Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia"

Transcripción

1 Scientia Et Technica ISSN: Colombia VALENCIA ANGULO, EDGAR ALIRIO; ESCUDERO, CARLOS ARTURO; POVEDA, YURI ALEXANDER ALGUNOS RESULTADOS INTERESANTES DE LA TEORÍA DE LA MEDIDA Scientia Et Technica, vol XVII, núm 47, abril, 2011, pp Pereira, Colombia Disponible en: Cómo citar el artículo Número completo Más información del artículo Página de la revista en redalycorg Sistema de Información Científica Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto

2 Scientia et Technica Año XVII, No 47, Abril 2011 ISSN ALGUNOS RESULTADOS INTERESANTES DE LA TEORÍA DE LA MEDIDA Some interesting results of the measurement theory RESUMEN En este artículo se hace una presentación un poco distinta de algunos resultados de la teoría de la medida De la misma manera se demuestran un resultado conocido e interesante de la teoría de la medida sobre sucesiones monótonas de conjuntos definidos en una σ- álgebra PALABRAS CLAVES: Medida, espacio de medida y ABSTRACT álgebras In this paper a slightly different presentation of some results of measure theory In the same way, showing a well-known and interesting result of measure theory on monotone sequences of sets defined on a σ-algebra KEYWORDS: measure, measure space and algebras EDGAR ALIRIO VALENCIA ANGULO Profesor Auxiliar, Magíster en Ciencias Matemáticas Departamento de Matemáticas Facultad de Ciencias Básicas CARLOS ARTURO ESCUDERO Profesor Asociado, PhD en Ciencias Matemáticas Departamento de Matemáticas Facultad de Ciencias Básicas YURI ALEXANDER POVEDA Profesor Asociado, Matemático, PhD en Ciencias Matemáticas Departamento de Matemáticas Facultad de Ciencias Básicas 1 INTRODUCCIÓN El concepto de la medida tiene una historia de más de 5000 años, y surge de la necesidad de tratar el manejo de conceptos como: longitudes, áreas y volúmenes, fundamentalmente la gran necesidad de su cálculo ver el libro En principio las longitudes las daban en comparación con un segmento unidad, las áreas con un cuadrado unidad y los cubos con un cubo unidad, de esta manera se podrían medir figuras simples como polígonos y poliedros y se demostraron teoremas como el de Pitágoras y se calcularon volúmenes de superficies como el cono, la esfera y el cilindro Estos tres ejemplos particulares de medida son los que han servido como guía para sacar a la luz el concepto que detrás de ellas se escondía Así se mantuvieron las cosas hasta que en 1883 G Cantor dio la primera definición formal del concepto de Fecha de Recepción: 25 de Enero de 2011 Fecha de Aceptación: 28 de Enero de 2011 medida de un conjunto acotado propiedades y estudio sus En este artículo presentamos y demostramos de manera un poco novedosa algunos resultados conocidos de la teoría de la medida 2 MEDIDA En esta sección recordaremos el concepto de medida de un subconjunto de como lo hace Ash en y cohn en Pero antes de dar la definición de medida, definamos que es una -algebra Definición 1 Llamaremos - álgebra en a una colección de subconjuntos de que satisface las siguientes propiedades:

3 191 Scientia et Technica Año XVII, No 47, Abril de Si, entonces 3 Si, entonces concepto, siguiendo a Weir y a Shiryaev y respectivamente Definición 2 Dado un espacio medible Una medida sobre es una función no negativa Si la propiedad 3 se satisface para uniones finitas, se dice que es una álgebra De esta definición se sigue de forma inmediata que una - álgebra es cerrada para intersecciones numerables y una álgebra para intersecciones finitas Se llamará espacio medible al par donde es un conjunto cualquiera y es una álgebrade y llamaremos conjuntos medibles a los elementos de Que satisface las siguientes propiedades: 1 para todo 2 3 Es numerablemente aditiva, es decir, si dado, con para Proposición 1 Sea (números racionales) y el anillo generado por los intervalos de la forma, donde Demuestre que y cuya unión esta en, entonces es una - álgebra Demostración Por hipótesis sabemos que Demostremos que Sea, es decir, entonces es finito o numerable, pero observemos que Se dirá que la medida que la medida es aditiva si la condición 3 solo es válida para colecciones finitas de conjuntos disjuntos Se dirá que una medida es -finita si existe una sucesión de conjuntos tal que Se llamará espacio de medida a la tripla es la medida sobre la -álgebra de y donde Donde Sea, entonces es una sucesión de Proposición 2 Sea si tiene elementos y si es un conjunto infinito Demostremos que es una medida en y además es -finita, pero conjuntos en, luego es decir ( es igual a restringida a ) no es -finita Uno de los conceptos fundamentales en la teoría de la medida, es la medida de un conjunto Presentaremos este

