Minimizar el error de interpolación considerando las raíces del polinomio de Chebyshev

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Minimizar el error de interpolación considerando las raíces del polinomio de Chebyshev"

Transcripción

1 Mmzar el error de terpolacó cosderado las raíces del polomo de Chebyshev Stefao Nas Dept. of Statstcs ad Operatos Research Uverstat Poltécca de Cataluya U polomo de terpolacó es u polomo que pasa eactamete a través de u couto dado de putos. Supogamos que lo que se quere es buscar u polomo de grado fto que aprome ua fucó dada. Lo que resulta tutvo es buscar que dcho polomo tega el msmo valor de la fucó e u couto de putos dado. Sabedo que por putos pasa u úco polomo de grado, podríamos argumetar que la úca maera de buscar ua apromacó meor del polomo a la fucó es la de escoger de formas dsttas los putos por los cuales el polomo ha de pasar. Dada ua fucó f de la cual se cooce sus valores e u úmero fto de abscsas,,..., m, se llama terpolacó polómca al proceso de hallar u polomo p m de grado meor o gual a m, cumpledo p m k = f k por cada k =,..., m. Los coefcetes a, a, a,..., a, de dcho polomo se obtee mpoedo al polomo de pasar por los putos fados.

2 y y y a a a Este sstema es compatble determado y a la matrz asocada se le suele deomar matrz de Vadermode. La compledad computacoal para vertr la matrz es de O. Por esta razó, ha sdo costrudo dferetes algortmos que aprovecha de la partcular estructura de de este sstema que reduce la compledad a O, como el método de las dferecas dvddas de Newto o el método de Lagrage. E este últmo caso, el polomo, el polomo terpolador de grado de Lagrage es u polomo de la forma } {... ; k m l f [] dode l so los llamados polomos de Lagrage, que se calcula de este modo: l [] Hagamos u eemplo de polomo terpolador de grado de Lagrage. Se quere hallar el valor de la fucó f = ep+ utlzado u polomo terpolador de Lagrage de grado que pase por los tres putos,f,.5,f.5,,f. Se usa prmero el método drecto para calcular el polomo terpolador de Lagrage. Co las codcoes dadas, los polomos de Lagrage so:.5.5 l l [4] l.5.5

3 Por cosguete, el polomo de terpolacó de grado dos resultará es sguete. / / p f l e 4e e e 4e e e [5] {...} Ua preguta que puede surgr al utlzar u polomo de terpolacó para apromar ua fucó es cuato bueo es el auste del polomo a la fucó orgara. Por esta razó cosderamos el error de terpolacó de u polomo de grado que pase por los putos de ua fucó f e las abscsas,...,. S f es ua fucó determada e,..., y veces dferecable, etoces el error de terpolacó puede calcularse como valor absoluto de la dfereca etre la fucó y el polomo. Costrumos ua fucó Φ por la cual se cumpla que f P a a a a [,] a [ f P ] a a a [6] Esta fucó se aula e + putos. Aplcado el teorema de Rolle se tee que ua fucó que toma el msmo valor + veces tee + putos que aula la dervada. A la vez, la dervada de esta fucó es tal que, teedo + putos co el msmo valor tedrá putos que aula su dervada. Por lo tato, dervado sucesvamete + veces, teemos que estrá u úco puto que aule la dervada +esma, es decr,. Así, podemos asegurar que,tee almeos ua raíz, co lo cual resulta evdete que, sedo p u polomo de grado maor que, la sguete. resultará f a! [7] Por cosguete, habedo puesto que e, se tee que Sea f:[a,b] R. S f es cotua e [a,b], dervable a,b e fa = fb etoces este u puto e [a, b] dode f =.

4 a f! [8] y e el caso de que f sea veces dferecable e el domo [, ], el error de terpolacó podrá defrse como f f P! [9] Dode es u puto que perteece a [,] por el cual es trvalmete verdadero cuado = ya que ambos lados de la epresó será.. Notemos que el resultado Corollaros Codcoes de terpolacó. Para cualquer valor de, el error es cuado =, ya que. El error es cuado los datos so meddas de u polomo f de eacto grado poque etoces la +ésma dervada es gual a. Adudcado valores absolutos e la epresó del error de terpolacó y mamzado ambos lados de la ecuacó a lo largo del tervalo [,] obteemos la cota para dcho error: ma f p f ma f [] ma!! queremos mmzar este factor Dada la ucdad del polomo de terpolacó, las úcas dos cosas que podemos mover a la hora de reducr el error de terpolacó es el grado del polomo por cosguete, el úmero de putos y la localzacó de dchos putos. Se podría creer que al crecer del grado del polomo el error de terpolacó se reduzca. E realdad, pese al ser u resultado attutvo, Carle Davd olmé Ruge observó que el error de terpolacó e u dato tervalo tede a fto cuado el grado del polomo de terpolacó tede a fto. lm ma f p [] 4

