6 u 1. u 1. u 1

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula . [] [ET-A] Calcula d. --. [] [ET-B] Calcula / d. (Sugerencia: integración por partes) cos. [] [JUN-A] Sean f: y g: las funciones definidas respectivamente por: f() = y g() = +. a) Esboza las gráficas

Más detalles

4. [2012] [JUN-A] Sea f una función continua en el intervalo [2,3] y F una primitiva de f tal que F(2) = 1 y F(3) = 2. Calcula: 3 5f(x)-7 dx

4. [2012] [JUN-A] Sea f una función continua en el intervalo [2,3] y F una primitiva de f tal que F(2) = 1 y F(3) = 2. Calcula: 3 5f(x)-7 dx . [] [SEP-B] Sea f: la función definida por f() = 9-. a) Halla la ecuación de la recta tangente a la gráfica de f en el punto de abscisa =. b) Esboza el recinto limitado por la gráfica de f, la recta +y

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padre Poveda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (5-M-A-) (5 puntos) Calcula el valor de a > sabiendo que el área del recinto comprendido entre la parábola y + a y la recta y es

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL DEFINIDA. APLICACIONES COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x . [4] [ET-A] Dada la función f() = + +, se pide: +4 a) Determinar el dominio de f y sus asíntotas. b) Calcular f'() y determinar los etremos relativos de f(). c) Calcular f()d 5sen + si

Más detalles

PROBLEMAS DE INTEGRALES INDEFINIDAS

PROBLEMAS DE INTEGRALES INDEFINIDAS PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su

Más detalles

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx INTEGRAL DEFINIDA. PROBLEMAS. º-Calcular las siguientes integrales definidas: π sen. ln(+ )d. d. + sen - cos -π +. d.5 -) - ( - d.6 E[]d -.7 E[] d.8 cos d - º-Calcular el área limitada por las gráficas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular . [0] [ET-A] a) Hallar el punto en el que la recta tangente a la gráfica de la función f() = -+ es paralela a la recta de ecuación y = 5-7. b) Calcular el área delimitada por la parábola de ecuación y

Más detalles

Idea de Derivada. Tasa de variación media e instantánea

Idea de Derivada. Tasa de variación media e instantánea Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años) 0 6 9 8 Altura (cm.) 8 6 74 78 80 a) Representar

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

LA INTEGRAL DEFINIDA Y EL CÁLCULO DE ÁREAS

LA INTEGRAL DEFINIDA Y EL CÁLCULO DE ÁREAS LA INTEGRAL DEFINIDA 001. Calcula la integral de f() =, en el intervalo [1, ] 00. Calcula 0 ( + ) d LA INTEGRAL DEFINIDA Y EL CÁLCULO DE ÁREAS 01 ACTIVIDAD PROPUESTA Calcula el área limitada por la función

Más detalles

MATEMÁTICAS 2º BACH CIENCIAS ANÁLISIS: Ejercicios de Exámenes Profesor: Fernando Ureña Portero

MATEMÁTICAS 2º BACH CIENCIAS ANÁLISIS: Ejercicios de Exámenes Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CIENCIAS ANÁLISIS: Ejercicios de Eámenes.-Calcular los siguientes límites: CURSO 5-6 a) (4 p.)lim +e/ 0 +e / b) (3 p.)lim 0 cos() e sen() c) (3 p.)lim 0 ( e + )/.-a)(4 p.)calcular el

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h

Más detalles

ejerciciosyexamenes.com

ejerciciosyexamenes.com ejerciciosyeamenes.com Eamen de derivadas 1. Razona la verdad o falsedad de las siguientes afirmaciones: a) f() toma todos los valores entre f(a) y f(b), es continua? b) Si f'() > 0 y g'() > 0 en [a,b]

Más detalles

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

, siendo ln(1+x) el logaritmo neperiano de 1+x. x

, siendo ln(1+x) el logaritmo neperiano de 1+x. x Selectividad CCNN 00. [ANDA] [JUN-B] Considera la función f: definida por f() = (+)e -. (a) Halla las asíntotas de la gráfica de f. (b) Determina los etremos de f y los puntos de infleión de su gráfica.

