TRABAJO Y ENERGIA. 5.1 TRABAJO REALIZADO POR UNA FUERZA CONSTANTE.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRABAJO Y ENERGIA. 5.1 TRABAJO REALIZADO POR UNA FUERZA CONSTANTE."

Transcripción

1 TRABAJO Y ENERGIA. El poblema undamental de la Mecánca es descb como se moveán los cuepos s se conocen las uezas aplcadas sobe él. La oma de hacelo es aplcando la segunda Ley de Newton, peo s la ueza no es constante, es dec la aceleacón no es constante, no es ácl detemna la velocdad del cuepo n tampoco su poscón, po lo que no se estaía esolvendo el poblema. Los conceptos de tabajo y enegía se undamentan en las Leyes de Newton, po lo que no se equee nngún pncpo ísco nuevo. Con el uso de estas dos magntudes íscas, se tene un método altenatvo paa descb el movmento, espacalmente útl cuando la ueza no es constante, ya que en estas condcones la aceleacón no es constante y no se pueden usa las ecuacones de la cnemátca anteomente estudadas. En este caso se debe usa el poceso matemátco de ntegacón paa esolve la segunda Ley de Newton. Ejemplos de uezas vaables son aquellas que vaían con la poscón, comunes en la natualeza, como la ueza gavtaconal o las uezas elástcas. 5. TRABAJO REALIZADO POR UNA FUERZA CONSTANTE. S la ueza F que actúa sobe una patícula es constante (en magntud y deccón) el movmento se ealza en línea ecta en la deccón de la ueza. S la patícula se desplaza una dstanca x po eecto de la ueza F (gua 5.), entonces se dce que la ueza ha ealzado tabajo W sobe la patícula de masa m, que en este caso patcula se dene como: W F x Fgua 5. Fueza hozontal constante que ealza un desplazamento x.

2 S la ueza constante no actúa en la deccón del movmento, el tabajo que se ealza es debdo a la componente x de la ueza en la deccón paalela al movmento, como se ve en la gua 5.a. La componente y de la ueza, pependcula al desplazamento, no ealza tabajo sobe el cuepo. Fgua 5.a Fueza constante que oma un ángulo α con el desplazamento x. S α es el ángulo meddo desde el desplazamento x haca la ueza F, el valo del tabajo W es ahoa: W ( F cosα) x De acuedo a la ecuacón anteo, se pueden obtene los sguentes conclusones: a) s α 0º, es dec, s la ueza, como en la gua 5., o una componente de la ueza, es paalela al movmento, W (F cos 0) x F x; b) s α 90º, es dec, s la ueza o una componente de la ueza es pependcula al movmento, W (F cos90) x 0, no se ealza tabajo; c) s la ueza aplcada sobe el cuepo no lo mueve, no ealza tabajo ya que el desplazamento es ceo; d) s 0 < α < 90º, es dec, s la ueza tene una componente en la msma deccón del desplazamento, el tabajo es postvo; e) s 90º < α < 80º, es dec, s la ueza tene una componente opuesta a la deccón del desplazamento, el tabajo es negatvo. De estas conclusones se deduce que el tabajo, paa una ueza constante, se puede expesa de la sguente oma:

3 W F El tabajo es una magntud ísca escala, obtendo del poducto escala de los vectoes ueza y poscón. De la expesón anteo, po la dencón de poducto escala, queda clao que el tabajo puede se postvo, negatvo o ceo. Su undad de medda en el SI es N m que se llama Joule, símbolo J. Otas uezas actúan sobe el cuepo de masa m (peso, oce, nomal, etc.), po lo que la ecuacón anteo se eee sólo al tabajo de la ueza F en patcula; las otas uezas tambén pueden ealza tabajo. En la gua 5. las uezas peso y nomal no ealzan tabajo ya que son pependculaes al desplazamento y la ueza de oce ealza tabajo negatvo, ya que sempe se opone al desplazamento. El tabajo total sobe la patícula es la suma escala de los tabajos ealzados po cada una de las uezas. Ejemplo 5.: Con una ueza de 50 N que oma un ángulo de 60º con la hozontal se empuja una caja de 50 kg, en una supece áspea hozontal (gua 5.a). La caja se mueve una dstanca de 5m con apdez constante. Calcula: a) el tabajo ealzado po cada ueza, b) el coecente de oce. Solucón: Las uezas que actúan sobe la caja son F, nomal, oce y peso, el dagama de cuepo lbe se muesta en la gua 5.b. Fgua 5.b. Ejemplo 5. a) La dencón de tabajo es W F, que se aplca a cada ueza

4 Paa F: W F (F cosα) x 50 (cos60) 5 65 J Paa N: W N (N cos90) x 0 Paa mg: W P (mg cos70) x 0 Paa F R : W R (F R cos80) x, Como no se conoce el valo de la ueza de oce, se debe calcula, del DCL y aplcando la pmea ley de Newton, ya que la caja se mueve con apdez constante, se obtene: Eje x: F cosα - F R 0 () Eje y: F senα + N - mg 0 () De () F R F cosα 50 cos60 5 N, eemplazando en el tabajo, W R 5 cos J b) Po dencón, F R µ N, despejando N de () se tene N mg - F senα, entonces: F R µ ( mg Fsenα ) µ F R mg Fsenα µ sen TRABAJO REALIZADO POR UNA FUERZA VARIABLE. S una ueza vaable F está movendo a un objeto a lo lago del eje x desde una poscón ncal a ota nal, ya no se puede usa la expesón anteo paa calcula el tabajo ealzado po la ueza. En este caso se puede hace que el