5 El métodos que lustraremos os permte proporcoar los putos por los cuales hacer pasar el polomo de terpolacó de forma tal que la dstaca máma etre el polomo terpolado y la fucó orgara sea míma. La osclacó observada por Ruge se puede mmzar usado odos de Chebyshev e lugar de equdstates. E este caso se garatza que el error mámo dsmuye al crecer el orde polómco. Esta es ua propedad que hace partcularmete teresate el utlzar las raíces del polomo de Chebyshev como putos por dode terpolar el polomo. Para mmzar el últmo factor de la cota del error proporcoada e [], Pafuty Lvovch Chebyshev demostró que los putos,..., por los cuales hacer pasar el polomo ha de ser escogdo de forma que ma [] dode, es el polomo de Chebyshev de grado +. El polomo de Chebyshev de prmera espece es el A partr de los polomos de grado y [] el polomo de Chebyshev de grado se obtee por medo de la sguete defcó recursva. [4] Co lo cual 5

6 Etre todas las eleccoes de los putos,...,, elegrlos de forma que [7] se respete, garatza que el polomo así obtedo es el úco que tega la propedad segú la cual ma ma ma ma [5] Por ede, se puede demostrar que el valor absoluto de la dfereca etre la fucó y el polomo terpolado por las raíces del polomo de Chebyshev resulta acotado de la sguete forma: ma!,] [ f P f [6] Abao mostramos la varacó de dcha cota e el caso de f = s apromado e [, ]. Como se ota, al aumetar del grado del polomo la cota del error dsmuye moótoamete.

7 Ua terpretacó geométrca de los odos de Chebyshev es aquella segú la cual estos se coloca e u segmeto de logtud gual al dámetro de u círculo, cuya crcufereca repartmos e partes guales. Proyectado a lo largo del dcho segmeto el puto medo de cada partcó de la semcrcofereca obteemos putos que cocde co las raíces del polomo de Chebyshev. La razó por la cual la apromacó de ua fucó f por u polomo que terpole putos escogdos de esta forma mmza el efecto Ruge es que la desdad de putos resulta crecete desde el cetro asta las etremdades. Para calcular dchas races utlza la detdad trgoometrca del polomo de Chebyshev. arccos cosh arccosh cos Este coseo se aula cuado la epresó al teror es u múltplo de Π y por lo tato las raíces del polomo de Chebyshev e [,] so. cos ;. E el caso de que se qusera defr el polomo de Chebyshev e u tervalo cualquera [a, b], las races resultara trasformadas de la sguete forma. 7

8 a b b a cos ;,..., La utlzacó de los odos de Chebyshev os permte també utlzar u método recursvo para la obtecó de los coefcetes. f c dode c so c k f k k = k f k c k f k k Esta formula permta calcular los coefcetes del polomo de terpolacó co u coste computacoal del orde de O operacoes. El sguete eemplo muestra ua aplcacó de la apromacó de ua fucó por polomo terpolados e los odos del polomo de Chebyshev. 8 Cosderamos la fucó: f y terpolamos dos polomos de gual grado a 4 54 los putos de dcha fucó. El prmer polomo lo terpolamos e putos equespacados y el segudo e las raíces del polomo de Chebyshev. Utlzamos dos meddas de dstaca para evaluar la bodad de la apromacó: b d f, p f p a d Dode calculamos el área de la dfereca etre la fucó y el polomo de terpolacó al cuadrado. Y: d f, p ma f p dode hallamos el valor de la máma dstaca. Lo que resulta teresate e esta apromacó es que, metras la dstaca máma etre la fucó y el polomo resulta sempre meor cuado se utlza las raíces del polomo de Chebyshev, lo msmo o ocurre co la orma L. 8

9 Como se ota, la orma L etre la fucó y el polomo de grado 5 resulta 79 cuado se utlza putos uformemete dstrbudos y 75, cuado se utlza las raíces del polomo de Chebychev. Putos equdstates = 5 L = 79 M ma = 4.66 Nodos de Chebyshev = 5 L = 75 M ma = 8. Para la terpolacó co u polomo de grado 5, a smple vsta o se puede valorar cuales so los putos co los que se terpola meor, de hecho, este ua aprecacó de máma dstaca e el polomo hallado por el método de Chebyshev, pero s cosultamos las meddas de error aclaramos que o es más que ua lusó óptca. Nodos de Chebyshev Putos equdstates 9

