Planteamiento General para Polinomios Ortogonales. 1. Producto interno genérico, norma y ortogonalidad

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Planteamiento General para Polinomios Ortogonales. 1. Producto interno genérico, norma y ortogonalidad"

Transcripción

1 Semana 08/03/0 Polinomios Ortogonales Planteamiento General para Polinomios Ortogonales Hemos considerado un par de ejemplos de Polinomios Ortogonales En ambos podemos idenficar algunas características comunes En base a estas características comunes definiremos otras familias de polinomios ortogonales Nomenclatura Nombre a b wx) N n N 0 P n x) Legendre n + π T n x) Tchebychev E π x π U n x) Tchebychev E x H n x) Hermite e x n n! π L n x) Laguerre 0 e x L α nx) Laguerre G 0 x α e x con α > P αβ Γn+α+) n! n x) Jacobi x) α + x) β Cuadro : Propiedades genéricas de los Polinomios Ortogonales, N n indica la norma del polinomio de grado n En el caso de los polinomios de Jacobi, la norma es N n = α+β+ Γn + α + )Γn + β + ) n + α + β + n!γn + α + β + ) con α > y β > Producto interno genérico, norma y ortogonalidad Los polinomios ortogonales se definen como un conjunto de polinomios {p n x)} de orden n definidos en un determinado intervalo a x b, los cuales son ortogonales respecto a una definición de producto interno b a wx)p m x)p n x)dx = h n δ nm con wx) > 0 una función peso en a x b que garantiza que la norma sea finita en ese intervalo Dado que el Teorema de Weierstrass garantiza que el conjunto de polinomios {, x, x,, x n, } es una base completa para un espacio vectorial E, se procede a ortogonalizar esa base con la definición de producto interno y el intervalo que corresponda Para cada caso tendremos una base ortogonal de polinomios En el cuadro resumimos las propiedades más resaltantes, com lo son: la función peso en el producto interno, el intervalo en el cual están definidas estas fuciones y su norma Héctor Hernández / Luis Núñez Universidad Industrial de Santander

2 Semana 08/03/0 Polinomios Ortogonales Polinomio µ n wx) qx) P n ) n n n! x ) n T n n+ Γ n + ) π x x ) n U n n + ) π n+ Γ n + 3 ) x x H n ) n e x L n n! e x x L α n n! x α e x x Cuadro : Funciones para determinar la Fórmula de Rodrigues generalizada Fórmula de Rodrigues genelarizada En general todos los polinomios ortogonales {p n x)} vienen definidos por la fórmula de Rodrigues generalizada d n p n x) = wx)µ n dx n wx)qx)n ) donde wx), qx) y µ n vienen especficados en el cuadro para cada conjunto de polinomios ortogonales 3 Ejemplos de Polinomios Ortogonales Utilizando la fórmula de Rodrigues generalizada, podemos construir algunos polinomios generalizados El cuadro 3 muestra algunos de ejemplos de estos polinomios ortogonales Polinomio n = 0 n = n = n = 3 n = 4 P n x 3x ) 5x3 3x) 8 35x4 30x + 3) T n x x 4x 3 3x 8x 4 8x + U n x 4x 8x 3 4x 6x 4 x + H n x 4x 8x 3 x 6x 4 48x + L n x x x + 6 x3 9x + 8x 6) Cuadro 3: Ejemplos de Polinomios Ortogonales 4 x4 6x 3 + 7x 96x + 4) 4 Relaciones de Recurrencia También se pueden formular, de manera genérica las relaciones de recurrencia Obviamente, las relaciones de recurrencia también constituyen una forma alternativa de ir construyendo los Héctor Hernández / Luis Núñez Universidad Industrial de Santander

3 Semana 08/03/0 Polinomios Ortogonales polinomios ortogonales Así, un polinomio ortogonal genérico, p n x), cumplirá p n+ x) = a n + xb n )p n x) c n p n x) El cuadro 4 contiene las expresiones de los coeficientes para construir las relaciones de recurrencia generalizadas para cada uno de los polinomios Polinomio a n b n c n n + n P n 0 n + n + T n 0 U n 0 H n 0 n n + L n n + L α n + + α n n + n + n + n n + α n + Cuadro 4: Funciones para determinar la Relación de Recurrencia Generalizada 5 Función generatriz generalizada Para todos los polinomimos ortogonales podemos definir una función generatriz Gx, t), de tal manera que cada uno de los polinomios ortogonales {p n x)} será proporcional al coeficiente de t n del desarrollo en series de Taylor, en potencias de t alrededor del punto x = 0 Esta función generatriz que constituye una forma alternativa de definir los polinomios ortogonales viene expresada por la serie Gx, t) = C n p n x) t n con a n constante n=0 Las funciones generatrices no son exclusivas de los polinomios ortogonales Como veremos más adelante, existen funciones generatrices para las funciones de Bessel 6 Ecuación diferencial para los Polinomios Ortogonales Cada uno de los polinomios ortogonales habrá de ser solución de una ecuación diferencial ordinaria de la forma g x) d p n x) dx + g x) dp nx) + α n p n x) = 0 dx En el cuadro 6 mostramos las expresiones para los coeficientes de las ecuaciones correspondientes a las ecuaciones diferenciales para las cuales cada uno de los polinomio ortogonales es solución Héctor Hernández / Luis Núñez 3 Universidad Industrial de Santander