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos Análisis Integral Indefinida Matemáticas II TEMA La integral definida Problemas Propuestos Integrales definidas Halla el valor de: a) d b) 7 c) d 5 d d) e d Calcula la integral e ln( ) d Utilizando el

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

5x 2 +2 (x-6) 1-2x-e x +sen(3x) 1. [2014] [JUN-A] Calcular justificadamente: a) lim. ; b) lim x. x 2-1 (2x-1)

5x 2 +2 (x-6) 1-2x-e x +sen(3x) 1. [2014] [JUN-A] Calcular justificadamente: a) lim. ; b) lim x. x 2-1 (2x-1) --e +sen(). [04] [JUN-A] Calcular justificadamente: a) lim ; b) lim 5 + (-6) - (-) a+ln(-) si < 0. [04] [JUN-B] Dada la función f() = e - (donde ln denota logaritmo neperiano) se pide: si 0 a) Calcular

Más detalles

mates.cuencamagica.com

mates.cuencamagica.com UNIVERSIDAD DE CASTILLA LA MANCHA Pruebas de Acceso a Estudios Universitarios (Bachillerato L.O.G.S.E.) Esta prueba consta de cuatro bloques de dos preguntas cada uno. El alumno debe contestar una pregunta

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m.

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m. Enunciados de problemas de selectividad. Matemáticas II. Funciones FUNCIONES.(97).- Hay alguna función f() que no tenga límite cuando y que, sin embargo, [f()] sí tenga límite cuando?. Si la respuesta

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?. ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente

Más detalles

MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real

MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL 1. Escribe la ecuación de la recta normal a la curva de ecuación: arcsen abscisa 1. Haz un estudio de todas las asíntotas de la función: 1 e f ( ). Halla los valores

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3

para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3 . [4] [ET-A] Se considera la función real de variable real definida por f() = e +. a) Esbócese la gráfica de la función f. b) Calcúlese el área del recinto plano acotado limitado por la gráfica de la función,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

RELACION DE PROBLEMAS DE ANÁLISIS. Problemas propuestos para la prueba de acceso del curso 1996/97.

RELACION DE PROBLEMAS DE ANÁLISIS. Problemas propuestos para la prueba de acceso del curso 1996/97. RELACION DE PROBLEMAS DE ANÁLISIS Problemas propuestos para la prueba de acceso del curso 996/97. º. - De una función continua f: R R se sabe que F: R R es una primitiva suya, entonces también lo es la

Más detalles

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3 [4] [EXT-A] a) La derivada de la función f() es: (-) (-) Determine la función f() sabiendo que f() = b) Determine el límite: lim + ++ ++ + [4] [EXT-B] a) Dadas las funciones f() = y g() = - +, determine

Más detalles

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997)

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997) Matemáticas II. Curso 008/009 de funciones 1 1. Determinar las asíntotas de f () =. Estudiar la concavidad y conveidad. 1 + Determinar los puntos de infleión. (Junio 1997) 1 Por un lado, lim 1 = 0 y =

Más detalles

ANÁLISIS (Selectividad)

ANÁLISIS (Selectividad) ANÁLISIS (Selectividad) 1 Sea f : R R la función definida por f() ln ( +1). (a) Determina los intervalos de crecimiento y decrecimiento y los etremos relativos de la función f (puntos donde se alcanzan

Más detalles

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos 64 TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión. Dada la función

Más detalles

. (Nota: ln x denota el logaritmo neperiano de x).

. (Nota: ln x denota el logaritmo neperiano de x). e - si 0. [04] [ET-A] Sea la función f() = k si = 0 a) Determine razonadamente el valor del parámetro k para que la función sea continua para todos los números reales. b) Estudie si esta función es derivable

Más detalles

1. Calcular el dominio de f(x)= 2. Averiguar en qué valores del intervalo [0,2 ] está definida la función. 3. Calcular

1. Calcular el dominio de f(x)= 2. Averiguar en qué valores del intervalo [0,2 ] está definida la función. 3. Calcular . Calcular el dominio de f()= ln(0 ) ln. Averiguar en qué valores del intervalo [0,] está definida la función f()= 3 sen 3 3sen 3 0 lim 3 5 4 3. Calcular 4. Averiguar el valor de k para que la función

Más detalles

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo.