10 = 8 L = M ma = 5.78 = 8 L = 7 M ma = 4.67 Cuado aumetamos el grado del polomo, observamos que a pesar de que ambos métodos parece austar be, el hallado a partr de los odos de Chebyshev es óptmo ya que podemos dstgur la catdad de error sobre todo e los etremos, y lo corroboramos cosultado las meddas de error. Putos equdstates = 6 L = 44 M ma = Nodos de Chebyshev = 6 L =.46 M ma =. Por últmo, aumetamos el grado de polomo a 6 y e este caso, aprecamos claramete e el prmer gráfco ua mafestacó del feómeo de Ruge, del que ya hablamos aterormete. Lo que emerge claramete es que el método de Chebyshev resulta óptmo para la mmzacó de la mayor dstaca estete etre la fucó que se desea apromar y uestro polomo de Chebyshev Mma. S embargo, esto o garatza de gua forma la mmzacó del otras dstacas, como se observó e caso de la orma L. U coveete cosderable de dcho método es que s queremos añadr más odos, se tedría que estmar de uevo los coefcetes de los polomos de Chebyshev.

11 Codgo MatLab %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % S Chebyshev % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% = 5 % grado del polomo = -: /- :'; % seleccoamos los putos equdstates a partr de los cuales % hallaremos el polomo de terpolacó f 8*./+54*.^4+.^; % defmos la fucó que queremos austar medate el polomo y = fevalf,; % calculamos los valores de la fucó f e los putos defdos % aterormete p = polyft,y,-; % hallamos los coefcetes del polomo de terpolacó t = -:.:; % defmos el domo poly = polyvalp,t; % calculamos los valores y del polomo de terpolacó e plott,ft,'b',t,poly,'r',,f,'ok' %%%%%%% Norm M Ma %%%%%% % hallamos la máma dstaca f 8*/+54*^4+^; %fucó que queremos apromar medate g g p*[^4 ^ ^ ]'; %polomo de terpolacó dst = ; ed for = -:.: dst = ma dst, absf - g; dst %%%%%%% Norm L %%%%%%%%%% % Calculamos el área de la dfereca etre la % fucó y el polomo de terpolacó al cuadrado syms

12 L = tf - g^, -, roudl %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Co Chebyshev % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% = 5; % grado del polomo = cos*:'-*p/*; % calculamos los odos de Chebyshev f 8*./+54*.^4+.^; % defmos la fucó que queremos austar medate el polomo y = fevalf,; % calculamos el valor de la fucó f e p = polyft,y,-; % hallamos los coefcetes del polomo de terpolacó a partr de % los odos de Chebyshev t = -:.:; %defmos el domo poly = polyvalp,t; % calculamos el valor y del polomo de terpolacó e plott,ft,'b',t,poly,'r',,f,'ok' %%%%%%% Norm M Ma %%%%%% f 8*/+54*^4+^; %fucó que queremos apromar medate g g p*[^4 ^ ^ ]'; %polomo de terpolacó dst = ; for = -:.: ed dst = [dst, absf - g]; dst % hallamos la máma dstaca %%%%%%% Norm L %%%%%%%%%% syms L = tf - g^, -, roudl

13 % Calculamos el área de la dfereca etre la fucó y el polomo % de terpolacó al cuadrado fucto [c,] = chebpolftfame, %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Alteratvamete, també podemos calcular el polomo de terpolacó % medate los polomos de Chebyshev. % Calcula los coefcetes c para =,,, del polomo de % terpolacó: pt=c*_t+...c*_{-}t dode _ so los % polomos de % Chebyshev de grado % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% = cos*:'-*p/*; % odos de Chebyshev y = fevalfame,; = [zeros, oes,]; c = [sumy/ zeros,-]; a = ; for k = : = [:, a*.*:,-:,]; % polomos de Chebyshev ck = sum :,.* y*/; % coefcetes para los polomos de Chebyshev a = ; ed fucto u = chebpolvalc,t % esta fucó calcula los valores de la combacó leal de los % polomos de % Chebyshev e todo el domo de t = legthc; u = c*oesszet; f > up = u; u = c- + *t*c; for = -:-: up = up; up = u; u = c + *t.*up - up; ed u = u - t.*up; ed % y e la vetaa de comado de MatLab escrbmos: =5 % grado del polomo f 8*/+54*^4+^; % declaramos uestra fucó [c,] = chebpolftf,;

14 % calculamos los coefcetes y los polomos de Chebyshev t = -:.:; % defmos el domo e las abcsas plott,ft,'b',t,chebpolvalc,t,'r',,f,'ok' % grafcamos la fucó e azul y el polomo de terpolacó e roo 4

G - Métodos de Interpolación

G - Métodos de Interpolación ESCUELA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS G - Métodos de Iterpolacó Polomo de terpolacó de Lagrage. Polomo de terpolacó

Más detalles

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

ANTES DE COMENZAR RECUERDA

ANTES DE COMENZAR RECUERDA ANTES DE COMENZAR RECUERDA 00 Po tres ejemplos de úmeros reales que o sea racoales, y otros tres ejemplos de úmeros reales que o sea rracoales. Respuesta aberta. Tres úmeros reales que o sea racoales:,

Más detalles

x x x x x Y se seguía operando

x x x x x Y se seguía operando . INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x)

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x) APROXIMACIÓN DISCRETA DE MÍNIMOS CUADRADOS Las leyes físcas que rge el feómeo que se estuda e forma expermetal os proporcoa formacó mportate que debemos cosderar para propoer la forma de la fucó φ ( x)

Más detalles

CALCULO DIFERENCIAL E INTEGRAL II. Figura 1

CALCULO DIFERENCIAL E INTEGRAL II. Figura 1 TEMA (Últma modcacó 8-7-5 CALCULO DIFERENCIAL E INTEGRAL II DERIVABILIDAD Recordemos el cocepto de dervadas para ucoes de ua varable depedete = (. Para lo cual ormamos el cremeto de la ucó = ( + - ( El

Más detalles

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO.

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO. Tema 60.Parámetros estadístcos. Calculo propedades y sgfcado Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGIFICADO.. Itroduccó. Defcó de estadístca. Estadístca descrptva y estadístca ferecal.

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

TEMA24. Funciones en forma de tabla. Interpolación y extrapolación

TEMA24. Funciones en forma de tabla. Interpolación y extrapolación TEMA 4. Fucoes e orma de Tabla terpolacó etrapolacó TEMA4. Fucoes e orma de tabla. Iterpolacó etrapolacó. Itroduccó. Fucó e orma de tabla. La Naturaleza es umérca matemátca así umerosos eómeos aturales

Más detalles

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función Uversdad Poltécca de Madrd Igeería de Mas Fórmulas de de Dervacó Numérca: Aproxmacó de de la la dervada prmera de de ua fucó Prof. Alfredo López L Beto Prof. Carlos Code LázaroL Prof. Arturo dalgo LópezL

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

4 METODOLOGIA ADAPTADA AL PROBLEMA

4 METODOLOGIA ADAPTADA AL PROBLEMA 4 MEODOLOGA ADAPADA AL PROBLEMA 4.1 troduccó Báscamete el problema que se quere resolver es ecotrar la actuacó óptma sobre las tesoes de los geeradores, la relacó de tomas de los trasformadores y el valor

Más detalles

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u FUNDAMENTOS DE LOS ESPACIOS VECTORIALES ABSTRACTOS Prmeros ejemplos. Cosderemos el cojuto V de los vectores lbres del plao. Recordemos que la operacó de sumar vectores verfcaba las sguetes propedades:

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

Aplicación de Boostrapping en Regresión I

Aplicación de Boostrapping en Regresión I Aplcacó de Boostrappg e Regresó I U modelo de regresó leal basado e observacoes (x,y ) es de la forma y =x β+e (=,,..) dode y so los valores observados de la varable de respuesta y, y los x so vectores

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

CAPITULO II. Derivación e integración numérica

CAPITULO II. Derivación e integración numérica Mecáca Computacoal II CAPITULO II Dervacó e tegracó umérca Uversdad Smó Bolívar Capítulo II Dervacó e tegracó umérca Itroduccó Dervacó umérca Itegracó umérca Reerecas Itroduccó E mucas ocasoes se dspoe

Más detalles

Transformada Z. Definición y Propiedades Transformada Inversa Función de Transferencia Discreta Análisis de Sistemas

Transformada Z. Definición y Propiedades Transformada Inversa Función de Transferencia Discreta Análisis de Sistemas 5º Curso-Tratameto Dgtal de Señal Trasformada Z Defcó y Propedades Trasformada Iversa Fucó de Trasfereca Dscreta Aálss de Sstemas 7//99 Capítulo 7: Trasformada Z Defcó y Propedades 5º Curso-Tratameto Dgtal

Más detalles

Incertidumbre en las mediciones directas e indirectas

Incertidumbre en las mediciones directas e indirectas Icertdumbre e las medcoes drectas e drectas Comezaremos por dstgur dos dferetes tpos de medcoes: Medcoes drectas: La medda de la cota se obtee e ua úca medcó co u strumeto de lectura drecta. Medcoes drectas:

Más detalles

ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS:

ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS: SUBESPACIOS FINITAMENTE GENERADOS: Teorema S G={v, v,, v } es u sstema fto de geeradores de u subespaco S V K-EV, etoces G`= {v, v,, v,w} sedo w combacó leal de vectores de G, també geera a S. Demostracó

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205 Aálss amortzado Téccas Avazadas de Programacó - Javer Campos 205 Aálss amortzado El pla: Coceptos báscos: Método agregado Método cotable Método potecal Prmer ejemplo: aálss de tablas hash dámcas Motículos

Más detalles

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro)

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro) UIDAD.- Dstrbucoes bdmesoales. Correlacó regresó (tema del lbro). VARIABLES ESTADÍSTICAS BIDIMESIOALES Vamos a trabajar sobre ua sere de feómeos e los que para cada observacó se obtee u par de meddas.

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA

CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA NÚMEROS COMPLEJOS E INDUCCIÓN MATEMATICA 55 CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA 4. INTRODUCCIÓN Los úmeros Complejos costtuye el mímo cojuto C, e el que se puede resolver la ecuacó x a

Más detalles

Del correcto uso de las fracciones parciales.

Del correcto uso de las fracciones parciales. Del correcto uso de las fraccoes parcales. Rubé Emauel Madrd García. E este opúsculo haré u aálss de lo que hoy llamamos fraccoes parcales, lo cual o es otra cosa que la descomposcó del cocete etre dos

Más detalles

Problemas de Polímeros. Química Física Avanzada Iñaki Tuñón 2010/2011

Problemas de Polímeros. Química Física Avanzada Iñaki Tuñón 2010/2011 Problemas de Polímeros Químca Físca Avazada Iñak Tuñó / POL.-U polímero moodsperso de masa molecular. gmol - está cotamado e u % e peso co ua mpureza de peso molecular. gmol -. Calcular z,, Co los datos

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacó: Es u cojuto de elemetos co ua determada característca. Muestra: Es u subcojuto de la poblacó. Muestreo: Es el proceso para elegr ua muestra que sea represetatva de la poblacó.

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II.

Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II. Teoría Smplfcada de ERRORES Suscrbe este documeto los coordadores de Laboratoro de Químca, Físca I y Físca II. Defcoes Báscas: -Error absoluto (o error): Itervalo xe dode co máxma probabldad se ecuetra

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

Números Complejos PREGUNTAS MÁS FRECUENTES

Números Complejos PREGUNTAS MÁS FRECUENTES Repaso de º de Bachllerato Números Complejos PREGUNTAS MÁS FRECUENTES. Qué es la udad magara? Es u elemeto del que coocemos úcamete su cuadrado:.obvamete, o se trata de u úmero real.. Qué es u úmero complejo?

Más detalles

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado

Más detalles

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción Capítulo VII PROBABILIDAD 1. Itroduccó Se dcaba e el capítulo ateror que cuado u expermeto aleatoro se repte u gra úmero de veces, los posbles resultados tede a presetarse u úmero muy parecdo de veces,

Más detalles

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA Colego Sagrada Famla Matemátcas 4º ESO 011-01 1.- TERMIOLOGÍA. TABLAS Y GRÁFICOS ESTADÍSTICOS ESTADÍSTICA DESCRIPTIVA La poblacó es el cojuto de de todos los elemetos, que cumpledo ua codcó, deseamos estudar.

Más detalles

GENERALIDADES SOBRE MÓDULOS

GENERALIDADES SOBRE MÓDULOS GENERALIDADES SOBRE MÓDULOS Presetar el Z -módulo Z como cocete de u Z -módulo lbre Hacer lo msmo para el grupo de Kle Calcular los auladores de los sguetes módulos: a) El Z -módulo Z Z 6 b) El Z -módulo

Más detalles

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_01. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D.