4 Semana 08/03/0 Polinomios Ortogonales Polinomio C n Gx, t) P n xt + t t T n xt + t + U n xt + t H n /n! e xt x H n n /n)! cosxt)e t H n+ n /n + )! senxt)e t xt L n t e t xt L α n t) α e t Cuadro 5: Funciones para determinar la función generatriz generalizada Polinomio g x) g x) α n P n x x nn + ) T n x x n U n x x nn + ) H n x n L n x x n L α n x x + α n Pn αβ x β α x + α + β) nn + α + β + ) Cuadro 6: Funciones para determinar la ecuación diferencial para la cual son solución los polinomios ortogonales 7 Aplicaciones para los polinomios ortogonales 7 Interpolación polinomial de puntos experimentales Muchas veces nos encontramos con la situación en la cual tenemos un conjunto de n medidas o puntos experimentales {x, y ) = fx ), x, y ) = fx ),, x n, y n ) = fx n )} y para modelar ese experimento quisiéramos una función que ajuste estos puntos El tener una función nos provee la gran ventaja de poder intuir o aproximar los puntos que no hemos medido La función candidata más inmediata es un polinomio y debemos definir el grado del polinomio y la estrategia que aproxime esos puntos Si queremos aproximar esos puntos por una recta el Método de Mínimos Cuadrados es el más utilizado Puede ser que el polinomio no sea lineal y sea necesarios ajustar esos puntos a un polinomio tal que éste pase por los puntos experimentales Queda entonces por decidir la estrategia Esto Héctor Hernández / Luis Núñez 4 Universidad Industrial de Santander

5 Semana 08/03/0 Polinomios Ortogonales es, ajustamos la función como trozos de polinomios que a su vez se ajusten a subconjuntos: {x, y ) = fx ), x, y ) = fx ),, x m, y m ) = fx m )}, con m < n, de los puntos experimentales En este caso tendremos una función de ajuste, para cada conjunto de puntos También podemos ajustar la función a todo el conjunto de puntos experimentales y, en ese caso, el máximo grado del polinomio que los ajuste será n Para encontrar este polinomio lo expresaremos como una combinación lineal de Polinomios de Legendre Esto es: n Px) = fx) = C k P k x) k=0 y = fx ) = C 0 P 0 x ) + C P x ) + + C n P n x ) y = fx ) = C 0 P 0 x ) + C P x ) + + C n P n x ) y n = fx n ) = C 0 P 0 x n ) + C P x n ) + + C n P n x n ) que no es otra cosa que un sistema de n ecuaciones con n incógnitas: los coeficientes {C 0, C, C n } Al resolver el sistema de ecuaciones y obtener los coeficientes, podremos obtener la función polinómica que interpola esos puntos Una expansión equivalente se pudo haber logrado con cualquier otro conjunto de polinomios ortogonales, ya que ellos son base del espacio de funciones Es importante hacer notar que debido a que los polinomios de Legendre están definidos en el intervalo [, ] los puntos experimentales deberán re-escalarse a ese intervalo para poder encontrar el polinomio de interpolación como combinación lineal de los Polinomios de Legendre Consideremos los puntos experimentales representado en la figura Al construir el sistema de ecuaciones obtendremos, 8) 8 = C 0 C + C C 3 + C 4 C 5 3 5, 0) 0 = C C + 5 C C C C 5 5, ) = C 0 5 C 5 C C C C 5 5, 8) 8 = C C 5 C 7 5 C C C 5 3 5, 0) 0 = C C + 5 C 9 5 C C C 5, 34) 34 = C 0 + C + C + C 3 + C 4 + C 5 y al resolver el sistema obtendremos que con lo cual C 0 = 49 44, C = , C = , C 3 = 75 6, C 4 = , C 5 = Px) = fx) = x P, x) P 3, x) + P 4, x) + P 5, x) la interpolación queda representada en al figura Héctor Hernández / Luis Núñez 5 Universidad Industrial de Santander