4 Scientia et Technica Año XVII, No 47, Abril de Demostración es positiva En efecto, claramente por definición es numerablemente aditiva: sea, una familia de conjuntos tal que para y cuya unión esta en demostremos que Ahora demostremos que es -finita en Como es numerable, entonces, es una sucesión en tal que Supongamos que es finito, entonces es finito para todo y y para todo Sea Demostremos que no es no es -finita Como es el anillo generado por los intervalos de la forma, donde Si, entonces existe una familia finita y disjunta de intervalos de la forma, sea esta familia tal que entonces = Donde del conjunto se define como el número de elementos Supongamos que es infinito e ( ), entonces suceden dos casos: Caso1 Supongamos que es una sucesión de conjuntos donde cada conjunto números es finito para todo, es decir, para todo, los son números enteros positivos, y como la suma numerable de números positivos es infinito, es decir, por consiguiente, entonces, Caso2 Sea infinito para algún, entonces,, luego Ahora, como, como, entonces para todo Luego no existe ninguna sucesión en tal que no es -finita para todo y por consiguiente 3 ALGUNOS RESULTADOS INTERESANTES EN LA TEORIA DE LA MEDIDA Antes de presentar estos resultados, definamos algunos conceptos sobre sucesiones de conjuntos que utilizaremos en esta sección Definición 3 Una sucesión de conjuntos es no decreciente si para todo Decimos que una sucesión de conjuntos es no creciente si para todo Si es una sucesión de conjuntos no decreciente su limite es el conjunto Si es no creciente, su

5 193 Scientia et Technica Año XVII, No 47, Abril de 2011 limite es el conjunto escribiremos respectivamente En uno u otro caso, Definimos además es una sucesión decreciente y Proposición 3 Sea si es par y si es impar, calcule y Solución Observemos que Luego Proposición 4 Sea una es -algebra y una medida con valores en los reales Demuestre que si es una sucesión de conjuntos en y, entonces Demostración Sea una sucesión en tal que, entones como, (1) Por lo tanto para todo, luego Observemos ahora que Sea y que entonces observemos que Entonces para todo, es decir es una sucesión no decreciente, Luego por (1) Sea Observemos que para todo En efecto Ahora por (1) y como es una medida, entonces

6 Scientia et Technica Año XVII, No 47, Abril de (2) Finalmente se concluye que Ahora como, entonces para todo, luego para todo Por consiguiente, 4 CONCLUSIONES Por (2) tenemos que Ahora, sea Observemos que La conclusión más importante del trabajo es que se pueden usar conceptos y propiedades de sucesiones monótonas de conjuntos de una -algebra para demostrar la que si es una sucesión de conjuntos monótona en y, entonces Entonces para todo, es decir Es una sucesión no decreciente, 5 BIBLIOGRAFÍA [1] R B Ash, Analysis and probability Ac Press, 1972 Luego y por consiguiente [2] D L Cohn, Measure theory Cambridge Birkhauser Boston, 1980 Ahora como entonces para todo, luego [3] M Degroot Probabilidad y estadística, Segunda edición, Addison-Wesley Iberoamericana, S A 1988 [4] P Ibarrola, L Pardo y V Quesada Teoría de la probabilidad, Editorial Síntesis S A, 1997 para todo Esto implica que [5] Paul Meyer Probabilidad y Aplicaciones Estadísticas Addinson Wesley Iberoamericana, S A 1970 [6] M Muñoz, L Blanco Introducción a la teoría avanzada de la probabilidad Universidad Nacional de Colombia, Primera edición 2002