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo. Selectividad CCNN 006. [ANDA] [SEP-A] Sea f: la función definida por f() = -. a) Estudia la derivabilidad de f. b) Determina los intervalos de crecimiento y decrecimiento de f. c) Calcula los etremos relativos

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación

Más detalles

x = 1 Asíntota vertical

x = 1 Asíntota vertical EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones

Más detalles

de ecuaciones x=0 y x=3. Haz una representación gráfica aproximada. (Junio 2008)

de ecuaciones x=0 y x=3. Haz una representación gráfica aproximada.  (Junio 2008) 1.- Calcula el área del recinto limitado por la parábola de ecuación y = 4 x 2 y la recta de ecuación y = x+2. Haz una representación gráfica aproximada. http://www.youtube.com/watch?v=pmdehdqdbpy 2.-

Más detalles

x+3 3. f(x) = x 2 -x-2 x-2 x f(x) = 22. f(x) = tag(x+1) 23. f(x) = cos(x+1) x+2 x+2, x< f(x) =

x+3 3. f(x) = x 2 -x-2 x-2 x f(x) = 22. f(x) = tag(x+1) 23. f(x) = cos(x+1) x+2 x+2, x< f(x) = . Hallar el dominio de la función:. f() = +. f() = - + +. f() = -- + 4. f() = 4 +8 +- 5. f() = + 6. f() = - 7. f() = ++ 8. f() = -- 9. f() = +4 0. f() = + - -. f() = +4+. f() = - -4. f() = - + 6. f() =

Más detalles

Para qué x de ese intervalo alcanza F su valor máximo? Y el valor mínimo?

Para qué x de ese intervalo alcanza F su valor máximo? Y el valor mínimo? Análisis I (A y B) febrero9 Consideremos f() = sen() arctg( 3 Calcular el límite de f cuando tiende a Sea la sucesión ) a n = cosn Es convergente? Determinar el límite, si eiste, de la sucesión {f(a n

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B 9--4 Lo que te llevará al final, serán tus pasos, no el camino Análisis Fito y los Fitipaldis OPCIÓN A.- a) Hallar las dimensiones que hacen mínimo el coste de un contenedor

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

EXAMEN GLOBAL. 4. Dada la función y = 1/x. Existe algún punto en el que la recta tangente esté inclinada 45º?, y 135º?. Calcula esa recta tangente.

EXAMEN GLOBAL. 4. Dada la función y = 1/x. Existe algún punto en el que la recta tangente esté inclinada 45º?, y 135º?. Calcula esa recta tangente. ejerciciosyeamenes.com. a) Enunciado y demostración del teorema del seno. b) Dos coches parten al mismo tiempo de un mismo punto. Van por carreteras rectas que forman entre sí un ángulo de 30º. El primer

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

LA INTEGRAL DEFINIDA. APLICACIONES

LA INTEGRAL DEFINIDA. APLICACIONES 13 LA INTEGRAL DEFINIDA. APLICACIONES REFLEXIONA Y RESUELVE Dos trenes Un Talgo y un tren de mercancías salen de la misma estación, por la misma vía y en idéntica dirección, uno tras otro, casi simultáneamente.

Más detalles

EJERCICIOS RESUELTOS. x + ; a = 1; b = 1. x x x. x x

EJERCICIOS RESUELTOS. x + ; a = 1; b = 1. x x x. x x B7_9 //9 : Página EJERIIOS RESUELTOS alcula las funciones primitivas, que toman el valor b cuando a, de las funciones f definidas por: f() + 7; a ; b. 7 f() + ; a ; b. F ( ) ( + 7 ) d + 7 + c omo debe

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

La concentración de ozono contaminante, en microgramos por metro cúbico, en una

La concentración de ozono contaminante, en microgramos por metro cúbico, en una ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90

Más detalles

Idea de Derivada. Tasa de variación media e instantánea

Idea de Derivada. Tasa de variación media e instantánea TEMA 6. Derivadas Nombre CURSO: BACH CCSS Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Representaciones gráficas

Representaciones gráficas 1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente.

Más detalles

Autoevaluación. Bloque IV. Análisis. BACHILLERATO Matemáticas I. Página Observa la gráfica de la función y = f (x) y a partir de ella responde:

Autoevaluación. Bloque IV. Análisis. BACHILLERATO Matemáticas I. Página Observa la gráfica de la función y = f (x) y a partir de ella responde: Autoevaluación Página Observa la gráfica de la función y = f () y a partir de ella responde: a) Cuál es su dominio de definición? su recorrido? b) Representa gráficamente: y = f ( + ); y = f () + ; y =

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva

Más detalles

Aplicaciones de la integral definida al cálculo de áreas

Aplicaciones de la integral definida al cálculo de áreas Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano

Más detalles

( ) según los valores del parámetro a. Ejercicio 3. Calcula el valor de los siguientes determinantes teniendo en cuenta estos datos:

( ) según los valores del parámetro a. Ejercicio 3. Calcula el valor de los siguientes determinantes teniendo en cuenta estos datos: MATEMÁTICAS II ÁLGEBRA Y ANÁLISIS ACTIVIDADES PAU Ejercicio. Condera las matrices A = m, B = y C =. (a) Para qué valores de m tiene solución la ecuación matricial A.X + B = C? (b) Resuelve la ecuación

Más detalles

a sea la siguiente: x 2 +bx+c 1. [ANDA] [2000] [JUN-B] Determina a, b y c para que la curva y =

a sea la siguiente: x 2 +bx+c 1. [ANDA] [2000] [JUN-B] Determina a, b y c para que la curva y = Y [ANDA] [2000] [JUN-B] Determina a, b y c para que la curva y = a sea la siguiente: 2 +b+c 3 2-2 3 4 X 2 [ARAG] [20] [JUN-A] Sea la función f() = 2 +2 a) Calcular su dominio b) Obtener sus asíntotas c)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

2. [2013] [ASTU] [JUN-B] Calcule lim (2-x)

2. [2013] [ASTU] [JUN-B] Calcule lim (2-x) [204] [EXTR] [JUN-B] a) Enuncie el teorema de Bolzano b) Aplique el teorema de Bolzano para probar que la ecuación cos = 2 - tiene soluciones positivas c) Tiene la ecuación cos = 2 - alguna solución negativa?

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

EJERCICIOS DE SELECTIVIDAD FUNCIONES

EJERCICIOS DE SELECTIVIDAD FUNCIONES EJERCICIOS DE SELECTIVIDAD FUNCIONES Representación gráfica Monotonía Curvatura - Asíntotas 1. Dadas las funciones siguientes, 6 + 1 a) b) = c) = 1 + d) + 4 1 = e) = f) = 1 g) + 1 + 1 = h) = i) =, 1 +

Más detalles

TEMA 8 - REPRESENTACIÓN DE FUNCIONES

TEMA 8 - REPRESENTACIÓN DE FUNCIONES Ejercicios Selectividad Tema 8 Representación de funciones Matemáticas CCSSII º Bach 1 TEMA 8 - REPRESENTACIÓN DE FUNCIONES EJERCICIO 1 : Julio 10-11. Optativa (1 + 1,5 + 0,5 ptos) 8 Se considera la función

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0.

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0. Razonar si son ciertas o falsas las siguientes igualdades: ) a + b) = a + b ) ) a + b = a + b e = e 4) a + ab b + a = a 5) 8 + = 6) a ) = a 5 7) 8) a = a 4 = 4 9) 9 = 0) ) e ) = e + = ) e ln = ) ln 0 =

Más detalles

ANÁLISIS MATEMÁTICO I (2012)

ANÁLISIS MATEMÁTICO I (2012) ANÁLISIS MATEMÁTICO I (2012) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio 1. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta. 1. El teorema

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2 Colección A.. Calcula la derivada de las siguientes funciones:. y = 5-4 -4. y = +ln. y = -e 4. y = e 5. y =. y = + 7. y = ln 8. y = e + 9. y = (+) 0. y =. y = e -. y = (-)e - e. y = - 4. y = ln 5. y =

Más detalles

Ejercicios de Funciones: derivadas y derivabilidad

Ejercicios de Funciones: derivadas y derivabilidad Matemáticas 2ºBach CNyT. Ejercicios Funciones: Derivadas, derivabilidad. Pág 1/15 Ejercicios de Funciones: derivadas y derivabilidad 1. Calcular las derivadas en los puntos que se indica: 1., en x = 5.

Más detalles

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

x = 0, la recta tangente a la gráfica de f (x)

x = 0, la recta tangente a la gráfica de f (x) CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 201 Capítulo 4 Año 200 4.1. Modelo 200 - Opción A Problema 4.1.1 2 puntos Determinar los valores

Más detalles

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo. UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4

Más detalles