6 Semana 08/03/0 Polinomios Ortogonales Figura : En el lado izquierdo se muestran el conjunto de puntos experimentales: {, 8), 4, 0), 6, ), 8, 8), 0, 0),, 34)} y a la derecha la función polinómica que los interpola Es importante se nalar que mientras más puntos experimentales se incluyan para la interpolación, el polinomio resultante será de mayor grado y, por lo tanto incluirá oscilaciones que distorcionarán una aproximación más razonable Por ello, la estrategia de hacer la interpolación a trozos, digamos de tres puntos en tres puntos, generará un mejor ajuste, pero será una función polinomio) contínua a trozos 7 Cuadratura de Gauss-Legendre Una de los usos más comunes de los polinomios ortogonales es la de aproximar funciones, en particular integrales que requieren ser resueltas numéricamente La idea es aproximar una integral, para una funcion fx), definida en el intervalo [a, b] y suficientemente bien comportada, por una suma finita de términos c k fx k ) y estimar el error que cometemos en esta aproximación Esto es: b a fx)dx = c k fx k ) + E N k= Nótese que la intención es utilizar la función a integrar evaluada en un conjunto de puntos estratégicos para los cuales están definidos unos coeficientes, también inteligentemente seleccionados Es decir se requieren N números c k y los x k con k =,, N) Más aún, esas N cantidades Héctor Hernández / Luis Núñez 6 Universidad Industrial de Santander

7 Semana 08/03/0 Polinomios Ortogonales pueden ser seleccionadas de forma tal que la aproximación es exacta E N = 0 cuando fx) es un polinomio de grado N Supongamos, para empezar que la función fx) está definida para x [, ] y por lo tanto los polinomios ortogonales que seleccionaremos para aproximar la integral y la función) serán los del Legendre igual pudimos haber utilizado los polinomios de Tchebychev), con lo cual fx) = Con lo cual a k P k x) donde: a k = k=0 fx)dx c k fx k ) = k= n + ) dx fx)p k x) y a 0 = dx fx) ) c k a n P n x k ) = k= n=0 N ) a n c k P n x k ) quedan todavía por determinar los pesos c k y los puntos x k Para ello procedemos de la siguiente forma Notamos que P N x) tiene N raíces, x = x j, en el intervalo x Entonces, si seleccionamos esos puntos x = x j para evaluar la función fx k ) se anulan el coeficiente para el término a N y, además podremos encontrar los pesos c k resolviendo el sistema de N ecuaciones de la forma n=0 k= c j P 0 x j ) = c j = j= j= c j P k x j ) = 0 para k =,, N j= donde los P k x j ) son los distintos polinomios evaluados en las raíces del polinomio de grado N, ie P N x j ) = 0 Se puede demostrar que la solución de este sistema provee los pesos escritos de la forma c j = x j ) dp N x) dx x=xj ) Más aún, podremos escribir pero como fx)dx c k fx k ) = a 0 + E N con E N = k= a 0 = dx fx) dx fx) = n=n+ N ) a n c k P n x k ) k= c k fx k ) E N Es decir, demostramos que es posible aproximar la integral del la función con un promedio pesado de la función evaluada en unos puntos estratégicos Los puntos estratégicos son los ceros del polinomio de Legendre de grado igual al número de puntos con los cuales se quiere aproximar la función y k= Héctor Hernández / Luis Núñez 7 Universidad Industrial de Santander

8 Semana 08/03/0 Polinomios Ortogonales N x j = fsolvepn,x),x,complex) c j = x j ) dp N x) dx x=xj ) N ±0, , ,0 0, ±0, , ±0, , ±0, , ,0 0, ±0, , ±0, , ±0, , ±0, , ±0, ,73449 Cuadro 7: Puntos y pesos para una cuadratura de Gauss-Legendre los pesos vienen de resolver las ecuaciones para los coeficientes de la expansión En el cuadro 7 se ilustran los valores de los puntos de interpolación y sus pesos correspondientes Es inmediato comprobar que si fx) es un polinomio de grado N la aproximación es exacta y el error es nulo Pero lo que realmente hace útil a este tipo de aproximaciones es que también será exacta para polinomios de grado N Esto se puede ver si expresamos un polinomio de grado N como la suma de dos polinomios fx) = P N x)y x) + Y x) donde Y y Y son polinomios de grado N Entonces, al integrar miembro a miembro dx fx) = dx P N x)y x) + dx Y x) } {{ } =0 el primer término se anula por ser P Nx) ortogonal a cualquier polinomio de grado inferior, y el segundo término no es más que el caso que analizamos anteriormente de un polinomio de grado N Esta no es una limitación muy severa porque siempre podemos hacer un cambio de variable del tipo x = ) b a t+ b+a ) y convertir cualquier intervalo cerrado [a, b] en un intervalo cerrado [, ] Héctor Hernández / Luis Núñez 8 Universidad Industrial de Santander

9 Semana 08/03/0 Polinomios Ortogonales 73 Estrategia General para cuadraturas de Gauss Para el caso general, la aproximación de una integral b a dx wx)fx) c k fx k ), donde las {x, x k, x N } son los ceros del polinomio ortogonal, de grado N, p N x), elegido para hacer esta aproximación Los N pesos {c, c k, c N } surgen de resolver el sistema de ecuaciones k= j= c j = h 0 p 0 con h 0 = b a wx)p 0x)dx c j P k x j ) = 0 para k =,, N, j= Así para aproximar integrales con funciones pesos, wx), utilizaremos cuadraturas adaptadas a los polinomios ortogonales Esto es 0 dx e x fx) Laguerre dx e x fx) Hermite dx fx) x Tchebychev Héctor Hernández / Luis Núñez 9 Universidad Industrial de Santander

Series de Polinomios Ortogonales, continuación

Series de Polinomios Ortogonales, continuación Semana 3 - Clase 7 9// Tema : Series Series de Polinomios Ortogonales, continuación. Polinomios de Hermite Los polinomios de Hermite a diferencia de los de Legendre (y Tchevychev), vienen definidos en

Más detalles

Variedades Lineales. Se puede generalizar el concepto de dependencia e independencia lineal de R 2 y R 3. Así:

Variedades Lineales. Se puede generalizar el concepto de dependencia e independencia lineal de R 2 y R 3. Así: Semana 3 - Clase 8 2/4/9 Tema 2: Espacios Vectoriales Variedades Lineales Dependencia, independencia lineal Se puede generalizar el concepto de dependencia e independencia lineal de R 2 y R 3 Así: = C

Más detalles

1. El Teorema de Rolle Generalizado.

1. El Teorema de Rolle Generalizado. Proyecto III: Los Teoremas de Rolle y del valor Medio Objetivos: Profundizar el estudio de algunos teoremas del cálculo diferencial 1 El Teorema de Rolle Generalizado La formulación más común del Teorema

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 /

Más detalles

Operador Diferencial y Ecuaciones Diferenciales

Operador Diferencial y Ecuaciones Diferenciales Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una

Más detalles

Cuadratura de Newton-Cotes

Cuadratura de Newton-Cotes Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación INTEGRACION NUMERICA Ayudante: Rodrigo Torres Aguirre INTEGRACION

Más detalles

Tema 3: Espacios eucĺıdeos

Tema 3: Espacios eucĺıdeos Marisa Serrano, Zulima Fernández Universidad de Oviedo 25 de noviembre de 2009 email: mlserrano@uniovi.es Índice 1 2 3.1 V, R espacio vectorial, la aplicación : V V R ( v, u) v u a) v 1, v 2, u V α, β

Más detalles

CLASE #7: LOS POLINOMIOS DE JACOBI, LEGENDRE Y TCHEBYCHEFF:

CLASE #7: LOS POLINOMIOS DE JACOBI, LEGENDRE Y TCHEBYCHEFF: CLASE #7: LOS POLINOMIOS DE JACOBI, LEGENDRE Y TCHEBYCHEFF: Introducción En esta clase introduciremos la familia de polinomios de Jacobi, que incluye a los polinomios de Legendre y de Tchebycheff. Los

Más detalles

4.6. Interpolación mediante splines (polinomios a trozos) Figura 4.1: Datos de interpolación

4.6. Interpolación mediante splines (polinomios a trozos) Figura 4.1: Datos de interpolación Capítulo 4 INTERPOLACIÓN 46 Interpolación mediante splines polinomios a trozos En las figuras siguientes se puede observar alguno de los problemas que la interpolación clásica con polinomios puede plantear

Más detalles

Aproximación funcional. Introducción

Aproximación funcional. Introducción Aproximación funcional. Introducción Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Objetivos Entender

Más detalles

8 Soluciones en serie de ecuaciones lineales I

8 Soluciones en serie de ecuaciones lineales I 8 Soluciones en serie de ecuaciones lineales I Algunas ecuaciones diferenciales ordinarias lineales con coecientes variables no tienen soluciones elementales. Se puede encontrar, en algunos casos, soluciones

Más detalles

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,,

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,, Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo

Más detalles

La estructura de un cuerpo finito.

La estructura de un cuerpo finito. 9. CUERPOS FINITOS El objetivo de este capítulo es determinar la estructura de todos los cuerpos finitos. Probaremos en primer lugar que todo cuerpo finito tiene p n elementos, donde p es la característica

Más detalles

Polinomios de Legendre.

Polinomios de Legendre. . Introducción. Polinomios de Legendre. Los polinomios de Legendre constituyen una base ortogonal en el espacio de funciones definidas entre [, ]. Son soluciones de la familia de ecuaciones diferenciales

Más detalles

EL TEOREMA DE TAYLOR INTRODUCCION:

EL TEOREMA DE TAYLOR INTRODUCCION: EL TEOREMA DE TAYLOR INTRODUCCION: Sabemos que la recta tangente, como la mejor aproximación lineal a la gráfica de f en las cercanías del punto de tangencia (x o, f(x o )), es aquella recta que pasa por

Más detalles

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL Contenido Preliminares 1 Preliminares Teorema 2 Contenido Preliminares Teorema 1 Preliminares Teorema 2 Teorema Preliminares Teorema Teorema: Serie de Taylor Supongamos

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

2.I Introducción a la interpolación y aproximación.

2.I Introducción a la interpolación y aproximación. 2.I Introducción a la interpolación y aproximación. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior - Universidad de Zaragoza Otoño 2001 Contents 1 Planteamiento general

Más detalles

Aproximación funcional por mínimos cuadrados

Aproximación funcional por mínimos cuadrados Aproximación funcional por mínimos cuadrados Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Introducción

Más detalles

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 /

Más detalles

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este

Más detalles

Ecuaciones Diferenciales y Series Taylor y el comienzo

Ecuaciones Diferenciales y Series Taylor y el comienzo 1. Otra vez Algebra de Series Ecuaciones Diferenciales y Series Taylor y el comienzo Las series se suman a n (x x 0 ) n + b n (x x 0 ) n = (a n + b n ) (x x 0 ) n Las series se multiplican [ ] [ ] a n

Más detalles

Capítulo 3. Polinomios

Capítulo 3. Polinomios Capítulo 3 Polinomios 29 30 Polinomios de variable real 31 Polinomios de variable real 311 Evaluación de polinomios Para el cálculo eficiente de los valores de un polinomio se utiliza el algoritmo de Horner,

Más detalles

Capitulo IV - Inecuaciones

Capitulo IV - Inecuaciones Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o

Más detalles

Interpolación. Javier Segura. Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29

Interpolación. Javier Segura. Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29 Interpolación Javier Segura Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29 Contenidos: 1 Interpolación de Lagrange Forma de Lagrange Teorema del resto Diferencias

Más detalles

Clase 4 Funciones polinomiales y racionales

Clase 4 Funciones polinomiales y racionales Clase 4 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2014 Polinomios Definición Se llama polinomio en x a toda expresión de la forma p(x) = a 0 + a 1x+ +a n

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

Interpolación. Javier Segura. February 12, 2012

Interpolación. Javier Segura. February 12, 2012 February 12, 2012 polinómica Para cualquier conjunto de n + 1 (n 0) números distintos x 0, x 1,..., x n y cualquier conjunto de números arbitrarios y 0, y 1,..., y n, existe un único polinomio P n (x)

Más detalles

TEMA II: ECUACIONES DIFERENCIALES LINEALES CON COEFICIENTES VARIABLES. FUNCIONES ESPECIALES

TEMA II: ECUACIONES DIFERENCIALES LINEALES CON COEFICIENTES VARIABLES. FUNCIONES ESPECIALES TEMA II: ECUACIONES DIFERENCIALES LINEALES CON COEFICIENTES VARIABLES. FUNCIONES ESPECIALES Comenzaremos presentando un pequeño repaso sobre series de potencias. Dada la serie de potencias a n (x x 0 )

Más detalles

Aproximación funcional e interpolación

Aproximación funcional e interpolación Aproximación funcional e interpolación Laboratori de Càlcul Numèric (LaCàN) 8 de septiembre de 2009 1 Introducción Una función p(x) definida en un intervalo [a, b] aproxima a una función f(x) en el mismo

Más detalles

La interpolación polinomial en el análisis de métodos iterativos

La interpolación polinomial en el análisis de métodos iterativos Notas La interpolación polinomial en el análisis de métodos iterativos Resumen La solución de ecuaciones no lineales es de extrema importancia en la ingeniería y ciencias. Los métodos que se estudian para

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Interpolación y aproximaciones polinómicas

Interpolación y aproximaciones polinómicas This is page i Printer: Opaque this Interpolación y aproximaciones polinómicas Oldemar Rodríguez Rojas Octubre 008 ii This is page iii Printer: Opaque this Contents 1 Interpolación y aproximaciones polinómicas

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

Profesor Francisco R. Villatoro 29 de Mayo de 2000 NO SE PERMITEN APUNTES, FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS

Profesor Francisco R. Villatoro 29 de Mayo de 2000 NO SE PERMITEN APUNTES, FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS Examen Segundo Parcial Técnicas Numéricas (Técn. Comp.) Profesor Francisco R. Villatoro 9 de Mayo de 000 NO SE PERMITEN APUNTES FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS 1.