7 195 Scientia et Technica Año XVII, No 47, Abril de 2011 [7] Vicente Quesada y Alfonso García Lecciones de Calculo de Probabilidad Días de Santos 1988 [8] A N Shiryaev Probability Second Edition Academic Press, 1975 [9] A J Weir, General integration and measure Vol II Cambridge Univ Press 1974 [10] D Williams Probability Theory with Martingales Cambridge University Press, 1997

Desigualdad de Chebyshev bidimensional

Desigualdad de Chebyshev bidimensional Scientia et Technica Año XVII, No 51, Agosto de 2012. Universidad Tecnológica de Pereira. ISSN 0122-1701 242 Desigualdad de Chebyshev bidimensional Two - dimensional Chebyshev Inequality Edgar Alirio Valencia,

Más detalles

Revista Historia de la Educación Latinoamericana ISSN: Universidad Pedagógica y Tecnológica de Colombia.

Revista Historia de la Educación Latinoamericana ISSN: Universidad Pedagógica y Tecnológica de Colombia. Revista Historia de la Educación Latinoamericana ISSN: 0122-7238 rhela@uptc.edu.co Universidad Pedagógica y Tecnológica de Colombia Colombia Page, Carlos A. Los simbólicos Edificios de las Escuelas Normales

Más detalles

Espacios Públicos ISSN: Universidad Autónoma del Estado de México México

Espacios Públicos ISSN: Universidad Autónoma del Estado de México México Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Soberón Mora, José La reconstrucción de bases de datos a partir de tablas de contingencias

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia González Pineda, Campo Elías; Milena García, Sandra El área del paralelogramo y polígonos inscritos

Más detalles

Espacios Públicos ISSN: Universidad Autónoma del Estado de México México

Espacios Públicos ISSN: Universidad Autónoma del Estado de México México Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Mercado Maldonado, Asael; Ruiz González, Arminda El concepto de las crisis ambientales

Más detalles

Reflexión Política ISSN: Universidad Autónoma de Bucaramanga Colombia

Reflexión Política ISSN: Universidad Autónoma de Bucaramanga Colombia Reflexión Política ISSN: 0124-0781 reflepol@bumanga.unab.edu.co Universidad Autónoma de Bucaramanga Colombia Lamus Canavate, Doris La construcción de movimientos latinoamericanos de mujeres/feministas:

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Semana05[1/14] Relaciones. 28 de marzo de Relaciones

Semana05[1/14] Relaciones. 28 de marzo de Relaciones Semana05[1/14] 28 de marzo de 2007 Introducción Semana05[2/14] Ya en los capítulos anteriores nos acercamos al concepto de relación. Relación Dados un par de conjuntos no vacíos A y B, llamaremos relación

Más detalles

1. Convergencia en medida

1. Convergencia en medida FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre

Más detalles

Una topología de los números naturales*

Una topología de los números naturales* Una topología de los números naturales* Divulgación Gabriel Ruiz Hernández Instituto de Matemáticas, UNAM 1 de septimebre de 1997 resumen En este trabajo vamos a describir un espacio topológico X con las

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R}

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R} Proposición. Sea un rectángulo en R n, y sea f : R una función continua. Entonces f es integrable en. Conjuntos de Demostración: Como f es continua en, y es compacto, f es acotada en, y uniformemente continua.

Más detalles

Teoremas de convergencia y derivación bajo el signo integral

Teoremas de convergencia y derivación bajo el signo integral Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones

Más detalles

Revista Sociedad y Economía ISSN: 1657-6357 revistasye@univalle.edu.co Universidad del Valle Colombia

Revista Sociedad y Economía ISSN: 1657-6357 revistasye@univalle.edu.co Universidad del Valle Colombia Revista Sociedad y Economía ISSN: 1657-6357 revistasye@univalle.edu.co Universidad del Valle Colombia Arias, Fabio Desarrollo sostenible y sus indicadores Revista Sociedad y Economía, núm. 11, julio-diciembre,

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte

Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 2: Inducción y Recursión 1 / 20 Motivación

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

A partir de la definición obtenemos las siguientes propiedades para estas funciones:

A partir de la definición obtenemos las siguientes propiedades para estas funciones: Capítulo 1 Conjuntos Supondremos conocidas las nociones básicas sobre teoría de conjuntos, tales como subconjuntos, elementos, unión, intersección, complemento, diferencia, diferencia simétrica, propiedades

Más detalles

John Venn Matemático y filósofo británico creador de los diagramas de Venn

John Venn Matemático y filósofo británico creador de los diagramas de Venn Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan

Más detalles

Espacios, Funciones y Multifunciones

Espacios, Funciones y Multifunciones Apéndice A Espacios, Funciones y Multifunciones Denotaremos por B () a la -álgebra de Borel de un espacio topológico ; es decir, la mínima -álgebra de subconjuntos de que contiene a todos los abiertos.

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Colombia ESCUDERO S., CARLOS A; POVEDA, YURI A.; VALENCIA, EDGAR A UN PROBLEMA DE TIPO ISOPERIMETRICO PARA TRIANGULOS Scientia Et Technica, vol.

Más detalles

Ingeniería y Competitividad ISSN: 0123-3033 inycompe@gmail.com Universidad del Valle Colombia

Ingeniería y Competitividad ISSN: 0123-3033 inycompe@gmail.com Universidad del Valle Colombia Ingeniería y Competitividad ISSN: 0123-3033 inycompe@gmail.com Universidad del Valle Colombia Baluja-García, Walter; Anías-Calderón, Caridad Amenazas y defensas de seguridad en las redes de próxima generación

Más detalles

Cómo citar el artículo Número completo Más información del artículo Página de la revista en redalyc.org

Cómo citar el artículo Número completo Más información del artículo Página de la revista en redalyc.org Revista de Relaciones Internacionales, Estrategia y Seguridad ISSN: 1909-3063 cinuv.relinternal@unimilitar.edu.co Universidad Militar Nueva Granada Colombia Gaviria Yara, Radamiro Estados Unidos, Profesionalización,

Más detalles

IIC2213. IIC2213 Teorías 1 / 42

IIC2213. IIC2213 Teorías 1 / 42 Teorías IIC2213 IIC2213 Teorías 1 / 42 Qué es una teoría? Una teoría es un cúmulo de información. Debe estar libre de contradicciones. Debe ser cerrada con respecto a lo que se puede deducir de ella. Inicialmente

Más detalles

UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA DE MATEMATICAS CON ÉNFASIS EN ESTADÍSTICA

UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA DE MATEMATICAS CON ÉNFASIS EN ESTADÍSTICA UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA DE MATEMATICAS CON ÉNFASIS EN ESTADÍSTICA IDENTIFICACION ASIGNATURA: ELECTIVA EN MATEMÁTICAS: INTRODUCCIÓN A LA TEORÍA DE GALOIS CODIGO: 0701-136 NIVEL:

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

11. Integrales impropias

11. Integrales impropias 11. Integrales impropias 11.1. Definición de Integrales Impropias Las denominadas integrales impropias son una clase especial de integrales definidas (integrales de Riemann) en las que el intervalo de

Más detalles

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Alonso Jiménez, Verónica Guía metodológica para elaborar proyectos de investigación

Más detalles

Cómo citar el artículo Número completo Más información del artículo Página de la revista en redalyc.org

Cómo citar el artículo Número completo Más información del artículo Página de la revista en redalyc.org Revista de Relaciones Internacionales, Estrategia y Seguridad ISSN: 1909-3063 cinuv.relinternal@unimilitar.edu.co Universidad Militar Nueva Granada Colombia Ghotme, Rafat La historia de las relaciones

Más detalles

Cómo citar el artículo Número completo Más información del artículo Página de la revista en redalyc.org

Cómo citar el artículo Número completo Más información del artículo Página de la revista en redalyc.org Revista de Relaciones Internacionales, Estrategia y Seguridad ISSN: 1909-3063 cinuv.relinternal@unimilitar.edu.co Universidad Militar Nueva Granada Colombia Ripoll, Alejandra La Cooperación Internacional:

Más detalles

si este límite es finito, y en este caso decimos que f es integrable (impropia)

si este límite es finito, y en este caso decimos que f es integrable (impropia) Capítulo 6 Integrales impropias menudo resulta útil poder integrar funciones que no son acotadas, e incluso integrarlas sobre recintos no acotados. En este capítulo desarrollaremos brevemente una teoría

Más detalles

Práctica 2 - Hay diferentes infinitos?- A. Propiedades básicas de los Conjuntos

Práctica 2 - Hay diferentes infinitos?- A. Propiedades básicas de los Conjuntos Cálculo Avanzado Primer Cuatrimestre de 2011 Práctica 2 - Hay diferentes infinitos?- Llamaremos número cardinal de M al concepto general que, por medio de nuestra activa capacidad de pensar, surge del

Más detalles

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue: Sucesiones en R n Definición. Una sucesión en R n es cualquier lista infinita de vectores en R n x, x,..., x,... algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión x, x,...,

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

El conocido teorema de Pitágoras se suele enunciar de la siguiente manera:

El conocido teorema de Pitágoras se suele enunciar de la siguiente manera: EL TEOREMA DE PITÁGORAS PAPÚS El conocido teorema de Pitágoras se suele enunciar de la siguiente manera: Teorema (Pitágoras): Sea ABC un triángulo rectángulo de vértices A, B, y C, y sean a, b, y c las

Más detalles

Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011

Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Álgebra Resumen de la sesión anterior. Se añadió que

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

Colas de un elemento por una Relación

Colas de un elemento por una Relación 29 Ciencia en Desarrollo Vol. 2, No. 2 Dic. 2006, p.29-38 ISSN 0121-7488 Colas de un elemento por una Relación An element lines linked to a relationship Resumen Miguel Patarroyo-Mesa * Manuel Suárez-Martínez

Más detalles

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Lutz, Bruno Enseñar y cursar la carrera de Sociología: caso de la licenciatura en

Más detalles

Conjuntos Medibles. Preliminares

Conjuntos Medibles. Preliminares Capítulo 18 Conjuntos Medibles Preliminares En el capítulo anterior vimos que la medida exterior de Lebesgue no resulta σ-aditiva en todo R n. Ahora vamos a construir una familia M de subconjuntos de R

Más detalles

Hallazgos ISSN: 1794-3841 revistahallazgos@usantotomas.edu.co Universidad Santo Tomás Colombia

Hallazgos ISSN: 1794-3841 revistahallazgos@usantotomas.edu.co Universidad Santo Tomás Colombia Hallazgos ISSN: 1794-3841 revistahallazgos@usantotomas.edu.co Universidad Santo Tomás Colombia Gómez Arévalo, José Arlés APORTES A LA PROBLEMÁTICA CIENCIA-ESPIRITUALIDAD DESDE EL BUDISMO ZEN Hallazgos,

Más detalles

Ingeniería y Competitividad ISSN: 0123-3033 inycompe@gmail.com Universidad del Valle Colombia

Ingeniería y Competitividad ISSN: 0123-3033 inycompe@gmail.com Universidad del Valle Colombia Ingeniería y Competitividad ISSN: 0123-3033 inycompe@gmail.com Universidad del Valle Colombia Minotta-Hurtado, Javier A.; Bacca-Cortés, Eval B. Herramienta para la identificación de procesos y simulación

Más detalles

COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA

COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA COLEGIO NUESTRO SEÑOR DE L UEN ESPERNZ signatura: NÁLISIS MTEMÁTICO 11º Profesor: Lic. EDURDO DURTE SUESCÚN TLLER OPERCIONES CON CONJUNTOS OPERCIONES CON CONJUNTOS En aritmética se suma, resta y multiplica,

Más detalles

Semestre Económico ISSN: 0120-6346 semestreeconomico@udem.edu.co Universidad de Medellín Colombia

Semestre Económico ISSN: 0120-6346 semestreeconomico@udem.edu.co Universidad de Medellín Colombia Semestre Económico ISSN: 0120-6346 semestreeconomico@udem.edu.co Universidad de Medellín Colombia Martínez Crespo, Jenny Administracion y Organizaciones. Su desarrollo evolutivo y las propuestas para el

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS EAP DE MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cueros cuadráticos Caítulo

Más detalles

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Vegas Guerrero, Carmen Inés Proceso de aplicación de la Nueva Gestión Pública en la

Más detalles

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS 2.1 SUCESIONES DE NUMEROS REALES 2.1.1 Definición de sucesión de números reales Definición: Una sucesión de números reales es una aplicación del conjunto

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Sánchez Ramos, Miguel Ángel Tendencia hacia el isomorfismo en la administración pública

Más detalles

ACERCA DE DE s-conexidad EN DIFERENTES ESTRUCTURAS DE CONTINUOS

ACERCA DE DE s-conexidad EN DIFERENTES ESTRUCTURAS DE CONTINUOS ACERCA DE DE s-conexidad EN DIFERENTES ESTRUCTURAS DE CONTINUOS Jesús Fernando Tenorio Arvide Instituto de Física y Matemáticas jtenorio@mixteco.utm.mx Resumen En este trabajo exponemos algunos conceptos

Más detalles

Prácticas para Resolver PROBLEMAS MATEMÁTICOS

Prácticas para Resolver PROBLEMAS MATEMÁTICOS Prácticas para Resolver PROBLEMAS MATEMÁTICOS 1 Prólogo El presente manual está dirigido a los estudiantes de las facultades de físico matemáticas de las Escuelas Normales Superiores que estudian la especialidad

Más detalles

Sobre funciones reales de variable real. Composición de funciones. Función inversa

Sobre funciones reales de variable real. Composición de funciones. Función inversa Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real

Más detalles

CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS

CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS 2.1. NOCIONES PRIMITIVAS Consideraremos tres nociones primitivas: Conjunto, Elemento y Pertenencia. Conjunto Podemos entender al conjunto como, colección,

Más detalles

MATEMÁTICA DE CUARTO 207

MATEMÁTICA DE CUARTO 207 CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Topología

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Topología - Fernando Sánchez - - 6 Topología Cálculo I en R 26 10 2015 Elementos de la topología en R. Una topología en un conjunto da un criterio para poder hablar de proximidad entre los elementos de un conjunto.

Más detalles

Suma Psicológica ISSN: 0121-4381 sumapsi@konradlorenz.edu.co Fundación Universitaria Konrad Lorenz Colombia

Suma Psicológica ISSN: 0121-4381 sumapsi@konradlorenz.edu.co Fundación Universitaria Konrad Lorenz Colombia Suma Psicológica ISSN: 0121-4381 sumapsi@konradlorenz.edu.co Fundación Universitaria Konrad Lorenz Colombia Barrera, Gabriela; Jakovcevic, Adriana; Bentosela, Mariana CALIDAD DE VIDA EN PERROS ALOJADOS

Más detalles

REDVET. Revista Electrónica de Veterinaria E-ISSN: Veterinaria Organización España

REDVET. Revista Electrónica de Veterinaria E-ISSN: Veterinaria Organización España REDVET. Revista Electrónica de Veterinaria E-ISSN: 1695-7504 redvet@veterinaria.org Veterinaria Organización España Redalyc: la hemeroteca científica abierta al mundo REDVET. Revista Electrónica de Veterinaria,

Más detalles

Puntos y rectas en el triángulo

Puntos y rectas en el triángulo Puntos y rectas en el triángulo En los triángulos hay un conjunto de rectas y puntos importantes. Las rectas son las bisectrices, las mediatrices, las alturas, las medianas y las bisectrices exteriores.

Más detalles

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1 Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística,

Más detalles

CAPÍTULO II TEORÍA DE CONJUNTOS

CAPÍTULO II TEORÍA DE CONJUNTOS TEORÍ DE ONJUNTOS 25 PÍTULO II TEORÍ DE ONJUNTOS 2.2 INTRODUIÓN Denotaremos los conjuntos con letras mayúsculas y sus elementos con letras minúsculas, si un elemento p pertenece a un conjunto escribiremos

Más detalles

Curso intermedio de PROBABILIDAD

Curso intermedio de PROBABILIDAD Curso intermedio de PROBABILIDAD Luis Rincón Departamento de Matemáticas Facultad de Ciencias UNAM Circuito Exterior de CU 04510 México DF Mayo 2005 El presente texto corresponde a la versión electrónica

Más detalles

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable. Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

La Intersección Arbitraria de una Familia de Subconjuntos Abiertos con la Propiedad α-s-localmente Finita es α-semiabierta

La Intersección Arbitraria de una Familia de Subconjuntos Abiertos con la Propiedad α-s-localmente Finita es α-semiabierta Divulgaciones Matemáticas Vol. 8 No. 2 (2000), pp. 155 162 La Intersección Arbitraria de una Familia de Subconjuntos Abiertos con la Propiedad α-s-localmente Finita es α-semiabierta The Intersection of

Más detalles

Espacios Normados (Normas en R n )

Espacios Normados (Normas en R n ) Espacios Normados (Normas en R n ) Uno de los conceptos más importantes del cálculo y del analisis matemático es el de métrica o distancia. En R n la noción de metrico depende a su vez del concepto de

Más detalles

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad

Más detalles

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Flores, Misael; Espejel Mena, Jaime Aproximaciones al concepto de sociedad civil en

Más detalles

Sucesiones y Suma Finita

Sucesiones y Suma Finita Sucesiones y Suma Finita Hermes Pantoja Carhuavilca Centro Pre-Universitario CEPRE-UNI Universidad Nacional de Ingeniería Algebra Hermes Pantoja Carhuavilca 1 de 21 CONTENIDO Convergencia de una sucesión

Más detalles

Convergencia de sucesiones

Convergencia de sucesiones TEMA 4. CONVERGENCIA DE SUCESIONES 65 Tema 4. Convergencia de sucesiones Definición 5.4.1. Sea X un conjunto: una sucesión en X es una aplicación s : N X; denotaremos x n := s(n) y por S := {x n } n N

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana

Más detalles

Repaso de Geometría. Ahora formulamos el teorema:

Repaso de Geometría. Ahora formulamos el teorema: Repaso de Geometría Preliminares: En esta sección trabajaremos con los siguientes temas: I. El Teorema de Pitágoras. II. Fórmulas básicas de geometría: perímetro, área y volumen. I. El Teorema de Pitágoras.

Más detalles

4. NÚMEROS PSEUDOALEATORIOS.

4. NÚMEROS PSEUDOALEATORIOS. 4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2013.

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2013. BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS Ingeniería y Ciencias Exactas 2013. 1 ÁREA DE INGENIERIAS Y CIENCIAS EXACTAS INTRODUCCIÓN El propósito

Más detalles

APUNTES DE GEOMETRÍA ANALÍTICA

APUNTES DE GEOMETRÍA ANALÍTICA CAPÍTULO 1: LA RECTA EN EL PLANO Conceptos Primitivos: Punto, recta, plano. APUNTES DE GEOMETRÍA ANALÍTICA Definición 1 (Segmento) Llamaremos segmento a la porción de una línea recta comprendida entre

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

4. " $#%&' (#) para todo $#* (desigualdad triangular).

4.  $#%&' (#) para todo $#* (desigualdad triangular). 10 Capítulo 2 Espacios Métricos 21 Distancias y espacios métricos Definición 211 (Distancia) Dado un conjunto, una distancia es una aplicación que a cada par le asocia un número real y que cumple los siguientes

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Asignaturas antecedentes y subsecuentes Álgebra elemental y Geometría Elemental

Asignaturas antecedentes y subsecuentes Álgebra elemental y Geometría Elemental PROGRAMA DE ESTUDIOS CÁLCULO DIFERENCIAL Área a la que pertenece: ÁREA GENERAL Horas teóricas: 4 Horas prácticas: 2 Créditos: 10 Clave: F0022 Asignaturas antecedentes y subsecuentes Álgebra elemental y

Más detalles

OPERACIONES CON NÚMEROS REALES

OPERACIONES CON NÚMEROS REALES NÚMEROS REALES Por número real llamaremos a un número que puede ser racional o irracional, por consiguiente, el conjunto de los números reales es la unión del conjunto de números racionales y el conjunto

Más detalles

TALLER 1 DE ALGEBRA LINEAL Y GEOMETRÍA INGENIERÍA AMBIENTAL - UNIVERSIDAD DE CÓRDOBA FACTORIZACIÓN LU Y CADENAS DE MARKOV

TALLER 1 DE ALGEBRA LINEAL Y GEOMETRÍA INGENIERÍA AMBIENTAL - UNIVERSIDAD DE CÓRDOBA FACTORIZACIÓN LU Y CADENAS DE MARKOV TALLER 1 DE ALGEBRA LINEAL Y GEOMETRÍA INGENIERÍA AMBIENTAL - UNIVERSIDAD DE CÓRDOBA FACTORIZACIÓN LU Y CADENAS DE MARKOV DESCRIPCIÓN: En el siguiente trabajo se mostrarán algunos métodos para encontrar

Más detalles

Límite superior y límite inferior de una sucesión

Límite superior y límite inferior de una sucesión Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

2. Los números naturales, enteros y racionales 1

2. Los números naturales, enteros y racionales 1 - Fernando Sánchez - - Cálculo I 2Los números naturales, enteros y racionales Números naturales 24 09 2015 Se llaman números naturales a los elementos del conjunto N = {1, 2, 3,...}. En este conjunto hay

Más detalles

Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos

Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos 12345678901234567890 M ate m ática Tutorial MT-b11 Matemática 2006 Tutorial Nivel Básico Inecuaciones e intervalos Matemática 2006 Tutorial Inecuaciones e intervalos I. Definición y Propiedades de las

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

TEMA 1. NÚMEROS REALES Y COMPLEJOS

TEMA 1. NÚMEROS REALES Y COMPLEJOS TEMA 1. NÚMEROS REALES Y COMPLEJOS 1.1 DEFINICIÓN AXIOMATICA DE LOS NÚMEROS REALES 1.1.1 Axiomas de cuerpo En admitimos la existencia de dos operaciones internas la suma y el producto, con estas operaciones

Más detalles

REDVET. Revista Electrónica de Veterinaria E-ISSN: Veterinaria Organización España

REDVET. Revista Electrónica de Veterinaria E-ISSN: Veterinaria Organización España REDVET. Revista Electrónica de Veterinaria E-ISSN: 1695-7504 redvet@veterinaria.org Veterinaria Organización España Lozano P, Martha; Angulo M, Rosa; López D, Carlos; Ortiz H, Antonio; Tórtora P, Jorge;

Más detalles

Topología de R n. Beatriz Porras

Topología de R n. Beatriz Porras Producto escalar, métrica y norma asociada. Topología de R n Beatriz Porras 1 Producto escalar, métrica y norma asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

TEMA 2. ESPACIOS VECTORIALES

TEMA 2. ESPACIOS VECTORIALES TEMA 2. ESPACIOS VECTORIALES CÉSAR ROSALES GEOMETRÍA I En este tema comenzaremos el estudio de los objetos que nos interesarán en esta asignatura: los espacios vectoriales. Estos son estructuras básicas

Más detalles

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos

Más detalles

Ejercicios Tema 1. Profesora: Carmen López Esteban. Curso: 1ª Magisterio. Esp. Educación Infantil. Grupo: A.

Ejercicios Tema 1. Profesora: Carmen López Esteban. Curso: 1ª Magisterio. Esp. Educación Infantil. Grupo: A. Profesora: Carmen López Esteban Curso: 1ª Magisterio. Esp. Educación Infantil Grupo: A. Ejercicios de CONJUNTOS Ejercicio 1: 1.1) A = {x/x es país fronterizo con Perú} El conjunto esta por... 1.2) B =

Más detalles