5 cuepo expemente pequeños desplazamentos dx, entonces la componente F x de la ueza en la deccón del desplazamento se puede consdea apoxmadamente constante en ese ntevalo dx y se puede calcula un tabajo dw en ese pequeño desplazamento como: dw F x dx S se calcula el tabajo total en el desplazamento desde la poscón ncal a la nal, este es gual a la suma de todos los pequeños tabajos dw, esto es: W dw W x x Fxdx Matemátcamente, el valo de la ntegal es numécamente gual al áea bajo la cuva de F x vesus x (gua 5.3). S actúan más de una ueza sobe el cuepo, el tabajo esultante es el ealzado po la componente de la ueza esultante en deccón del desplazamento, entonces en témnos del poducto escala en tes dmensones, el tabajo total es: W TOTAL F d (5.) Fgua 5.3

6 Ejemplo 5.: Calcula tabajo ealzado po un esote. Un sstema ísco común en el que la ueza vaía con la poscón, es el de un cuepo conectado a un esote. S el esote, oentado en deccón del eje x, se deoma desde su conguacón ncal, es dec se esta o se compme, po eecto de alguna ueza extena sobe el esote, nstantáneamente actúa una ueza F poducda po el esote conta el objeto que ejece la ueza extena, cuya magntud es: F - k x donde x es la magntud del desplazamento del esote desde su poscón no deomada en x 0 y k una constante postva, llamada constante de ueza del esote, que es una medda de la gdez (dueza) del esote. Esta ecuacón se llama Ley de Hooke, y es válda paa pequeños desplazamentos, ya que s el esote se esta demasado, puede deomase y no ecupea su oma ognal. El sgno negatvo ndca que la deccón de esta ueza es sempe opuesta al desplazamento, como se lusta en la gua 5.4, donde F epesenta la ueza poducda po el esote. Fgua

7 S el cuepo se desplaza desde una poscón ncal a la nal, el tabajo ealzado po el esote es: W x x ( kx) dx kx kx Po ejemplo, paa un esote de k 00 N/m, que se esta 0 cm ( x ), el tabajo que ealza la ueza del esote paa ecupea su poscón ncal no deomada (x 0) es 0.5 J. 5.3 ENERGÍA CINÉTICA. Cuando se hace tabajo conta el oce, se obseva que en la supece de los cuepos en contacto se poduce un aumento de tempeatua. Es poque se ha poducdo una tansomacón desde movmento a calo, es dec que se ha poducdo una tanseenca de enegía de movmento a enegía calóca. En otas tansomacones se poduce enegía en oma de luz, sondo, eléctca, nuclea, etc. En las tansomacones se mden cambos de enegía cuando se ealza tabajo, apaecen las uezas que ealzan tabajo, po lo tanto el tabajo es una medda de las tanseencas de enegía. El concepto de enegía se puede genealza paa nclu dstntas omas de enegía conocdas como cnétca, potencal, calóca, electomagnétca, etc. De esta oma, la mecánca de los cuepos en movmento se elacona con otos enómenos natuales que no son mecáncos po ntemedo del concepto de enegía. El concepto de enegía nvade toda la cenca y es una de las deas uncadoas de la Físca. Cuando una ueza actúa sobe un cuepo, le poduce una aceleacón duante su desplazamento. El tabajo ealzado po la ueza paa move al cuepo es: W TOTAL F d Po la segunda Ley de Newton se tene:

8 dv dv d F ma m m mv dv, dt d dt d eemplazando en el tabajo total, se obtene: W TOTAL dv mv d m d v v 0 vdv mv mv 0 La cantdad ½mv, se llama enegía cnétca, E c, es enegía que se obtene po el movmento, es sempe postva poque la apdez está al cuadado. Ec mv (5.) Po lo tanto, el tabajo ealzado po la ueza esultante sobe una patícula es gual al cambo de enegía cnétca, enuncado que se conoce como el Teoema del Tabajo y la Enegía. Cuando la apdez es constante, no hay vaacón de enegía cnétca y el tabajo de la ueza neta es ceo. La undad de medda de la enegía cnétca es el Joule, J. 5.4 POTENCIA. Paa nes páctcos nteesa tambén conoce la apdez con la cual se ealza tabajo. Esta nomacón la entega la potenca, que se dene como la apdez de tanseenca de enegía. S se aplca una ueza extena a un cuepo y se ealza tabajo dw en un ntevalo de tempo dt, la potenca nstantánea P (cudado de no conund con el peso de un cuepo) se dene como:

9 dw P dt La undad de medda de la potenca en el SI es J/s, que se llama Watt, símbolo W (cudado de no conund con el tabajo). Como dw F d, se puede escb la potenca como: F d P F v (5.3) dt Se puede den una nueva undad de enegía en témnos de la undad de potenca, llamada klowatt-hoa. Un klowatt-hoa (kwh) es la enegía utlzada duante una hoa con una potenca constante de kw. El valo de un kwh es: kwh 000 W 3600 s 3.6 x 0 6 J. El kwh es undad de enegía, no de potenca. Po ejemplo, paa encende una ampolleta de 00 W de potenca se equeen entegale 3.6 x 0 5 J de enegía duante una hoa, equvalente a 0. kwh. Notemos que esta es una undad de medda que nos ndca que la enegía es una magntud ísca que, aunque abstacta, tene valo comecal, se puede vende y compa, ya que po ejemplo, todos los meses pagamos po una detemnada cantdad de klowatt-hoa o enegía eléctca paa nuestos hogaes, en cambo no se pueden compa 50km/h de apdez, peo s compamos enegía en oma de gasolna paa hace que un vehículo pueda movese. Ejemplo 5.3: Un mueble de 40 kg que se encuenta ncalmente el eposo, se empuja con una ueza de 30 N, desplazándolo en línea ecta una dstanca de 5 m a lo lago de un pso hozontal de coecente de oce 0.3 (gua 5.). Calcula: a) el tabajo de la ueza aplcada, b) el tabajo del oce, c) la vaacón de enegía cnétca, d) la apdez nal del mueble, e) la potenca nal de la ueza aplcada.

10 Solucón: El dagama de cuepo lbe paa el mueble de masa m de la gua 5. se muesta en la gua 5.5. a) W F F cos 0º x Fx W F (30N)(5m) 650J b) F R µ N µ mg WR FR FR (cos80) x µ mgx W R J Fgua 5.5 Poblema 5.3 c) W Total E c W F +W N +W R +W P E c, peo W N W P 0, ya que las uezas nomal y peso son pependculaes al desplazamento, entonces: E c W F +W R J d) Paa calcula la apdez nal, usamos el esultado anteo E C 0 mv mv mv v E m C v E m C. 6 m s e) Usando la dencón de potenca: P P F v F cos 0º v Fv ( watt)

CAPITULO 5. TRABAJO Y ENERGIA.

CAPITULO 5. TRABAJO Y ENERGIA. CAPITULO 5. TRABAJO Y ENERGIA. El poblema undamental de la Mecánca es descb como se moveán los cuepos s se conocen las uezas aplcadas sobe él. La oma de hacelo es aplcando la segunda Ley de Newton, peo

Más detalles

W = dw = F.dr. , el trabajo total es la suma de todos los trabajos elementales realizados a lo largo del recorrido determinado por r i

W = dw = F.dr. , el trabajo total es la suma de todos los trabajos elementales realizados a lo largo del recorrido determinado por r i Físca paa encas e Ingeneía 131 131 Tabajo mecánco Supongamos que una patícula se mueve bajo la accón de una ueza F a lo lago de una tayectoa abtaa, como ndca la gua [13-1] Po dencón: F Se denomna tabajo

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

La Carga Eléctrica Puntual, es una partícula cuya masa se supone está concentrada en un punto, y en el mismo se concentra su carga eléctrica.

La Carga Eléctrica Puntual, es una partícula cuya masa se supone está concentrada en un punto, y en el mismo se concentra su carga eléctrica. LEY DE COULOMB La Ley de Coulomb es la pmea ue se estuda en Electcdad ella consttuye una LEY UNIVERSAL poue es posble deducla del expemento y s ese expemento se ealza bajo las msmas condcones físcas cualuea

Más detalles

Física Curso: Física General

Física Curso: Física General UTP IMAAS ísca Curso: ísca General Sesón Nº 14 : Trabajo y Energa Proesor: Carlos Alvarado de la Portlla Contendo Dencón de trabajo. Trabajo eectuado por una uerza constante. Potenca. Trabajo eectuado

Más detalles

TEMA 2. MOVIMIENTO EN UNA DIMENSION.

TEMA 2. MOVIMIENTO EN UNA DIMENSION. Tema. Movmento en una dmensón. TEMA. MOVIMIENTO EN UNA DIMENSION. La cnemátca es la ama de la mecánca que estuda la geometía del movmento. Usa las magntudes undamentales longtud, en oma de camno ecodo,

Más detalles

MOVIMIENTO DE UNA PARTICULA EN EL CAMPO GRAVITACIONAL REAL

MOVIMIENTO DE UNA PARTICULA EN EL CAMPO GRAVITACIONAL REAL MOVIMIENTO DE N PRTICL EN EL CMPO RVITCIONL REL Consdeaemos el movmento de una patícula en el campo gavtaconal Real donde el Sstema de Laboatoo es despecado poque se toma en cuenta la geodesa de la tea

Más detalles

CONTENIDO SISTEMA DE PARTÍCULAS. Definición y cálculo del centro de masas. Movimiento del centro de masas. Fuerzas internas y fuerzas externas

CONTENIDO SISTEMA DE PARTÍCULAS. Definición y cálculo del centro de masas. Movimiento del centro de masas. Fuerzas internas y fuerzas externas COTEIDO Defncón y cálculo del cento de masas ovmento del cento de masas Fuezas ntenas y fuezas enas Enegía cnétca de un sstema de patículas Teoemas de consevacón paa un sstema de patículas B. Savon /.A.

Más detalles

Trabajo y Energía I. r r = [Joule]

Trabajo y Energía I. r r = [Joule] C U R S O: FÍSICA MENCIÓN MATERIAL: FM-11 Tabajo y Enegía I La enegía desempeña un papel muy impotante en el mundo actual, po lo cual se justifica que la conozcamos mejo. Iniciamos nuesto estudio pesentando

Más detalles

Bibliografía. Bibliografía. Fundamentos Físicos de la Ingeniería. Tema 3 Mc Graw Hill. - Tipler. "Física". Cap. 23. Reverté.