Más detalles

TEMA 5: INTERPOLACION NUMERICA

TEMA 5: INTERPOLACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una

Más detalles

Tema III. Funciones de varias variables

Tema III. Funciones de varias variables 1 Tema III Funciones de varias variables 1. INTRODUCCIÓN Vamos a estudiar funciones de ciertos subconjuntos de R n en R m. En los temas anteriores nos hemos centrado en aplicaciones lineales y hemos trabajado

Más detalles

Clase No. 20: Integrales impropias MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 14

Clase No. 20: Integrales impropias MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 14 Clase No. 2: Integrales impropias MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 26.11.211 1 / 14 Integrandos con singularidades (I) Cuando el integrando o alguna de sus derivadas de bajo orden

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

6.14 Descomposición ortogonal y proyección ortogonal

6.14 Descomposición ortogonal y proyección ortogonal CAPÍTULO. ESPACIO EUCLÍDEO CANÓNICO IR N 282.14 Descomposición ortogonal y proyección ortogonal El resultado W W = IR n, significa que cada y IR n se puede escribir de forma única como suma de un vector

Más detalles

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Subespacios de espacios vectoriales

Subespacios de espacios vectoriales Subespacios de espacios vectoriales Objetivos. Estudiar la definición, el criterio y algunos ejemplos de subespacios vectoriales. Muchos espacios vectoriales importantes (por ejemplo, espacio de soluciones

Más detalles

Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1

Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1 Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1 Tema 2: Interpolación. Ejercicios y Problemas 1. Ejercicios Ejercicio 1. 1. Dar, sin desarrollar, los polinomios

Más detalles

Graficación. Representación Explicita. Representación Paramétrica. Representación Implícita. Representación de curvas

Graficación. Representación Explicita. Representación Paramétrica. Representación Implícita. Representación de curvas Graficación Como modelar y/o representar objetos reales? Problema: No hay un modelo matemático del objeto Solución: Realizar una aproximación por pedazos de: Planos, esferas, otras formas simples de modelar

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

Apellidos: Nombre: NIF:

Apellidos: Nombre: NIF: Universidad de Oviedo EPS de ingeniería de Gijón Dpto. Matemáticas Algebra Lineal 7/06/008 Segunda parte Apellidos: Nombre: NIF: Ejercicio 1 Sea f : R 3 R [x] una aplicación lineal definida en las bases

Más detalles

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial 1/12 Aproximación funcional e Interpolación Representación mediante funciones analíticas sencillas de: Información discreta. (Resultante de muestreos). Funciones complicadas. Siendo y k = f(x k ) una cierta

Más detalles

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas. Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.. El número de personas afectadas por el virus contagioso que produce la gripe en una determinada población viene dado por la siguiente

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 13

Análisis Numérico para Ingeniería. Clase Nro. 13 Análisis Numérico para Ingeniería Clase Nro. 13 Aproximación de Funciones Temas a tratar: Métodos de Newton-Cotes. Método de los Trapecios. Método de 1/3 de Simpson. Método de 3/8 de Simpson. Método de

Más detalles

Funciones de Bessel.

Funciones de Bessel. Funciones de Bessel. 1. Función generatriz y desarrollo en serie. 1. Al igual que los polinomios de Legendre las funciones de Bessel de primera especie se pueden introducir a través de una función generatriz.

Más detalles

Cálculo I. Índice Continuidad. Julio C. Carrillo E. * 1. Introducción Continuidad puntual Continuidad en un intervalo 8

Cálculo I. Índice Continuidad. Julio C. Carrillo E. * 1. Introducción Continuidad puntual Continuidad en un intervalo 8 2.4. Continuidad Julio C. Carrillo E. * Índice 1. Introducción 1 2. Continuidad puntual 2 3. Continuidad en un intervalo 8 4. Conclusiones 18 * Profesor Escuela de Matemáticas, UIS. 1. Introducción Las

Más detalles

Ecuaciones diferenciales lineales con coeficientes variables

Ecuaciones diferenciales lineales con coeficientes variables Tema 5 Ecuaciones diferenciales lineales con coeficientes variables 5 Existencia y unicidad Partimos de una ecuación de la forma a 0 (x y (n + a (x y (n + + a n (x y + a n (x y = b(x (5 con a 0 (x 0 donde

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

ECUACIONES DIFERENCIALES Julián de la Horra Departamento de Matemáticas U.A.M.

ECUACIONES DIFERENCIALES Julián de la Horra Departamento de Matemáticas U.A.M. Introducción ECUACIONES DIFERENCIALES Julián de la Horra Departamento de Matemáticas U.A.M. En diferentes situaciones que aparecen con frecuencia en las Ciencias Experimentales, es complicado poder escribir

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 12 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor, que vimos en el capítulo anterior, es el estudio de los extremos relativos de una función escalar. Aunque la analogía

Más detalles

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases... Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u

Más detalles

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange Arturo Hidalgo LópezL Alfredo López L Benito Carlos Conde LázaroL Marzo, 007 Departamento de Matemática Aplicada y Métodos Informáticos

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 7 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor es el estudio de los extremos relativos de una función escalar. Aunque la analogía con el caso de una variable es total,

Más detalles

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero 11 de Diciembre de 2008 2 B.G.O. 104.- Determina si los siguientes subconjuntos del espacio vectorial correspondiente son subvariedades afines:

Más detalles

Definición 13.1 Definimos el conjunto de los polinomios de Laguerre {L n (t)} n N 0 mediante una cualquiera de las siguientes ecuaciones:

Definición 13.1 Definimos el conjunto de los polinomios de Laguerre {L n (t)} n N 0 mediante una cualquiera de las siguientes ecuaciones: Capítulo 13 Polinomios de Laguerre 13.1 Definición Definición 13.1 Definimos el conjunto de los polinomios de Laguerre {} n N mediante una cualquiera de las siguientes ecuaciones: = e t dn ( t n e t) =

Más detalles

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias.

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Dr. Rafael Morones E. Dept. de Matemáticas ITAM August 5, 2002 1 Contenido 1 Preliminares. 3 1.1 Sucesiones...............................

Más detalles

Tema 6: Resolución aproximada de sistemas de ecuaciones lineales

Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Métodos Numéricos: Resumen y ejemplos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Aproximación de funciones Interpolación Int. Segm. Complementos de Matemáticas, ITT Telemática Tema 2. Departamento de Matemáticas, Universidad de Alcalá Aproximación de funciones Interpolación Int. Segm.

Más detalles

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN MATEMÁTICAS: EBAU 207 MODELO CASTILLA Y LEÓN Opción A Ejercicio A x y + z = Dado el sistema de ecuaciones lineales { 3x + λy =, se pide: 4x + λz = 2 a) Discutir el sistema (existencia y número de soluciones)

Más detalles

TEMA 6: DERIVACION NUMERICA

TEMA 6: DERIVACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 6: DERIVACION NUMERICA 1 INTRODUCCION En este tema nos ocupamos de aproximar las derivadas de orden arbitrario ν en un punto cualquier α de una función

Más detalles

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS NOTAS Toda expresión algebraica del tipo a n x n + a n 1 x n 1 + + a 1 x + a 0 es un polinomio de grado n, si a n 0. Es bien conocida la fórmula que da las

Más detalles

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES FUNCIONES REALES DE UNA VARIABLE Índice Presentación... 3 Conjunto de los números reales... 4 Los intervalos... 6 Las potencias... 7 Los polinomios... 8 La factorización de polinomios (I)... 9 La factorización

Más detalles

Lección: Ortogonalidad y Series de Fourier

Lección: Ortogonalidad y Series de Fourier Lección: Ortogonalidad y Series de Fourier Dr. Miguel Angel Uh Zapata, Centro de Investigación en Matemáticas, Unidad Mérida Facultad de Matemáticas, UADY Octubre 2015 Miguel Uh Lección: Ortogonalidad

Más detalles

José Humberto Serrano Devia Página 1

José Humberto Serrano Devia Página 1 Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad

Más detalles

Propiedades de las funciones de Bessel

Propiedades de las funciones de Bessel Capítulo 11 Propiedades de las funciones de Bessel 11.1. Relaciones de recurrencia Si partimos de la serie que define a la función de Bessel, 11.1.1. se demuestra directamente que d dx [xν J ν (x)] x ν

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS

METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS Para encontrar la solución de la Ecuacion diferencial de orden n definida por Donde los son constantes y f(x) es un función

Más detalles

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS Contenido 1 Preliminares Definiciones 2 Definiciones Contenido 1 Preliminares Definiciones 2 Definiciones Definiciones En ciencias e ingeniería es frecuente que un experimento produzca un conjunto de datos

Más detalles

Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior

Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior 1 Ecuaciones diferenciales lineales de orden mayor que 1 Una ecuación diferencial lineal (en adelante ecuación lineal) de orden

Más detalles

Lección 3: Aproximación de funciones. por polinomios. Fórmula de Taylor para

Lección 3: Aproximación de funciones. por polinomios. Fórmula de Taylor para Lección 3: Aproximación de funciones por polinomios. Fórmula de Taylor para funciones escalares 3.1 Introducción Cuando es difícil trabajar con una función complicada, tratamos a veces de hallar una función

Más detalles

Interpolación. 12 Interpolación polinómica

Interpolación. 12 Interpolación polinómica El objeto de este capítulo es el estudio de técnicas que permitan manejar una función dada por medio de otra sencilla y bien determinada que la aproxime en algún sentido. El lector ya conoce la aproximación

Más detalles

Cálculo numérico. Sistemas de ecuaciones lineales.

Cálculo numérico. Sistemas de ecuaciones lineales. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUMÉRICO (58) Tema 5. Diferenciación e Integración Numérica Enero 5. Utilice la fórmula para calcular la derivada de f(x) = cos(x) en utilizar la fórmula. f(x + ) f(x) f'(x) x = y con =.. Estime

Más detalles

2.1 Descripción en espacio de estado de sistemas dinámicos

2.1 Descripción en espacio de estado de sistemas dinámicos 2 Análisis de sistemas lineales 2.1 Descripción en espacio de estado de sistemas dinámicos El objetivo de este capítulo es formular una teoría general de describir los sistemas dinámicos en funcion de

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices:

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: 5 2 1 1 0 3 1 0 3 3 1 6. 3 1 6 5 2 1 2.- Dada la matriz A = 10 7 8 7 5 6, 8 6 10 hallar

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Interpolación. Dan Casas

Interpolación. Dan Casas Interpolación Dan Casas 1 Motivación 2 Motivación 2 Motivación 2 Motivación 3 Interpolación 1. Introducción La mayor parte de los procesos relacionados con la Animación se basan en la Interpolación. 4

Más detalles

Cómo resolver? Veremos dos métodos

Cómo resolver? Veremos dos métodos Cómo resolver? Veremos dos métodos 1 La primera idea que surge es tomar raíz a ambos lados de la desigualdad La idea es buena, pero hay que tener presente las reglas algebraicas Cómo resolver? Se puede

Más detalles

1. Espacio vectorial. Subespacios vectoriales

1. Espacio vectorial. Subespacios vectoriales Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Sea k un cuerpo. 1. Espacio vectorial. Subespacios vectoriales Definición 1.1. Un k-espacio vectorial o espacio vectorial

Más detalles

El espacio euclideano

El espacio euclideano Capítulo 1 El espacio euclideano 1. Definiciones básicas El espacio Euclideano, denotado por R n, está definido por el conjunto (1.1) R n = {x = (x 1, x 2,..., x n ) : x i R}. Es decir, R n es efectivamente

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Ev En todo el curso K es un cuerpo Podeis pensar que K = Q, K = R o K = C Un conjunto no vacio E es un K-espacio vectorial (o abreviadamente, un K-ev) cuando existan dos operaciones,

Más detalles

3. Ecuaciones Diferenciales Lineales Homogéneas de Orden Superior con Coeficientes Constantes. Ecuaciones Diferenciales de Segundo Orden

3. Ecuaciones Diferenciales Lineales Homogéneas de Orden Superior con Coeficientes Constantes. Ecuaciones Diferenciales de Segundo Orden 3. Lineales Homogéneas de de Segundo Orden Sabemos que la solución general de una ecuación diferencial lineal homogénea de segundo orden está dada por por lo que se tiene dos soluciones no triviales, en

Más detalles

Sistemas de ecuaciones diferenciales y el uso de operadores

Sistemas de ecuaciones diferenciales y el uso de operadores Sistemas de ecuaciones diferenciales y el uso de operadores En la clase anterior resolvimos algunos sistemas de ecuaciones diferenciales sacándole provecho a la notación matricial. Sin embrago, algunos

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales Lección 8 Sistemas de ecuaciones diferenciales lineales 1 Sistemas de Ecuaciones Diferenciales Consideremos el sistema A + S X + S k 1 k 2 Inicialmente se añaden 2 moles de S y 1 mol de A d[a] dt = k 1

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles