Cálculos mecánicos para líneas eléctricas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cálculos mecánicos para líneas eléctricas"

Transcripción

1 Rincón Técnico Cálculos mecánicos para líneas eléctricas Autores: El contenido de este artículo es un extracto tomado del portal Elaboración técnica: Esta publicación ha sido redactada por el Ingeniero de Ejecución Eléctrico Patricio Concha Fuentes, docente del Departamento de Ingeniería Eléctrica y Electrónica de la Universidad del Bío-Bío, en Chile. La concepción original de este lugar es como "Apuntes Virtuales", para apoyar la labor docente en el área de Máquinas Eléctricas, en el programa de Ingeniería de Ejecución en Electricidad, de dicha universidad y es de acceso y uso libre.

2 Imagen tomada de Introducción Se describirán los métodos gráficos que son usados para el cálculo de valores de flecha y tensiones, ya que el determinar dichos valores, es uno de los problemas que es necesario resolver, tanto en la etapa de proyectos como de construcción de una línea. Actualmente el uso de programas computacionales, ha reemplazado aquellos métodos en la parte de cálculo, ya que la base teórica es la misma que la de los métodos gráficos. Planteamiento de la ecuación de la flecha Un conductor de peso uniforme, sujeto entre dos apoyos por los puntos A y B situados a la misma altura, forma una curva llamada catenaria. La distancia f entre el punto más bajo situado en el centro de la curva y la recta AB, que une los apoyos, recibe el nombre de flecha. Se llama vano a la distancia a entre los dos puntos de amarre A y B (figura N 2.7).

3 Figura N 2.7 Los postes deberán soportar las tensiones T A y T B que ejerce el conductor en los puntos de amarre. La tensión T = T A T B dependerá de la longitud del vano, del peso del conductor, de la temperatura y de las condiciones atmosféricas. Para vanos de hasta unos 500 metros podemos comparar la forma de la catenaria a la de una parábola, lo cual ahorra unos complejos cálculos matemáticos, obteniendo, sin embargo, una exactitud más que suficiente. Calculamos a continuación la relación que existe entre la flecha y la tensión. Para ellos representaremos el conductor de un vano centrado en unos ejes de coordenadas (figura N 2.8): Figura N 2.8

4 Consideramos un trozo de cable OC que tendrá un peso propio P L aplicado en el punto medio y estará sometido a las tensiones T O y T C aplicadas en sus extremos. Tomando momentos respecto al punto C tendremos: (2.1) Por lo tanto el valor de y será: (2.2) Si llamamos P al peso unitario del conductor, el peso total del conductor en el tramo OC, que hemos llamado PL, será igual al peso unitario por la longitud del conductor, que cometiendo un pequeño error denominaremos x. Por lo tanto admitiendo que: (2.3) y sustituyendo esta expresión en la fórmula anterior del valor de y resulta: (2.4) Si ahora consideramos el punto A correspondiente al amarre del cable en vez del punto C, tendremos que: (2.5) Por lo tanto al sustituir queda: (2.6)

5 (2.7) Podemos despejar el valor de la tensión T O y tendremos que : (2.8) La ecuación 2.7 nos relaciona la flecha f en función de la tensión TO, del peso unitario del conductor P y de la longitud del vano a. Si comparamos esta ecuación de la parábola con la de la catenaria: (2.9) Podremos observar la complejidad de ésta, y como demostraremos más adelante, los resultados serán prácticamente iguales. Nos interesa trabajar con la tensión TA en lugar de la empleada hasta ahora T O. Observamos el triángulo de fuerzas compuesto por TO, TA y PL (figura N 2.9): Figura N 2.9