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_01. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D. CPIULO 2º FUNCIONES DE VECORES Y MRICES_ Ig. Dego lejadro Patño G. M.Sc, Ph.D. Fucoes de Vectores y Matrces Los operadores leales so fucoes e u espaco vectoral, que trasforma u vector desde u espaco a

Más detalles

MEDIDAS DE FORMA Y CONCENTRACIÓN

MEDIDAS DE FORMA Y CONCENTRACIÓN MEDIDAS DE FORMA Y CONCENTRACIÓN 4..- Asmetría: coefcetes de asmetría de Fsher y Pearso. Otros Coefcetes de asmetría. 4.2.- La ley ormal. 4..- Curtoss o aplastameto: coefcete de Fsher. 4.4.- Meddas de

Más detalles

. Si vamos calculando así las potencias n-ésimas de la unidad imaginaria, descubriremos que son cíclicas y que cada 4 términos se repiten: ( )

. Si vamos calculando así las potencias n-ésimas de la unidad imaginaria, descubriremos que son cíclicas y que cada 4 términos se repiten: ( ) Los úmeros complejos surje a ra de ecuacoes de la forma x + 0 Exste u certo paralelsmo etre este cuerpo el plao, cocretamete, lo que ha es ua correspodeca buívoca, es decr, ua relacó bectva etre C R R

Más detalles

FEM-OF: EDP Elíptica de 2 Orden

FEM-OF: EDP Elíptica de 2 Orden 9/02/2008 Capítulo 5: FM-OF: D líptca de 2 Orde Idce: 5..- Operador Dferecal líptco 5.2.- roblema Básco 5.3.- Fucoes Óptmas 5.4.- FM-OF Steklov-ocaré 5.5.- FM-OF Trefftz-Herrera 5.6.- FM-OF etrov-galerk

Más detalles

En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )

En esta sección estudiaremos el caso en que se usa un solo Predictor para predecir la variable de interés ( Y ) Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 6 ÁLGEBRA II (LSI PI) UNIDAD Nº 6 VALORES Y VECTORES PROPIOS Facultad de Cecas Exactas y Tecologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO aa Error! No hay texto co el estlo especfcado e el documeto.

Más detalles

TEORIA DE ERRORES. Fuentes De error. Error Final

TEORIA DE ERRORES. Fuentes De error. Error Final TEORIA DE ERRORES Fuetes De error Errores heretes: (EI) So los errores que afecta a los datos del prolema umérco puede teer dsttos orígees. Por ejemplo puede ser el resultado de la certdumre e cualquer

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción.

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción. TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO 5..- Itroduccó. Stuacoes segú el vel de formacó: Certeza. Icertdumbre parcal o resgo: (Iversoes co resgo) Icertdumbre total: (Iversoes co certdumbre)

Más detalles

LA FUNCION CUANTIL: UNA APLICACIÓN AL ESTUDIO DE LA PROPORCIONALIDAD ENTRE CARACTERISTICAS POBLACIONALES.

LA FUNCION CUANTIL: UNA APLICACIÓN AL ESTUDIO DE LA PROPORCIONALIDAD ENTRE CARACTERISTICAS POBLACIONALES. LA FUNCION CUANTIL: UNA APLICACIÓN AL ESTUDIO DE LA PROPORCIONALIDAD ENTRE CARACTERISTICAS POBLACIONALES. Catalejo García, Fracsco García Lopera, Fracsca Mola Ruz, Salvador Javer Profesores del Departameto

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2008

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2008 Solucó del exame de Ivestgacó Operatva de Sstemas de septembre de 008 Problema : (3 putos) E Vllafresca uca hace sol dos días segudos. S u día hace sol, hay las msmas probabldades de que el día sguete

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

( ) = 1 ; f k. u v. uk v. vk u. Diferenciacion e Interpolacion 1/8. Diferenciacion e Interpolacion numerica. Diferencias finitas

( ) = 1 ; f k. u v. uk v. vk u. Diferenciacion e Interpolacion 1/8. Diferenciacion e Interpolacion numerica. Diferencias finitas Derecaco e Iterpolaco /8 Derecaco e Iterpolaco merca. Derecas tas Dadas las abscsas X ormemete espacadas X X h, a las qe correspode alores de co (): (X) se dee las prmeras derecas tas ( Haca delate ) como:

Más detalles

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto:

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto: Curso: Estadístca Iferecal (ICO 8306) Profesores: Esteba Calvo, Pablo Huechapa y Omar Ramos Ayudates: José T. Meda, Fabo Salas y Daela Vlches PROBLEMA Cosdere que Ud. es dueño de u campo que produce mazaas,

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

Métodos Numéricos para Ingenieros Químicos

Métodos Numéricos para Ingenieros Químicos CONTENIDO Métodos Numércos para Ieeros Químcos Itroduccó Formas de resolucó de ecuacoes trascedetes Método ráco Tema Ecuacoes Trascedetes () Métodos cerrados Bseccó Iterpolacó Secate Clase 3 - Láma Ecuacoes

Más detalles

Números complejos. Números complejos. Las tribulaciones del estudiante Törless LITERATURA Y MATEMÁTICAS

Números complejos. Números complejos. Las tribulaciones del estudiante Törless LITERATURA Y MATEMÁTICAS Números complejos SOLUCIONARIO Números complejos LITERATURA Y MATEMÁTICAS Las trbulacoes del estudate Törless Dme, etedste be todo esto? Qué? Ese asuto de los úmeros magaros. Sí, o es ta dfícl. Lo úco

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS

Más detalles

CAPITULO I INTERPOLACION Y APROXIMACION

CAPITULO I INTERPOLACION Y APROXIMACION Mecáca Computacoal II CAPITULO I INTERPOLACION Y APROXIMACION Armado Blaco A. Uversdad Smó Bolívar Capítulo I Itroduccó Polomos de Newto de derecas dvddas Polomos de Lagrage Iterpolacó polomal Trazadores

Más detalles

GUÍA DE EJERCICIOS. Área Matemática Álgebra lineal

GUÍA DE EJERCICIOS. Área Matemática Álgebra lineal GUÍA DE EJERCICIOS Área Matemátca Álgebra leal Resultados de apredzaje. Recoocer exsteca de subespaco vectoral. Cotedos 1. Espacos vectorales. 2. Subespacos vectorales. Debo saber Se debe recordar que

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadístca Matemátcas B º E.S.O. TEM 9 ESTDÍSTIC TBLS DE FRECUENCIS Y REPRESENTCIONES GRÁFICS EN VRIBLES DISCRETS EJERCICIO : l pregutar a 0 dvduos sobre el úmero de lbros que ha leído e el últmo

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacoes y muestras Varables. Tablas de frecuecas Meddas de: tedeca cetral-dspersó ESTADÍSTICA DESCRIPTIVA: Tee por objetvo recoplar, orgazar y aalzar formacó referda a datos de u

Más detalles

Unidad 2. Reactores Continuos

Unidad 2. Reactores Continuos Reactores Químcos: Udad Udad Reactores otuos Reactores cotuos so aquellos e los cuales, de maera cotua, se almeta los reactvos y també, de maera cotua se extrae los productos Detro de esta clasfcacó, de

Más detalles

x θ es conocida pero se desconoce θ total o ˆθ ) debe ser función de los datos de la muestra

x θ es conocida pero se desconoce θ total o ˆθ ) debe ser función de los datos de la muestra Estmacó putual de parámetros. Parámetro( : Característca de la poblacó. E estadístca la forma fucoal de f ( ; es coocda pero se descooce total o parcalmete. La estmacó del parámetro ( debe ser fucó de

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

PARÁMETROS ESTADÍSTICOS

PARÁMETROS ESTADÍSTICOS www.matesroda.et José Atoo Jméez eto PARÁMETROS ESTADÍSTICOS. PARÁMETROS DE CETRALIZACIÓ La formacó recogda e ua tabla o gráfca estadístca suele resumrse e uos pocos valores que os forma del comportameto

Más detalles

Objetivos. El alumno será capaz de programar algoritmos que incluyan el manejo de arreglos utilizando funciones.

Objetivos. El alumno será capaz de programar algoritmos que incluyan el manejo de arreglos utilizando funciones. Objetvos El alumo será capaz de programar algortmos que cluya el maejo de arreglos utlzado fucoes. Al fal de esta práctca el alumo podrá:. Realzar etosamete programas que haga uso de arreglos como parámetros

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3 Probabldad PROBABILIDAD 1. Expermetos aleatoros... 2 2. Espaco muestral asocado a u expermeto aleatoro. 3 3. Sucesos... 3 4. El álgebra de Boole de los sucesos... 4 5. Frecuecas. Propedades... 6 6. Defcó

Más detalles

X / n : proporción de caras ( = frecuencia relativa del suceso A = f A = n A / n ) Se espera que a medida que n crece la frecuencia relativa de cara

X / n : proporción de caras ( = frecuencia relativa del suceso A = f A = n A / n ) Se espera que a medida que n crece la frecuencia relativa de cara 95 Teoremas límte Cosderemos el exermeto aleatoro que cosste e arrojar ua moeda equlbrada veces. Suogamos que se regstra la roorcó de caras. U resultado coocdo es que esta roorcó estará cerca de /. Formalzado

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

Métodos Numéricos TEMA 8: DERIVACION E INTEGRACION Numérica

Métodos Numéricos TEMA 8: DERIVACION E INTEGRACION Numérica Métodos Numércos TEMA 8: DERIVACION E INTEGRACION Numérca DIFERENCIACIÓN NUMÉRICA Polomo de terpolacó es aplcable para la resolucó de problemas de derecacó, e geeral y el cálculo de dervadas, e partcular.

Más detalles

2 - TEORIA DE ERRORES : Calibraciones

2 - TEORIA DE ERRORES : Calibraciones - TEORIA DE ERRORES : Calbracoes CONTENIDOS Errores sstemátcos.. Modelo de Studet. Curvas de Calbracó. Métodos de los Mímos Cuadrados. Recta de Regresó. Calbracó de Istrumetos OBJETIVOS Explcar el cocepto

Más detalles

PROGRAMACIÓN MATEMÁTICA Y TEORIA DE LA CARTERA: UNA APLICACIÓN CON MAPLE. Eva Mª del Pozo García Mª Jesús Segovia Vargas Zuleyka Díaz Martínez

PROGRAMACIÓN MATEMÁTICA Y TEORIA DE LA CARTERA: UNA APLICACIÓN CON MAPLE. Eva Mª del Pozo García Mª Jesús Segovia Vargas Zuleyka Díaz Martínez PROGRAMACIÓN MATEMÁTICA Y TEORIA DE LA CARTERA: UNA APLICACIÓN CON MAPLE Eva Mª del Pozo García Mª Jesús Segova Vargas Zuleyka Díaz Martíez Departameto de Ecoomía Facera y Cotabldad I Uversdad Complutese

Más detalles

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3 Probabldad PROBBILIDD. Expermetos aleatoros... 2 2. Espaco muestral asocado a u expermeto aleatoro. 3 3. Sucesos... 3 4. El álgebra de Boole de los sucesos... 4 5. Frecuecas. Propedades... 6 6. Defcó axomátca

Más detalles

Análisis de Regresión

Análisis de Regresión Aálss de Regresó Ig. César Augusto Zapata Urqujo Ig. José Alejadro Marí Del Río Facultad de Igeería Idustral Uversdad Tecológca de Perera 0-05 Modelo de Regresó Leal Smple Y Dados A (, ) =,,. Gráfco o

Más detalles

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN TEMAS 1-2-3 CUESTIOARIO DE AUTOEVALUACIÓ 2.1.- Al realzar los cálculos para obteer el Ídce de G se observa que: p 3 > q 3 y que p 4 >q 4 etoces: La prmera desgualdad es falsa y la seguda certa. La prmera

Más detalles

TEMA DISTRIBUCIONES BIDIMENSIONALES DE FRECUENCIAS.

TEMA DISTRIBUCIONES BIDIMENSIONALES DE FRECUENCIAS. 1. Dstrbucoes Bdmesoales de Frecuecas. 1.1. Idepedeca y Relacó Fucoal de dos Varables. 1.. Tablas de Correlacó y de Cotgeca. 1.3. Dstrbucoes Margales. 1.4. Dstrbucoes Codcoadas. 1.5. Idepedeca Estadístca..

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Gráfica de los resultados experimentales: Variable Independiente: Variable Dependiente: Variable asociada:

Gráfica de los resultados experimentales: Variable Independiente: Variable Dependiente: Variable asociada: :: OBJETIVOS [3.] o Apreder a presetar los datos epermetales como grafcas -. o Apreder a usar las hojas de papel logarítmco Semlogarítmco o Determar la relacó matemátca de ua grafca leal de datos epermetales

Más detalles

Regresión lineal simple

Regresión lineal simple Descrpcó breve del tema Regresó leal smple Tema. Itroduccó. El modelo de regresó smple 3. Hpótess del modelo Lealdad, homogeedad, homocedastcdad, depedeca ormaldad 4. Estmacó de los parámetros Mímos cuadrados,

Más detalles

10 MUESTREO. n 1 9/ / σ σ 1

10 MUESTREO. n 1 9/ / σ σ 1 10 MUESTREO 1 Cómo varará la desvacó típca muestral s se multplca por cuatro el tamaño de la muestra? Y s se aumeta el tamaño de la muestra de 16 a 144? S µ y so la meda y la desvacó típca poblacoales,

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu y Tea 5: Equlbro Geeral Parte III OWC Ecooía para Mateátcos Ferado Perera Tallo ttp://bt.ly/8l8ddu Esteca de Equlbro Ferado Perera-Tallo A lo largo de esta presetacó os vaos a cocetrar e espacos Eucldos,

Más detalles

Incertidumbre en las mediciones directas e indirectas

Incertidumbre en las mediciones directas e indirectas ertdumbre e las medoes dretas e dretas Reordado Para la seleó de u strumeto de medó os basamos e la Regla de Oro de la Metrología Luego, 0. T T La toleraa orregda por la ertdumbre del strumeto queda defda

Más detalles