Bibliografía. Bibliografía. Fundamentos Físicos de la Ingeniería. Tema 3 Mc Graw Hill. - Tipler. Física. Cap. 23. Reverté. Tema.- POTENCIAL ELÉCTRICO. Potencal eléctco. (3.).. Potencal eléctco debdo a un sstema de cagas puntuales. (3.).. Potencal eléctco debdo a dstbucones contnuas de caga. (3.4)..3 Detemnacón del campo eléctco

Más detalles

CAPÍTULO V SISTEMAS DE PARTÍCULAS

CAPÍTULO V SISTEMAS DE PARTÍCULAS CAPÍTULO V SISTEAS DE PARTÍCULAS 3 SISTEAS DE PARTÍCULAS La mayo pate de los objetos físcos no pueden po lo geneal tatase como patículas. En mecánca clásca, un objeto enddo se consdea como un sstema compuesto

Más detalles

r V CINEMÁTICA DEL SÓLIDO RÍGIDO

r V CINEMÁTICA DEL SÓLIDO RÍGIDO 1 d j m j Fg.1 dm dm Fg.2 m INEMÁTI DEL SÓLID RÍGID Un sóldo ígdo se consdea como un conjunto de patículas numeables: m 1,...m...m n cuyas dstancas mutuas pemanecen nvaables, en las condcones habtuales

Más detalles

dq de x r CAMPO DE UN ANILLO CON CARGA UNIFORME r α P de y de x

dq de x r CAMPO DE UN ANILLO CON CARGA UNIFORME r α P de y de x y a dsdq AMPO D UN ANILLO ON AGA UNIFOM P d y l campo d debdo a dq es: d dq dq a d d Un segmento en la pate nfeo del anllo cea un capo eléctco d con componente d y gual y opuesta, así que sólo contbuyen

Más detalles

APÉNDICE 1 1. Sistemas de coordenadas

APÉNDICE 1 1. Sistemas de coordenadas APÉNDICE. Sstemas de coodenadas El naldad de un sstema de coodenadas es la de consegu una adecuada descpcón de un punto de una cuva o de una supece en el espaco. De los dstntos tpos de sstemas de coodenadas

Más detalles

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO.

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. CONTENIDOS: 3.1 Intoduccón 3. Cnemátca de la otacón alededo de un eje fjo. 3.3 Momento de una fueza y de un sstema de fuezas. 3.4 Momento angula del sóldo ígdo. 3.5

Más detalles

r r r dt dt dt El primer sumando es cero porque es el producto vectorial de dos vectores en la misma r r r r r r dt

r r r dt dt dt El primer sumando es cero porque es el producto vectorial de dos vectores en la misma r r r r r r dt MOMENTO ANGULAR O MOMENTO CINÉTICO Se defne momento angula (l ) de una patícula, especto de un punto O, como el poducto vectoal de su vecto de poscón (especto de O) po su momento lneal: l p mv Recodando

Más detalles

Electromagnetismo: Electrostática

Electromagnetismo: Electrostática lectomagnetsmo: lectostátca 1.1 Intoduccón La electcdad está pesente en nuestas vdas cotdanas. asta pensa en desaollos tecnológcos como la ed de alumbado eléctco o los electodoméstcos, o en fenómenos meteoológcos

Más detalles

CAPÍTULO III TRABAJO Y ENERGÍA

CAPÍTULO III TRABAJO Y ENERGÍA TRAJO Y ENERGÍA CAPÍTULO III "De todos los conceptos físcos, el de enegía es pobablemente el de más vasto alcance. Todos, con fomacón técnca o no, tenen una pecepcón de la enegía y lo que esta palaba sgnfca.

Más detalles

Reflexión y Refracción

Reflexión y Refracción eflexón y efaccón Unvesdad de Pueto co ecnto Unvestao de Mayagüez Depatamento de Físca Actvdad de Laboatoo 8 La Ley de eflexón y La Ley de Snell Objetvos: 1. Detemna, paa una supefce eflectoa, la elacón

Más detalles

Sistemas de partículas

Sistemas de partículas Ssteas de patículas Hasta aquí heos aplcado las leyes de ewton tatando a los objetos coo s fuean patículas puntuales que tenen asa peo no taaño, aunque uchas de las aplcacones se extendían a objetos coo

Más detalles

Solucionario de las actividades propuestas en el libro del alumno

Solucionario de las actividades propuestas en el libro del alumno Soluconao de las actvdades popuestas en el lbo del alumno 7.. LEY DE COULOMB Págna 47. La dstanca que sepaa ente sí los dos potones de un núcleo de helo es del oden de fm (0 5 m). a) Calcula el módulo

Más detalles

Ondas. Conceptos básicos

Ondas. Conceptos básicos Ondas. Conceptos báscos IES La Magdalena. Avlés. Astuas Una onda es una petubacón que se popaga. Con la palaba petubacón se quee ndca cualque tpo de alteacón del medo: una ondulacón en una cueda, una sobepesón

Más detalles

Notas de clase. Trabajo de las fuerzas internas

Notas de clase. Trabajo de las fuerzas internas Notas de clase. Tabajo de las fuezas ntenas J Güémez Depatamento de Físca Aplcada, Unvesdad de Cantaba, España M Folhas CFsUC, Depatamento de Físca, Unvesdade de Comba, Potugal Mazo, 06 El concepto de

Más detalles

Lección 4: Dinámica de los sistemas de partículas y del sólido rígido

Lección 4: Dinámica de los sistemas de partículas y del sólido rígido Leccón 4: Dnámca de ls sstemas de patículas y del sóld ígd.-intduccón..- Mvment del cent de masa de un sstema de patículas. 3.- Mment angula de un sstema de patículas. 4.- Mment angula de un sóld ígd.

Más detalles

Momento cuadrupolar eléctrico

Momento cuadrupolar eléctrico Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola eléctco El núcleo y sus adacones Cuso 0 Págna S el pomedo tempoal de la dstbucón de caga dento del núcleo se desvía de la smetía esféca,

Más detalles

OBJETIVO. La guía debe ser resuelta de manera grupal o individual y tendrá un valor según lo pactado.

OBJETIVO. La guía debe ser resuelta de manera grupal o individual y tendrá un valor según lo pactado. 1 DEPARTAMENTO DE CIENCIAS BÁSICAS CALCULO VECTORIAL Y MULTIVARIADO TALLER 1 CAMPOS VECTORIALES CAMPOS CONSERVATIVOS ROTACIONAL Y DIVERGENCIA BIBLIOGRAÍA SUGERIDA CALCULO JAMES STEWART CALCULO THOMAS INNEY

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDAD DE ALCALÁ PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (Mayoes 5 años) Cuso 009-010 MATERIA: FÍSICA INSTRUCCIONES GENERALES Y VALORACIÓN La pueba consta de dos pates: La pimea pate consiste en

Más detalles

ANEXO 4.1: Centro de masa y de gravedad

ANEXO 4.1: Centro de masa y de gravedad Cuso l Físca I Auto l Loenzo Ipaague ANEXO 4.: Cento de asa de gavedad El punto que poeda la ubcacón de la asa se denona cento de asa (), dado que la accón de la gavedad es popoconal a la asa, es natual

Más detalles

Coordenadas Generales.

Coordenadas Generales. oodenadas eneales. k cte. j cte. cte. Base catesana Base cíndca. j k cos, cos, φ cte. cte. cte. Base esféca Base geneal. cos cos En una base geneal, un elemento de aco está detemnado po llamando ds ds

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

Estructura de la materia 3 Serie 2 Modelo de Thomas-Fermi y Sistemas Atómicos Cátedra: Jorge Miraglia. Segundo cuatrimestre de 2013

Estructura de la materia 3 Serie 2 Modelo de Thomas-Fermi y Sistemas Atómicos Cátedra: Jorge Miraglia. Segundo cuatrimestre de 2013 Estuctua de la matea See Modelo de homas-fem y Sstemas Atómcos Cáteda: Joge Magla Segundo cuatmeste de Modelo de homas-fem en átomos En el modelo de homas-fem, la enegía potencal de un electón lgado a

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO

ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO Insttuto de Poesoes Atgas Físca Expemental 1 Guía páctca Nº ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO DISPOSITIVO EXPERIMENTAL El dspostvo expemental se muesta en la gua 1. Un egstado electónco o tme

Más detalles

8. EL CAMPO GRAVITATORIO.

8. EL CAMPO GRAVITATORIO. ísca. 8. El campo avtatoo. 1 Ley e la avtacón unvesal. 8. EL CMPO GVIOIO. Ley e la avtacón unvesal e Newton. Daas os patículas e masas m y m, sepaaas una stanca, la e masa m atae a la e masa m con una

Más detalles

r r r FÍSICA 110 CERTAMEN # 3 FORMA R 6 de diciembre 2007 IMPORTANTE: DEBE FUNDAMENTAR TODAS SUS RESPUESTAS: Formulario:

r r r FÍSICA 110 CERTAMEN # 3 FORMA R 6 de diciembre 2007 IMPORTANTE: DEBE FUNDAMENTAR TODAS SUS RESPUESTAS: Formulario: FÍSICA 11 CERTAMEN # 3 FORMA R 6 de diciembe 7 AP. PATERNO AP. MATERNO NOMBRE ROL USM - PARALELO EL CERTAMEN CONSTA DE 1 PÁGINAS CON PREGUNTAS EN TOTAL. TIEMPO: 1 MINUTOS IMPORTANTE: DEBE FUNDAMENTAR TODAS

Más detalles

.-. La dencón de choque ontal totalente nelástco es aquel en el que los cuepos que colsonan se acoplan y se ueven con la velocdad del cento de asas..- D. La tecea ley de Newton dce que las uezas ejecdas

Más detalles

2 pr = (B.5) Fig. B.2 Tensión longitudinal en un cilindro

2 pr = (B.5) Fig. B.2 Tensión longitudinal en un cilindro ANXO B- Tensones en un clndo debdas a pesón hdáulca ANXO B Tensones en un clndo debdas a la pesón hdáulca. B.1 Tensones en un anllo ccula y en un clndo de paed guesa S se somete un anllo ccula delgado

Más detalles

Optica I. seni nsenr seni nsenr nsen(90 i) ncos i seni tg i n 1,5 i 56,30º cosi. nseni sen90 1 seni 0,66 i 41,30º.

Optica I. seni nsenr seni nsenr nsen(90 i) ncos i seni tg i n 1,5 i 56,30º cosi. nseni sen90 1 seni 0,66 i 41,30º. 01. Dos espejos planos están colocados pependculamente ente sí. Un ayo que se desplaza en un plano pependcula a ambos espejos es eflejado pmeo en uno y después en el oto espejo. Cuál es la deccón fnal

Más detalles

PRÁCTICA DE LABORATORIO Nº 7 ÓPTICA GEOMÉTRICA

PRÁCTICA DE LABORATORIO Nº 7 ÓPTICA GEOMÉTRICA PRÁCTICA DE LABORATORIO Nº 7 ÓPTICA GEOMÉTRICA ExpeencaNº : Reflexón A- Ojetvo de la Expeenca Deduc la elacón ente el ángulo de ncdenca y el de eflexón. B- Fundamentos teócos Expuesto con detalle en el

Más detalles

Problemas de dinámica de traslación.

Problemas de dinámica de traslación. Poblemas de dinámica de taslación. 1.- Un ascenso, que tanspota un pasajeo de masa m = 7 kg, se mueve con una velocidad constante y al aanca o detenese lo hace con una aceleación de 1'8 m/s. Calcula la

Más detalles

r i r ri r r r = ω v = ω

r i r ri r r r = ω v = ω MOVIMIENTO de un cuepo TRANSLACIÓN + ROTACIÓN + DEFORMACIÓN 3.11 Gados de lbetad y cnemátca del sóldo ígdo El sóldo ígdo es un modelo de los objetos que pemte descb su foma, tamaño, y otacón. Un cuepo

Más detalles

Examen de Física I. 1.- Explique como se puede reducir el siguiente sistema de vectores deslizantes

Examen de Física I. 1.- Explique como se puede reducir el siguiente sistema de vectores deslizantes Eaen de Físca ngeneía ecánca. ngeneía de Oganzacón ndustal: Gupo.- Eplque coo se puede educ el sguente sstea de vectoes deslzantes.- Defna y elacone ente ellos, los conceptos de oento lneal, pulso y oento

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

I ESCUELA DE EMPRESARIALES DIPLOMATURA DE EMPRESARIALES ESTADÍSTICA

I ESCUELA DE EMPRESARIALES DIPLOMATURA DE EMPRESARIALES ESTADÍSTICA Depatamento de Economía Aplcada I EUELA DE EMPREARIALE DIPLOMATURA DE EMPREARIALE ETADÍTIA Ejeccos Resueltos REGREIÓ O LIEAL Y REGREIÓ LIEAL MÚLTIPLE uso 006-00 Escuela de Empesaales Depatamento de Economía

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE FISICA FISICA I FIS101M. Sección 03. José Mejía López. jmejia@puc.cl

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE FISICA FISICA I FIS101M. Sección 03. José Mejía López. jmejia@puc.cl PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE FISICA FISICA I FIS11M Seccón 3 José Mejía López jmeja@puc.cl http://www.s.puc.cl/~jmeja/docenca/s11m.html JML s11m-1 Capítulo Dnámca Trabajo y energía

Más detalles

Para caracterizar completamente una magnitud vectorial, como son la velocidad, aceleración, fuerza, etc, es preciso indicar tres cosas:

Para caracterizar completamente una magnitud vectorial, como son la velocidad, aceleración, fuerza, etc, es preciso indicar tres cosas: VECTORES Y ESCLRES Las magntudes escalaes son aquellas que quedan totalmente defndas al epesa la cantdad la undad en que se mde. Eemplos son la masa, el tempo, el tabao todas las enegías, etc. Las magntudes

Más detalles

seni nsenr seni nsenr nsen(90 i) ncos i r

seni nsenr seni nsenr nsen(90 i) ncos i r 0. Dos espejos planos están colocados pependculamente ente sí. Un ayo que se desplaza en un plano pependcula a ambos espejos es eflejado pmeo en uno y después en el oto espejo. Cuál es la deccón fnal del

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

MOVIMIENTO DE LA PELOTA

MOVIMIENTO DE LA PELOTA MOVIMIENTO DE LA PELOTA Un niño golpea una pelota de 5 gamos de manea que, sale despedida con una elocidad de 12 m/s desde una altua de 1 5 m sobe el suelo. Se pide : a) Fueza o fuezas que actúan sobe

Más detalles

L r p. Teniendo en cuenta que p es el momento lineal (masa por el vector velocidad) la expresión anterior nos queda: L r mv m r v. d L dr dv dt dt dt

L r p. Teniendo en cuenta que p es el momento lineal (masa por el vector velocidad) la expresión anterior nos queda: L r mv m r v. d L dr dv dt dt dt EOEA DE CONSEVACIÓN DE OENO ANGUA: El momento angula se define como: p CASE 4.- EYES DE CONSEVACIÓN eniendo en cuenta que p es el momento lineal (masa po el vecto velocidad) la expesión anteio nos queda:

Más detalles

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA JRCICIOS RSULTOS D TRABAJO Y NRGÍA. Un bloque de 40 kg que se encuentra ncalmente en reposo, se empuja con una uerza de 30 N, desplazándolo en línea recta una dstanca de 5m a lo largo de una superce horzontal

Más detalles

CAPITULO 8. DINAMICA DE ROTACIÓN.

CAPITULO 8. DINAMICA DE ROTACIÓN. CAPITULO 8. DINAMICA DE ROTACIÓN. Cuando un objeto eal ga alededo de algún eje, su movmento no se puede analza como s fuea una patícula, poque en cualque nstante, dfeentes pates del cuepo tenen velocdades

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Ondas y Rotaciones. Leyes de Newton. III. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012

Ondas y Rotaciones. Leyes de Newton. III. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012 Ondas y Rotaciones Leyes de Newton. III Jaime Feliciano Henández Univesidad Autónoma Metopolitana - Iztapalapa México, D. F. 15 de agosto de 2012 INTRODUCCIÓN. La pimea Ley de Newton explica qué le sucede

Más detalles

Una Ecuación Lineal de Movimiento

Una Ecuación Lineal de Movimiento Una Ecuacón Lneal de Movmento Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una ecuacón lneal de movmento que es nvarante bajo transformacones entre

Más detalles

Ese campo magnético genera un flujo de campo magnético sobre cada espira del segundo solenoide.

Ese campo magnético genera un flujo de campo magnético sobre cada espira del segundo solenoide. UTOIDUCCIO Cuand se tene un dspstv genead de camp magnétc cm es un slende, un tde, una espa, ells genean en cetas egnes del espac la pesenca de un Camp Magnétc cuand ccula p ells una cente eléctca. S se

Más detalles

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador.

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador. ITM, Insttucón unverstara Guía de Laboratoro de Físca Mecánca Práctca : Colsones en una dmensón Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla

Más detalles

* Introducción * Principio de mínima energía * Transformaciones de Legendre * Funciones (o potenciales) termodinámicas. Principios de mínimo.

* Introducción * Principio de mínima energía * Transformaciones de Legendre * Funciones (o potenciales) termodinámicas. Principios de mínimo. 5. otencales emonámcos * Intouccón * ncpo e mínma enegía * ansomacones e Legene * Funcones (o potencales) temonámcas. ncpos e mínmo. * Enegía lbe (potencal) e Helmholtz lt * Entalpía. * Enegía lbe e Gbbs.

Más detalles

CAMPO ELÉCTRICO { } ( ) ( ) ( ) ( ) { } 2 { } ( ) ( ) ( ) ( ) ( ) ( ) C

CAMPO ELÉCTRICO { } ( ) ( ) ( ) ( ) { } 2 { } ( ) ( ) ( ) ( ) ( ) ( ) C MPO LÉTRIO Septembe 0. Pegunta B.- Dos esfeas peueñas tenen caga postva. uano se encuentan sepaaas una stanca e cm, exste una fueza epulsva ente ellas e 0,0. alcule la caga e caa esfea y el campo eléctco

Más detalles

Energía potencial y conservación de la energía

Energía potencial y conservación de la energía Energía potencal y conservacón de la energía Mecánca y Fludos Proa. Franco Ortz 1 Contendo Energía potencal Fuerzas conservatvas y no conservatvas Fuerzas conservatvas y energía potencal Conservacón de

Más detalles

Tema 2. DINÁMICA DE SISTEMAS DE PARTÍCULAS

Tema 2. DINÁMICA DE SISTEMAS DE PARTÍCULAS Tea. DIÁMICA DE SISTEMAS DE PARTÍCULAS. Intoduccón. Cento de asas.. Movento del cento de asas.. Masa educda..3 Consevacón del oento lneal..4 Consevacón del oento angula.3 Enegía de un sstea de patículas.3.

Más detalles

Tema I Conceptos y Principios fundamentales. Estática de partículas. Sistemas Equivalentes de fuerzas.

Tema I Conceptos y Principios fundamentales. Estática de partículas. Sistemas Equivalentes de fuerzas. Univesidad de Los Andes. acultad de Ingenieía. Escuela Básica de Ingenieía. Tema I Conceptos Pincipios fundamentales. Estática de patículas. Sistemas Equivalentes de fuezas. Pof. Naive Jaamillo S. Cáteda:

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

Cinemática del movimiento rotacional

Cinemática del movimiento rotacional Cnemátca del movmento rotaconal Poscón angular, θ Para un movmento crcular, la dstanca (longtud del arco) s, el rado r, y el ángulo están relaconados por: 180 s r > 0 para rotacón en el sentdo anthoraro

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria).

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria). Unversdad de Sonora Dvsón de Cencas Exactas y Naturales Departamento de Físca Laboratoro de Mecánca II Práctca #3: Cálculo del momento de nerca de un cuerpo rígdo I. Objetvos. Determnar el momento de nerca

Más detalles

du du du du A du ( u + u) du du du 1. Vector función de un escalar Un vector A es función del escalar u si lo es alguna de sus componentes:

du du du du A du ( u + u) du du du 1. Vector función de un escalar Un vector A es función del escalar u si lo es alguna de sus componentes: A UNTE DE: CA M ECA LARE Y ECTRIALE. ecto funcón de un escala Un vecto A es funcón del escala u s lo es alguna de sus componentes: A( A ( + A (j + A (k () Al da valoes a u vamos obtenendo una see de vectoes

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES U R S O: FÍSI OMÚN MTERIL: F-01 Sistema intenacional de medidas MGNITUDES ESLRES VETORILES En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales. El sistema

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

TEMA 6. FENÓMENOS ONDULATORIOS-ÓPTICA FÍSICA

TEMA 6. FENÓMENOS ONDULATORIOS-ÓPTICA FÍSICA Temas 6. FENÓMENOS ONDULATORIO. ÓPTICA FÍSICA Físca º Bachlleato TEMA 6. FENÓMENOS ONDULATORIOS-ÓPTICA FÍSICA I. INTRODUCCIÓN. En este capítulo vamos a estuda compotamentos que son popos de las ondas tales

Más detalles

Análisis de Correspondencias Simples ACS. Prof: Salvador Carrasco Arroyo

Análisis de Correspondencias Simples ACS. Prof: Salvador Carrasco Arroyo Análss de Coespondencas Smples ACS Po: Salvado Caasco Aoyo Mateas Toncales Estadístca I Estadístca II Tema : Análss de Datos Multvaantes Tema : Análss de la Vaanza Tema 3: Técncas de Análss Multvaantes

Más detalles

Trabajo, fuerzas conservativas. Energia.

Trabajo, fuerzas conservativas. Energia. Trabajo, fuerzas conservativas. Energia. TRABAJO REALIZADO POR UNA FUERZA CONSTANTE. Si la fuerza F que actúa sobre una partícula constante (en magnitud y dirección) el movimiento se realiza en línea recta

Más detalles

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es BLOQUE A A.- En el instante t = se deja cae una pieda desde un acantilado sobe un lago;,6 s más tade se lanza una segunda pieda hacia abajo con una velocidad inicial de 3 m/s. Sabiendo que ambas piedas

Más detalles

Solución al examen de Física

Solución al examen de Física Solución al examen de Física Campos gavitatoio y eléctico 14 de diciembe de 010 1. Si se mantuviea constante la densidad de la Tiea: a) Cómo vaiaía el peso de los cuepos en su supeficie si su adio se duplicaa?

Más detalles

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse.

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse. Leyes de Keple. Antes de demosta las tes leyes de Keple, haé un análisis matemático de lo que es una elipse. Una elipse (Fig.) es el luga geomético de un punto que se mueve en un plano de tal manea que

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO EL POTENCIAL ELÉCTRICO. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Pofeso: José Fenando Pinto Paa UNIDAD 7 POTENCIAL ELECTROSTÁTICO Dos cagas en la misma posición tienen dos veces más enegía

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

RR 1 Para interpretar los fenómenos de reflexión y refracción de la luz, debemos considerar que la luz se propaga en forma de rayos.

RR 1 Para interpretar los fenómenos de reflexión y refracción de la luz, debemos considerar que la luz se propaga en forma de rayos. 3. Refaccón de la Luz. Psmas. 3.. Intoduccón. S un ayo de luz que se popaga a tavés de un medo homogéneo ncde sobe la supefce de un segundo medo homogéneo, pate de la luz es eflejada y pate enta como ayo

Más detalles

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE UERZA MAGNÉTCA SORE UN CONDUCTOR QUE TRANSPORTA CORRENTE J v d +q J Podemos calcula la fueza magnética sobe un conducto potado de coiente a pati de la fueza qv x sobe una sola caga en movimiento. La velocidad

Más detalles

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto ísca I Apuntes complementaros al lbro de teto TRABAJO y ENERGÍA MECÁNICA Autor : Dr. Jorge O. Ratto Estudaremos el trabajo mecánco de la sguente manera : undmensonal constante Tpo de movmento varable bdmensonal

Más detalles

Aplicaciones de las leyes de conservación de la energía

Aplicaciones de las leyes de conservación de la energía Aplcacones de las leyes de conservacón de la energía Estratega para resolver problemas El sguente procedmento debe aplcarse cuando se resuelven problemas relaconados con la conservacón de la energía: Dena

Más detalles

CI41A HIDRAULICA REPASO DE CI31A, MECANICA DE FLUIDOS. Prof. ALDO TAMBURRINO

CI41A HIDRAULICA REPASO DE CI31A, MECANICA DE FLUIDOS. Prof. ALDO TAMBURRINO CI41A HIDRAULICA REPASO DE CI31A, MECANICA DE FLUIDOS Pof. ALDO TAMBURRINO 1. Intoduccón. 1.1 Tanspote de masa 1. Tanspote de calo 1.3 Tanspote de momentum 1.4 Analogías en el tanspote de masas, calo y

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión). Examen de Física-, Ingenieía Química Diciembe de Cuestiones (Un punto po cuestión). Cuestión : Los vectoes (,, ), (,, 5) y (,, ), están aplicados en los puntos A (,, ), B (,, ) y C (,, ) espectivamente.

Más detalles

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CATALUÑA / SEPTIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLETO Resuelva el poblema P1 y esponde a las cuestiones C1 y C Escoge una de las opciones (A o B) y esuelva el poblema P y esponda a las cuestiones C3

Más detalles

Disipación de energía mecánica

Disipación de energía mecánica Laboratoro de Mecáa y ludos Práctca 9 Dspacón de energía mecáa Objetvos El estudante medrá la energía que se perde por la accón de la uerza de rozamento. Determnar los cambos de la energía cnétca de un

Más detalles

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple:

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple: CAMPO LCTRICO Cosdeemos e pcpo ua stuacó deal: l Uveso está vacío y o exste ada supogamos ue e el ceto de ese Uveso colocamos ua caga putual podemos pegutaos: Sufe algú cambo el Uveso? S o exste ota caga

Más detalles

CAMPO ELÉCTRICO El signo negativo nos indica que el trabajo se esta realizando en contra el campo por medio de una fuerza exterior.

CAMPO ELÉCTRICO El signo negativo nos indica que el trabajo se esta realizando en contra el campo por medio de una fuerza exterior. MPO LÉTRIO Moelo 08. Pegunta.- onséese una caga puntual n stuaa en el cento e una esfea e ao R 0 cm. Detemne: a) l fluo el campo eléctco a tavés e la supefce e la esfea. b) l tabao ue es necesao ealza

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

Tema 7. Regresión Lineal

Tema 7. Regresión Lineal Análss de Datos I Esquema del Tema 7 Tema 7. Regesón Lneal 1. INTRODUCCIÓN. IDENTIFICACIÓN DEL MODELO 3. VALORACIÓN DEL MODELO Coefcente de detemnacón Descomposcón de la vaanza del cteo. APLICACIÓN DEL

Más detalles

Trabajo (realizado por una fuerza constante)

Trabajo (realizado por una fuerza constante) Trabajo y energía Contenido Trabajo por fuerza constante: Definición. Unidad de medida, trabajo positivo, negativo o nulo. Trabajo realizado por varias fuerzas. Trabajo realizado con fuerzas variable

Más detalles

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido TEM. Dnámca I Captulo 3. Dnámca del sóldo rígdo TEM : Dnámca I Capítulo 3: Dnámca del sóldo rígdo Eje nstantáneo de rotacón Sóldo con eje fjo Momento de nerca. Teorema de Stener. Conservacón del momento

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES C U R S O: FÍSIC Mención MTERIL: FM-01 MGNITUDES ESCLRES VECTORILES Sistema intenacional de medidas En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales.

Más detalles

Potencial eléctrico. Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla

Potencial eléctrico. Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla Potencal eléctco Físca II Gado en Ingeneía de Oganzacón Industal Pme Cuso Joaquín enal Méndez Cuso 11-1 Depatamento de Físca plcada III Unvesdad de Sevlla Índce Intoduccón: enegía potencal electostátca

Más detalles

UNIDAD I: CARGA Y CAMPO ELECTRICO

UNIDAD I: CARGA Y CAMPO ELECTRICO UNN Facultad de Ingeneía Físca III UNIDAD I: CARGA Y CAMPO LCTRICO Caga eléctca. Induccón eléctca. Consevacón y cuantzacón de la caga. Conductoes y asladoes. Ley de Coulomb. Analogía ente la Ley de Coulomb

Más detalles