6 y aplicando el Teorema de Pitágoras tenemos: (2.10) En los casos prácticos que se nos presentan en las líneas aéreas de alta tensión, el valor del ángulo a formado por T O y T A es muy pequeño, por lo que podemos asegurar que TA, aproximación que emplearemos en cálculos posteriores. Esto equivale a afirmar que la tensión a lo largo del conductor es constante. Referente a TA, podemos decir que esta tensión no debe sobrepasar nunca el valor de la carga de rotura del conductor Q, pues de lo contrario se rompería: (2.11) Siendo s el coeficiente de resistencia a la tracción del conductor utilizado y S la sección del mismo. Puesto que un conductor no debe trabajar nunca en condiciones próximas a las de rotura, se deberá admitir un cierto coeficiente de seguridad n tal que: (2.12) Comparación entre la catenaria y la parábola Con un conductor HAWK calculamos las flechas para distintos vanos con un coeficiente de seguridad de 4. El conductor HAWK presenta una tensión de rotura de kg y un peso unitario de 0,975 kg/m. La flecha para la catenaria es: La flecha para la parábola es: (2.13) (2.14)

7 Los valores que sustituimos son: (2.15) De esta forma elaboramos la tabla N 2.4, en la que aparece la longitud del vano en metros, la flecha para la catenaria y para la parábola en metros y la diferencia entre los dos valores expresada en tanto por ciento. Tabla N 2.4 Vano Catenaria Parábola % Como podemos comprobar de la observación de la tabla, es suficiente aproximación el empleo de la parábola, sobre todo para vanos inferiores a 1000 metros. Longitud del Conductor Dada la flecha que se produce en un vano, la longitud del conductor no es igual a la distancia entre los postes. Por lo tanto, para hallar el valor exacto del conductor empleado, obtendremos la expresión de la longitud del conductor en un vano, en función de la flecha y de la distancia entre los postes (figura N 2.10).

8 Figura N 2.10 Tomamos un elemento diferencial de longitud dl, para el que se verifica: Podemos multiplicar y dividir por dx 2: (2.16) Del apartado anterior sabemos que (T = T O = T A): (2.17) (2.18) y derivando respecto a x podemos obtener el valor de dy/dx: (2.19) Por lo tanto al sustituir dx/dy en la expresión de dl 2, nos queda: Para no arrastrar expresiones llamamos a a: (2.20)

9 (2.21) y la expresión de dl resulta: (2.22) Para resolver el corchete empleamos la fórmula del binomio de Newton: (2.23) La longitud del conductor en la mitad del vano se obtiene integrando dl desde 0 hasta x: Integrando cada sumando resulta: (2.24) (2.25) Sustituyendo a por su valor queda: (2.26) Como x = a / 2 y la flecha es y = f queda: (2.27) La longitud del conductor en la totalidad del vano será el doble que en la mitad, por lo tanto L = 2 l, es decir:

10 (2.28) Para vanos normales, sólo se emplean los dos primeros términos, pues la aproximación es más que suficiente: Teniendo en cuenta la ecuación de la flecha: (2.29) La longitud total del conductor queda: (2.30) (2.31) Acciones sobre los conductores Para efectuar el cálculo mecánico de un conductor es fundamental conocer cuáles son las fuerzas que actúan sobre el mismo. En principio, se puede pensar que la única fuerza que actúa sobre el conductor es la fuerza de tensado, pero es necesario tener presente que ésta es la consecuencia equilibradora de las demás acciones, ya que, si el conductor estuviera en el suelo, la tensión para mantenerlo recto sería nula. De esta forma se ve que es el peso de un conductor el que crea la tensión a la que está sometido. Así pues, el primer dato que debe considerarse es su propio peso, pero además existirán acciones importantes debidas a las inclemencias atmosféricas (hielo, frío, calor o viento). Se divide la acción de la carga sobre los conductores en 3 partes (tabla N 2.5): Tabla N 2.5 Tipo carga r (mm) p (gr/cm²) t C K Pesada Mediana Liviana

11 Donde: r: Espesor radial de la capa de hielo (figura N 2.11) p: Presión del viento t : Temperatura K: Constante (factor de seguridad) Figura N 2.11 El viento actúa de forma horizontal, mientras que el peso del conductor lo hace verticalmente. Por lo cual debemos componer ambas fuerzas (figura N 2.12) Figura N 2.12 La resultante g' es la fuerza resultante en un conductor sometido a la acción del viento: (2.32) (2.33)

12 (2.34) (2.35) Donde: g : Fuerza resultante (kg/m) h: Componente horizontal producto de la presión del viento (kg/m) v: Carga total vertical (kg/m) vc : Peso propio del cable (kg/m) vh : Peso correspondiente al hielo (kg/m) D: Diámetro del conductor (mm) r: Espesor radial de la capa de hielo (mm) p: Presión del viento (gr/cm²) Debido a los cambios de temperatura, el conductor se dilata o se contrae. Esto origina variaciones en la tensión y en la flecha, que aunque no son muy importantes en vanos de pequeña longitud, deberemos tenerlas en cuenta en el cálculo mecánico. El peso del conductor no dependerá de la temperatura, lo consideraremos constante, esto dependerá del viento y el hielo. Como la dilatación es lineal responde a la ecuación: (2.36) Donde: L 0: Longitud del conductor a cero grados (m) L 1: Longitud a la temperatura t (m) a: Coeficiente de dilatación lineal ( C -1 ) t: Temperatura considerada ( C)

13 Para hallar la variación de la longitud entre dos temperaturas diferentes t 1 y t 2 haremos: (2.37) Cuando un conductor está sometido a una determinada tensión, se produce un alargamiento de su longitud que responde a la ley de Hooke. Llamando e al alargamiento elástico producido por un kilogramo, sobre un conductor de un metro de longitud y un milímetro cuadrado de sección, tendremos que en general, el alargamiento producido por una tensión T 1 y T 2 sobre un conductor de longitud L O y sección S será: (2.38) (2.39) (2.40) y siendo el llamado módulo de elasticidad, tendremos: (2.41) Ecuación que nos permite saber la variación de longitud del cable cuando está sometido a una variación de tensión, T 1 y T 2. Según norma NSEG 5 E.n.71 Electricidad, instalaciones de corrientes fuertes Capítulo VI líneas aéreas, no podrán construirse líneas aéreas de cualquier categoría (tabla Nº 8.4) sobre edificios existentes, ni hacer construcciones debajo de las líneas aéreas existente. La separación entre un edificio o construcción y el conductor más próximo de una línea aérea de cualquier categoría, deberá ser tal que no exista peligro para las personas de entrar en contacto con dicho conductor. Las separaciones mínimas permisibles serán las siguientes:

14 1,30 para las líneas de la categoría A. 2,00 m para las líneas de la categoría B. 2,50 m + 1cm, por cada KV de tensión nominal en exceso sobre 26 KV para las líneas de la categoría C. Tabla 2.4 Categoría Nivel de tensión (volts) A < 1000 B 1000 < V < C > Si en toda la extensión de la zona expuesta, no existieran ventanas, disposiciones de arquitectura normalmente accesibles, las distancias especificadas podrán reducirse en 0,50 m. Se considerarán los conductores desviados por efecto del viento como mínimo 30 º respecto de la vertical. El trazado de las líneas de corriente fuerte será de preferencia rectilíneo, en zonas libres de obstáculos y se preocupará que la vigilancia y mantenimiento de ellas quede asegurada por la facilidad de acceso a sus distintos puntos. En caso de que a través del trazado se encuentre la presencia de árboles se adoptarán las medidas siguientes: Los árboles que están en la proximidad de línea áreas desnudas; deben ser o derribados o bien podados periódicamente, para evitar el contacto entre las líneas y el ramaje de éstos. En las líneas de categoría B, la distancia entre los conductores y los árboles vecinos deberá ser tal, que no haya peligro de contacto entre dichos árboles y los conductores. En todo caso las personas que eventualmente puedan subir a ellos no deberán correr peligro de tener contacto accidental con los conductores. En las líneas rurales de categoría B, la distancia entre los conductores y los árboles vecinos será por lo menos de 5 m, salvo que la altura de los árboles exija una distancia mayor. En casos de divergencias resolverá la Superintendencia. En las líneas de categoría C, la distancia entre los conductores y los árboles vecinos será igual a la altura de los árboles, pero no inferior a 5 m.

15 Se permite la existencia de árboles frutales debajo de las líneas de las categorías B o C, siempre que las características de crecimiento de los árboles y el manejo que de ellos haga el propietario de ellos garantice que su altura no sobrepase 4 m sobre el suelo. Donde: En Resumen (figura Nº 2.4): Figura Nº 2.3 Zona 1 : Se prohíbe la construcción de cualquier inmueble y plantaciones que pongan en peligro la línea Zona 2 : Se restringe la plantaciones o cultivos de árboles que pongan en peligro la línea eléctrica Ancho de Servidumbre : Ab1 + An1 + Af1 + Ae + Af2 + An2 + Ab2

16 En general se cumple: An1=An2=An : Ancho exigido por norma (Art.109) que depende de la tensión de la línea Af1=Af2=Af : Ancho debido a la desviación del conductor, depende de la flecha Ab1=Ab2=Ab : Ancho de protección arbóreo Ae : Distancia entre los conductores mas separados en una estructura F : Flecha del conductor H : Altura al punto más bajo de la línea

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. Tema: Calculo mecánico: Flechas y Tensiones. GUÍA 5 Pág.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. Tema: Calculo mecánico: Flechas y Tensiones. GUÍA 5 Pág. Tema: Calculo mecánico: Flechas y Tensiones. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. I. OBJETIVOS. Que el estudiante simule la influencia de la variación

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 2.- RESISTENCIA DE MATERIALES. TRACCION. 1.1.- Resistencia de materiales. Objeto. La mecánica desde el punto de vista Físico

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

3 CONDUCTORES ELÉCTRICOS

3 CONDUCTORES ELÉCTRICOS 3 CONDUCTORES ELÉCTRICOS 3.1 CONDUCTORES ELÉCTRICOS METALES MÁS EMPLEADOS Los metales más empleados como conductores en los cables eléctricos son el COBRE y el ALUMINIO. 3.1.1 EL COBRE El COBRE se obtiene

Más detalles

Medidas de tendencia central o de posición: situación de los valores alrededor

Medidas de tendencia central o de posición: situación de los valores alrededor Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

Física de los Procesos Biológicos Curso 2005/6

Física de los Procesos Biológicos Curso 2005/6 Bibliografía: ísica, Kane, Tema 8 ísica de los Procesos Biológicos Curso 2005/6 Grupo 3 TEMA 2 BIOMECÁNICA 2.1 SÓIDO DEORMABE Parte 1 Introducción Vamos a estudiar como los materiales se deforman debido

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN

MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN ÍNDICE Parámetros fundamentales y operaciones básicas en aire acondicionado Condiciones de bienestar o confort Cálculo de la carga térmica de refrigeración

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

33 El interés compuesto y la amortización de préstamos.

33 El interés compuesto y la amortización de préstamos. 33 El interés compuesto y la amortización de préstamos. 33.0 El interés compuesto. 33.0.0 Concepto. 33.0.02 Valor actualizado de un capital. 33.0.03 Tiempo equivalente. 33.02 Amortización de préstamos.

Más detalles

En la siguiente gráfica se muestra una función lineal y lo que representa m y b.

En la siguiente gráfica se muestra una función lineal y lo que representa m y b. FUNCIÓN LINEAL. La función lineal o de primer grado es aquella que se representa gráficamente por medio de una línea recta. Dicha función tiene una ecuación lineal de la forma f()= =m+b, en donde m b son

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 2: EL MONOPOLIO SOLUCIÓN A LOS PROBLEMAS PROPUESTOS

ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 2: EL MONOPOLIO SOLUCIÓN A LOS PROBLEMAS PROPUESTOS ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 2: EL MONOPOLIO 2.1 ANÁLISIS DE EQUILIBRIO 2.2. DISCRIMINACIÓN DE PRECIOS Y REGULACIÓN SOLUCIÓN A LOS PROBLEMAS PROPUESTOS

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

Funciones, x, y, gráficos

Funciones, x, y, gráficos Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

CALCULO DE APOYOS. DISTANCIAS DE SEGURIDAD

CALCULO DE APOYOS. DISTANCIAS DE SEGURIDAD CALCULO DE APOYOS. DISTANCIAS DE SEGURIDAD Las distancias de seguridad que se deben calcular en un apoyo deben ser las siguientes: D1: Distancia del conductor al terreno, se calcula mediante la ecuación:

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS SUMA DE VECTORES OBJETIVOS Usar la mesa de fuerzas

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

Tema 1: Cuerpos geométricos. Aplicaciones

Tema 1: Cuerpos geométricos. Aplicaciones Tema 1: Cuerpos geométricos. Aplicaciones 1.- los polígonos. Un polígono es un trozo de plano limitado por una línea poligonal (sin curvas) cerrada. Es un polígono No son polígonos Hay dos clases de polígonos:

Más detalles

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE AUTORÍA MARÍA FRANCISCA OJEDA EGEA TEMÁTICA EXPERIMENTO FÍSICA Y QUÍMICA, APLICACIÓN MÉTODO CIENTÍFICO ETAPA EDUCACIÓN

Más detalles

**********************************************************************

********************************************************************** 1..- a) Dimensionar la sección de la viga sabiendo que está compuesta por dos tablones dispuestos como se indica en la figura (se trata de hallar a). Tensión admisible de la madera: σ adm, tracción = 50

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 4: ÓPTICA

EXAMEN FÍSICA 2º BACHILLERATO TEMA 4: ÓPTICA INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

Problemas de Cinemática 1 o Bachillerato

Problemas de Cinemática 1 o Bachillerato Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

TEMA: CAMPO ELÉCTRICO

TEMA: CAMPO ELÉCTRICO TEMA: CAMPO ELÉCTRICO C-J-06 Una carga puntual de valor Q ocupa la posición (0,0) del plano XY en el vacío. En un punto A del eje X el potencial es V = -120 V, y el campo eléctrico es E = -80 i N/C, siendo

Más detalles

ESPECIFICACIÒN TÈCNICA E.T. 99.03/1 CUBIERTA PROTECTORA PARA CONDUCTOR DESNUDO DE MEDIA TENSION FECHA DE APROBACIÓN: 09/04/02

ESPECIFICACIÒN TÈCNICA E.T. 99.03/1 CUBIERTA PROTECTORA PARA CONDUCTOR DESNUDO DE MEDIA TENSION FECHA DE APROBACIÓN: 09/04/02 ESPECIFICACIÒN TÈCNICA E.T. 99.03/1 CUBIERTA PROTECTORA PARA CONDUCTOR DESNUDO DE MEDIA TENSION FECHA DE APROBACIÓN: 09/04/02 E.T. 99.03/1-08/06/01 INDICE 1. - OBJETO...1 2. - CAMPO DE APLICACIÓN...1 3.

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

TEMA 6 SEMEJANZA DE TRIÁNGULOS

TEMA 6 SEMEJANZA DE TRIÁNGULOS Tema 6 Semejanza de triángulos Matemáticas - 4º ESO 1 TEMA 6 SEMEJANZA DE TRIÁNGULOS ESCALAS EJERCICIO 1 : En una fotografía, María y Fernando miden,5 cm y,7 cm, respectivamente; en la realidad, María

Más detalles

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Toda esta información de volúmenes se tiene que vaciar a un formato que se llama generador de obra. Este formato no es mas que una hoja donde se

Toda esta información de volúmenes se tiene que vaciar a un formato que se llama generador de obra. Este formato no es mas que una hoja donde se Generadores de obra Generadores de obra Los números generadores, también conocidos como Generadores o Generadoras de obra, se pueden definir como el documento mediante el cual se lleva a cabo la cuantificación

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

EJERCICIOS SOBRE : NÚMEROS ENTEROS

EJERCICIOS SOBRE : NÚMEROS ENTEROS 1.- Magnitudes Absolutas y Relativas: Se denomina magnitud a todo lo que se puede medir cuantitativamente. Ejemplo: peso de un cuerpo, longitud de una cuerda, capacidad de un recipiente, el tiempo que

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

MICROECONOMÍA II. PRÁCTICA TEMA II: Equilibrio parcial

MICROECONOMÍA II. PRÁCTICA TEMA II: Equilibrio parcial MICROECONOMÍA II PRÁCTICA TEMA II: Equilibrio parcial EJERCICIO 1 A) En equilibrio, la cantidad demandada coincide con la cantidad ofrecida, así como el precio de oferta y demanda. Por lo tanto, para hallar

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Capítulo 6. Aplicaciones de la Integral

Capítulo 6. Aplicaciones de la Integral Capítulo 6 Aplicaciones de la Integral 6. Introducción. En las aplicaciones que desarrollaremos en este capítulo, utilizaremos una variante de la definición de integral la cual es equivalente a la que

Más detalles

Lección 7 - Coordenadas rectangulares y gráficas

Lección 7 - Coordenadas rectangulares y gráficas Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano

Más detalles

Postes de Baja y Torres de Alta Tensión

Postes de Baja y Torres de Alta Tensión Postes de Baja y Torres de Alta Tensión Compilador: Prof. Edgardo Faletti (2011) Es necesario previamente diferenciar los distintos tipos de tensiones. Existen tres tipos a saber: Alta tensión. Se emplea

Más detalles

EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO

EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO Se denomina péndulo simple (o péndulo matemático) a un punto material suspendido de un hilo inextensible y sin peso, que

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta. ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta

Más detalles

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2. PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de cceso a las Universidades de Castilla y León MTEMÁTICS PLICDS LS CIENCIS SOCILES EJERCICIO Nº páginas 2 Tablas OPTTIVIDD: EL LUMNO DEBERÁ ESCOGER UN DE LS DOS OPCIONES Y DESRROLLR LS PREGUNTS

Más detalles

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas 1(10) Ejercicio nº 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 Kg si le ha comunicado una velocidad de 90 Km/h? Ejercicio nº 2 Un coche de 1000 Kg aumenta su velocidad

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

P cabeza Sca 5 1 0 6 m 2 2 10 6 Pa. beza. 6 m 2 10 8 Pa unta

P cabeza Sca 5 1 0 6 m 2 2 10 6 Pa. beza. 6 m 2 10 8 Pa unta Pág. 1 16 Ejercemos una fuerza de 10 N sobre un clavo. Si la superficie de su cabeza es de 5 mm y la de la punta 0,1 mm, qué presión se ejercerá al aplicar la fuerza sobre uno u otro de sus extremos? La

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

TEMA 1: DISEÑO Y DIBUJO DE OBJETOS.

TEMA 1: DISEÑO Y DIBUJO DE OBJETOS. TEMA 1: DISEÑO Y DIBUJO DE OBJETOS. Francisco Raposo Tecnología 3ºESO 1. LA REPRESENTACIÓN DE OBJETOS 1.1.EL DIBUJO TÉCNICO Es una de las técnicas que se utilizan para describir un objeto, con la intención

Más detalles

INTRODUCCIÓN A VECTORES Y MAGNITUDES

INTRODUCCIÓN A VECTORES Y MAGNITUDES C U R S O: FÍSIC Mención MTERIL: FM-01 INTRODUCCIÓN VECTORES Y MGNITUDES La Física tiene por objetivo describir los fenómenos que ocurren en la naturaleza, a través de relaciones entre magnitudes físicas.

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

BANDA CURVA. [Escriba su dirección] [Escriba su número de teléfono] [Escriba su dirección de correo electrónico] INTRODUCCIÓN TOLERANCIAS

BANDA CURVA. [Escriba su dirección] [Escriba su número de teléfono] [Escriba su dirección de correo electrónico] INTRODUCCIÓN TOLERANCIAS ANDA HÖKEN ANDAS CURVA MODULARES ANDA CURVA INTRODUCCIÓN TOLERANCIAS DISEÑO DEL MÓDULO DISEÑO DEL PIÑÓN DISEÑO DE PALETA EMPUJADORA DISEÑO DE TAPÓN CONTENEDOR DE VARILLA INDICACIONES PARA EL MONTAJE CARACTERISTICAS

Más detalles

PROBLEMAS DE EQUILIBRIO

PROBLEMAS DE EQUILIBRIO PROBLEMAS DE EQUILIBRIO NIVEL BACHILLERATO Con una honda Curva con peralte Tomar una curva sin volcar Patinador en curva Equilibrio de una puerta Equilibrio de una escalera Columpio Cuerda sobre cilindro

Más detalles

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS Patricio León Alvarado 1, Eduardo León Castro 2 1 Ingeniero Eléctrico en Potencia 2000 2 Director de Tesis. Postgrado en Ingeniería Eléctrica

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( )

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( ) DESARROLLO DE LA PARTE TEÓRICA DE LA UNIDAD DIDÁCTICA. 1. Cinemática del movimiento armónico simple. Dinámica del movimiento armónico simple 3. Energía del movimiento armónico simple 4. Aplicaciones: resorte

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO ÍNDICE VECTORES EN EL PLANO... 3 Vector Fijo... 3 VECTOR LIBRE... 3 Operaciones con Vectores... 3 Suma de vectores... 3 Producto de un número por

Más detalles

EJERCICIOS RESUELTOS DE: ANÁLISIS DE CIRCUITOS I (Parte 1)

EJERCICIOS RESUELTOS DE: ANÁLISIS DE CIRCUITOS I (Parte 1) EJERCICIOS RESUELTOS DE: ANÁLISIS DE CIRCUITOS I (Parte ) ELABORADO POR: RICARDO DOMÍNGUEZ GARCÍA IET 70 ACADEMIA DE MATEMÁTICAS ESCUELA DE INGENIERÍA EN COMPUTACIÓN Y ELECTRÓNICA UNIVERSIDAD DE LA SALLE

Más detalles

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua.

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua. 1.8. Corriente eléctrica. Ley de Ohm Clases de Electromagnetismo. Ariel Becerra Si un conductor aislado es introducido en un campo eléctrico entonces sobre las cargas libres q en el conductor va a actuar

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2003

Examen de Matemáticas 2 o de Bachillerato Mayo 2003 Examen de Matemáticas o de Bachillerato Mayo 00 1. Expresar el número 60 como suma de tres enteros positivos de forma que el segundo sea el doble del primero y su producto sea máximo. Determinar el valor

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2009

PRUEBA ESPECÍFICA PRUEBA 2009 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 5 AÑOS PRUEBA ESPECÍFICA PRUEBA 009 MATEMÁTICAS PRUEBA SOLUCIONARIO UNIBERTSITATERA SARTZEKO HAUTAPROBAK 5 URTETIK GORAKOAK 009ko MAIATZA MATEMATIKA PRUEBAS

Más detalles

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx Resumen Se dan algunas definiciones básicas relacionadas con la divisibilidad

Más detalles

Comprobación de una viga biapoyada de hormigón armado con sección rectangular

Comprobación de una viga biapoyada de hormigón armado con sección rectangular Comprobación de una viga biapoyada de hormigón armado con sección rectangular J. Alcalá * V. Yepes Enero 2014 Índice 1. Introducción 2 2. Descripción del problema 2 2.1. Definición geométrica........................

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Capítulo 21 Óptica 1

Capítulo 21 Óptica 1 Capítulo 21 Óptica 1 Reflexión y refracción Las leyes de la reflexión y de la refracción nos dicen lo siguiente: Los rayos incidente, reflejado y transmitido están todos en un mismo plano, perpendicular

Más detalles

CAMPO MAGNÉTICO FCA 05 ANDALUCÍA

CAMPO MAGNÉTICO FCA 05 ANDALUCÍA 1. a) Un haz de electrones atraiesa una región del espacio sin desiarse, se puede afirmar que en esa región no hay campo magnético? De existir, cómo tiene que ser? b) En una región existe un campo magnético

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles