Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia"

Transcripción

1 Scientia Et Technica ISSN: Colombia VALENCIA ANGULO, EDGAR ALIRIO; ESCUDERO, CARLOS ARTURO; POVEDA, YURI ALEXANDER ALGUNOS RESULTADOS INTERESANTES DE LA TEORÍA DE LA MEDIDA Scientia Et Technica, vol XVII, núm 47, abril, 2011, pp Pereira, Colombia Disponible en: Cómo citar el artículo Número completo Más información del artículo Página de la revista en redalycorg Sistema de Información Científica Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto

2 Scientia et Technica Año XVII, No 47, Abril 2011 ISSN ALGUNOS RESULTADOS INTERESANTES DE LA TEORÍA DE LA MEDIDA Some interesting results of the measurement theory RESUMEN En este artículo se hace una presentación un poco distinta de algunos resultados de la teoría de la medida De la misma manera se demuestran un resultado conocido e interesante de la teoría de la medida sobre sucesiones monótonas de conjuntos definidos en una σ- álgebra PALABRAS CLAVES: Medida, espacio de medida y ABSTRACT álgebras In this paper a slightly different presentation of some results of measure theory In the same way, showing a well-known and interesting result of measure theory on monotone sequences of sets defined on a σ-algebra KEYWORDS: measure, measure space and algebras EDGAR ALIRIO VALENCIA ANGULO Profesor Auxiliar, Magíster en Ciencias Matemáticas Departamento de Matemáticas Facultad de Ciencias Básicas CARLOS ARTURO ESCUDERO Profesor Asociado, PhD en Ciencias Matemáticas Departamento de Matemáticas Facultad de Ciencias Básicas YURI ALEXANDER POVEDA Profesor Asociado, Matemático, PhD en Ciencias Matemáticas Departamento de Matemáticas Facultad de Ciencias Básicas 1 INTRODUCCIÓN El concepto de la medida tiene una historia de más de 5000 años, y surge de la necesidad de tratar el manejo de conceptos como: longitudes, áreas y volúmenes, fundamentalmente la gran necesidad de su cálculo ver el libro En principio las longitudes las daban en comparación con un segmento unidad, las áreas con un cuadrado unidad y los cubos con un cubo unidad, de esta manera se podrían medir figuras simples como polígonos y poliedros y se demostraron teoremas como el de Pitágoras y se calcularon volúmenes de superficies como el cono, la esfera y el cilindro Estos tres ejemplos particulares de medida son los que han servido como guía para sacar a la luz el concepto que detrás de ellas se escondía Así se mantuvieron las cosas hasta que en 1883 G Cantor dio la primera definición formal del concepto de Fecha de Recepción: 25 de Enero de 2011 Fecha de Aceptación: 28 de Enero de 2011 medida de un conjunto acotado propiedades y estudio sus En este artículo presentamos y demostramos de manera un poco novedosa algunos resultados conocidos de la teoría de la medida 2 MEDIDA En esta sección recordaremos el concepto de medida de un subconjunto de como lo hace Ash en y cohn en Pero antes de dar la definición de medida, definamos que es una -algebra Definición 1 Llamaremos - álgebra en a una colección de subconjuntos de que satisface las siguientes propiedades:

3 191 Scientia et Technica Año XVII, No 47, Abril de Si, entonces 3 Si, entonces concepto, siguiendo a Weir y a Shiryaev y respectivamente Definición 2 Dado un espacio medible Una medida sobre es una función no negativa Si la propiedad 3 se satisface para uniones finitas, se dice que es una álgebra De esta definición se sigue de forma inmediata que una - álgebra es cerrada para intersecciones numerables y una álgebra para intersecciones finitas Se llamará espacio medible al par donde es un conjunto cualquiera y es una álgebrade y llamaremos conjuntos medibles a los elementos de Que satisface las siguientes propiedades: 1 para todo 2 3 Es numerablemente aditiva, es decir, si dado, con para Proposición 1 Sea (números racionales) y el anillo generado por los intervalos de la forma, donde Demuestre que y cuya unión esta en, entonces es una - álgebra Demostración Por hipótesis sabemos que Demostremos que Sea, es decir, entonces es finito o numerable, pero observemos que Se dirá que la medida que la medida es aditiva si la condición 3 solo es válida para colecciones finitas de conjuntos disjuntos Se dirá que una medida es -finita si existe una sucesión de conjuntos tal que Se llamará espacio de medida a la tripla es la medida sobre la -álgebra de y donde Donde Sea, entonces es una sucesión de Proposición 2 Sea si tiene elementos y si es un conjunto infinito Demostremos que es una medida en y además es -finita, pero conjuntos en, luego es decir ( es igual a restringida a ) no es -finita Uno de los conceptos fundamentales en la teoría de la medida, es la medida de un conjunto Presentaremos este

4 Scientia et Technica Año XVII, No 47, Abril de Demostración es positiva En efecto, claramente por definición es numerablemente aditiva: sea, una familia de conjuntos tal que para y cuya unión esta en demostremos que Ahora demostremos que es -finita en Como es numerable, entonces, es una sucesión en tal que Supongamos que es finito, entonces es finito para todo y y para todo Sea Demostremos que no es no es -finita Como es el anillo generado por los intervalos de la forma, donde Si, entonces existe una familia finita y disjunta de intervalos de la forma, sea esta familia tal que entonces = Donde del conjunto se define como el número de elementos Supongamos que es infinito e ( ), entonces suceden dos casos: Caso1 Supongamos que es una sucesión de conjuntos donde cada conjunto números es finito para todo, es decir, para todo, los son números enteros positivos, y como la suma numerable de números positivos es infinito, es decir, por consiguiente, entonces, Caso2 Sea infinito para algún, entonces,, luego Ahora, como, como, entonces para todo Luego no existe ninguna sucesión en tal que no es -finita para todo y por consiguiente 3 ALGUNOS RESULTADOS INTERESANTES EN LA TEORIA DE LA MEDIDA Antes de presentar estos resultados, definamos algunos conceptos sobre sucesiones de conjuntos que utilizaremos en esta sección Definición 3 Una sucesión de conjuntos es no decreciente si para todo Decimos que una sucesión de conjuntos es no creciente si para todo Si es una sucesión de conjuntos no decreciente su limite es el conjunto Si es no creciente, su

5 193 Scientia et Technica Año XVII, No 47, Abril de 2011 limite es el conjunto escribiremos respectivamente En uno u otro caso, Definimos además es una sucesión decreciente y Proposición 3 Sea si es par y si es impar, calcule y Solución Observemos que Luego Proposición 4 Sea una es -algebra y una medida con valores en los reales Demuestre que si es una sucesión de conjuntos en y, entonces Demostración Sea una sucesión en tal que, entones como, (1) Por lo tanto para todo, luego Observemos ahora que Sea y que entonces observemos que Entonces para todo, es decir es una sucesión no decreciente, Luego por (1) Sea Observemos que para todo En efecto Ahora por (1) y como es una medida, entonces

6 Scientia et Technica Año XVII, No 47, Abril de (2) Finalmente se concluye que Ahora como, entonces para todo, luego para todo Por consiguiente, 4 CONCLUSIONES Por (2) tenemos que Ahora, sea Observemos que La conclusión más importante del trabajo es que se pueden usar conceptos y propiedades de sucesiones monótonas de conjuntos de una -algebra para demostrar la que si es una sucesión de conjuntos monótona en y, entonces Entonces para todo, es decir Es una sucesión no decreciente, 5 BIBLIOGRAFÍA [1] R B Ash, Analysis and probability Ac Press, 1972 Luego y por consiguiente [2] D L Cohn, Measure theory Cambridge Birkhauser Boston, 1980 Ahora como entonces para todo, luego [3] M Degroot Probabilidad y estadística, Segunda edición, Addison-Wesley Iberoamericana, S A 1988 [4] P Ibarrola, L Pardo y V Quesada Teoría de la probabilidad, Editorial Síntesis S A, 1997 para todo Esto implica que [5] Paul Meyer Probabilidad y Aplicaciones Estadísticas Addinson Wesley Iberoamericana, S A 1970 [6] M Muñoz, L Blanco Introducción a la teoría avanzada de la probabilidad Universidad Nacional de Colombia, Primera edición 2002

7 195 Scientia et Technica Año XVII, No 47, Abril de 2011 [7] Vicente Quesada y Alfonso García Lecciones de Calculo de Probabilidad Días de Santos 1988 [8] A N Shiryaev Probability Second Edition Academic Press, 1975 [9] A J Weir, General integration and measure Vol II Cambridge Univ Press 1974 [10] D Williams Probability Theory with Martingales Cambridge University Press, 1997

ALGUNOS RESULTADOS INTERESANTES DE LA TEORÍA DE LA MEDIDA. Some interesting results of the measurement theory

ALGUNOS RESULTADOS INTERESANTES DE LA TEORÍA DE LA MEDIDA. Some interesting results of the measurement theory Scientia et Technica Año XVII, No 47, Abril 2011 Universidad Tecnológica de Pereira ISSN 0122-1701 190 ALGUNOS RESULTADOS INTERESANTES DE LA TEORÍA DE LA MEDIDA Some interesting results of the measurement

Más detalles

Desigualdad de Chebyshev bidimensional

Desigualdad de Chebyshev bidimensional Scientia et Technica Año XVII, No 51, Agosto de 2012. Universidad Tecnológica de Pereira. ISSN 0122-1701 242 Desigualdad de Chebyshev bidimensional Two - dimensional Chebyshev Inequality Edgar Alirio Valencia,

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Colombia VALENCIA, EDGAR A.; POVEDA, YURI A.; ESCUDERO, CARLOS A. AXIOMA DE ELECCIÓN DEBIL EN CATEGORIAS CON LIMITES Y COLIMITES FINITOS Scientia

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 0122-1701 scientia@utpeduco Universidad Tecnológica de Pereira Colombia Cifuentes V, Verónica; Marín, Víctor Generalización de la inducción matemática a estructuras inductivas

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia González Pineda, Campo Elías; Milena García, Sandra El área del paralelogramo y polígonos inscritos

Más detalles

Teoría de la Probabilidad Tema 2: Teorema de Extensión

Teoría de la Probabilidad Tema 2: Teorema de Extensión Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada

Más detalles

Espacios Públicos ISSN: Universidad Autónoma del Estado de México México

Espacios Públicos ISSN: Universidad Autónoma del Estado de México México Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Soberón Mora, José La reconstrucción de bases de datos a partir de tablas de contingencias

Más detalles

Revista Historia de la Educación Latinoamericana ISSN: Universidad Pedagógica y Tecnológica de Colombia.

Revista Historia de la Educación Latinoamericana ISSN: Universidad Pedagógica y Tecnológica de Colombia. Revista Historia de la Educación Latinoamericana ISSN: 0122-7238 rhela@uptc.edu.co Universidad Pedagógica y Tecnológica de Colombia Colombia Page, Carlos A. Los simbólicos Edificios de las Escuelas Normales

Más detalles

Pensamiento Psicológico ISSN: Pontificia Universidad Javeriana Colombia

Pensamiento Psicológico ISSN: Pontificia Universidad Javeriana Colombia Pensamiento Psicológico ISSN: 1657-8961 revistascientificasjaveriana@gmail.com Pontificia Universidad Javeriana Colombia Vesga Rodríguez, Juan Javier Los tipos de contratación laboral y sus implicaciones

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia Cárdenas Álzate, Pedro Pablo; Rojas Duque, Luz María; Cardona Toro, José Gerardo Aplicación del teorema

Más detalles

Terra Nueva Etapa ISSN: Universidad Central de Venezuela Venezuela

Terra Nueva Etapa ISSN: Universidad Central de Venezuela Venezuela Terra Nueva Etapa ISSN: 1012-7089 vidal.saezsaez@gmail.com Universidad Central de Venezuela Venezuela Rojas Salazar, Temístocles Importancia de los cursos de teoría geográfica en la formación del profesional

Más detalles

Espacios Públicos ISSN: Universidad Autónoma del Estado de México México

Espacios Públicos ISSN: Universidad Autónoma del Estado de México México Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Mercado Maldonado, Asael; Ruiz González, Arminda El concepto de las crisis ambientales

Más detalles

Revista Sociedad y Economía ISSN: Universidad del Valle Colombia

Revista Sociedad y Economía ISSN: Universidad del Valle Colombia Revista Sociedad y Economía ISSN: 1657-6357 revistasye@univalle.edu.co Universidad del Valle Colombia Béjar, Helena Voluntariado: compasión o autorrealización? Revista Sociedad y Economía, núm. 10, abril,

Más detalles

Reflexión Política ISSN: Universidad Autónoma de Bucaramanga Colombia

Reflexión Política ISSN: Universidad Autónoma de Bucaramanga Colombia Reflexión Política ISSN: 0124-0781 reflepol@bumanga.unab.edu.co Universidad Autónoma de Bucaramanga Colombia Lamus Canavate, Doris La construcción de movimientos latinoamericanos de mujeres/feministas:

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales

Más detalles

Revista Colombiana de Obstetricia y Ginecología ISSN: Federación Colombiana de Asociaciones de Obstetricia y Ginecología

Revista Colombiana de Obstetricia y Ginecología ISSN: Federación Colombiana de Asociaciones de Obstetricia y Ginecología Revista Colombiana de Obstetricia y Ginecología ISSN: 0034-7434 rcog@fecolsog.org Federación Colombiana de Asociaciones de Obstetricia y Ginecología Colombia Mondragón Cedeño, Alba Lucía FORMATOS PARA

Más detalles

1. Medida Exterior. Medida de Lebesgue en R n

1. Medida Exterior. Medida de Lebesgue en R n 1. La integral de Lebesgue surge del desarrollo de la integral de Riemann, ante las dificultades encontradas en las propiedades de paso al ĺımite para calcular la integral de una función definida como

Más detalles

Hallazgos ISSN: Universidad Santo Tomás Colombia

Hallazgos ISSN: Universidad Santo Tomás Colombia Hallazgos ISSN: 1794-3841 revistahallazgos@usantotomas.edu.co Universidad Santo Tomás Colombia Cañón O., Óscar Enrique; Noreña N., Néstor Mario; Peláez R., Martha Patricia CONSTRUCCIÓN DE UN CAMPO DE FORMACIÓN

Más detalles

Pensamiento Psicológico ISSN: Pontificia Universidad Javeriana Colombia

Pensamiento Psicológico ISSN: Pontificia Universidad Javeriana Colombia Pensamiento Psicológico ISSN: 1657-8961 revistascientificasjaveriana@gmail.com Pontificia Universidad Javeriana Colombia Guarino, Leticia; Borrás, Sonia; Scremín, Fausto Diferencias individuales como predictoras

Más detalles

Educación Matemática ISSN: Grupo Santillana México México

Educación Matemática ISSN: Grupo Santillana México México Educación Matemática ISSN: 1665-586 revedumat@yahoo.com.mx Grupo Santillana México México Pérez Juárez, Ángel Rectas perpendiculares Educación Matemática, vol., núm. 3, abril, 010, pp. 143-148 Grupo Santillana

Más detalles

Hallazgos ISSN: Universidad Santo Tomás Colombia

Hallazgos ISSN: Universidad Santo Tomás Colombia Hallazgos ISSN: 1794-3841 revistahallazgos@usantotomas.edu.co Universidad Santo Tomás Colombia Gómez Arévalo, José Arlés INTERCONEXIÓN HOMBRE-MENTE-NATURALEZA DESDE EL TAOÍSMO UNA MIRADA DESDE EL YIN-YANG

Más detalles

CONJUNTO Y TIPOS DE CONJUNTOS

CONJUNTO Y TIPOS DE CONJUNTOS CONJUNTO Y TIPOS DE CONJUNTOS Ejemplos 1. Determine cuáles de los siguientes conjuntos corresponden a conjuntos vacíos. a) El conjunto de los números naturales mayores que 3 y menores que 6. b) El conjunto

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

Extensión de medidas

Extensión de medidas Extensión de medidas Problemas para examen Semianillos de conjuntos 1. Escriba la definición de semianillo de conjuntos. 2. Convenio: el conjunto vacío pertenece a cualquier semianillo. En los siguientes

Más detalles

EL AREA DEL PARALELOGRAMO Y POLIGONOS INSCRITOS

EL AREA DEL PARALELOGRAMO Y POLIGONOS INSCRITOS Scientia et Technica Año XVII, No 51, Agosto de Año 2012. Universidad Tecnológica de Pereira. ISSN 0122-1701 161 EL AREA DEL PARALELOGRAMO Y POLIGONOS INSCRITOS THE AREA OF THE PARALLELOGRAM AND INSCRIBED

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 01-1701 scientia@utp.edu.co Colombia MURIEL ESCOBAR, JOSÉ AGUSTÍN; MENDOZA VARGAS, JAIRO ALBERTO; CORTÉS OSORIO, JIMMY ALEXANDER IMPLEMENTACIÓN DE CIRCUITOS NEUMÁTICOS MEDIANTE

Más detalles

LA CONJETURA DE GOLDBACH Y SU RELACIÓN CON EL TEOREMA DE DIRICHLET CAMPO ELÍAS GONZALEZ PINEDA.

LA CONJETURA DE GOLDBACH Y SU RELACIÓN CON EL TEOREMA DE DIRICHLET CAMPO ELÍAS GONZALEZ PINEDA. LA CONJETURA DE GOLDBACH Y SU RELACIÓN CON EL TEOREMA DE DIRICHLET CAMPO ELÍAS GONZALEZ PINEDA. La Conjetura de Goldbach cegp@utp.edu.co La Conjetura de Goldbach afirma que todo número par mayor o igual

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia Poveda, Yuri A.; Valencia Angulo, Edgar Alirio; Escudero Salcedo, Carlos Arturo Operaciones recursivas

Más detalles

Centros de curvatura y circunferencia osculatriz de curvas en

Centros de curvatura y circunferencia osculatriz de curvas en Scientia et Technica Año XVIII, Vol. 18, No. 3, Octubre de 2013. Universidad Tecnológica de Pereira. ISSN 0122-1701 569 Centros de curvatura y circunferencia osculatriz de curvas en Center of curvature

Más detalles

Integral de Lebesgue

Integral de Lebesgue Integral de Lebesgue Problemas para examen n todos los problemas se supone que (, F, µ) es un espacio de medida. Integración de funciones simples positivas. La representación canónica de una función simple

Más detalles

: k }, es decir. 2 k. k=0

: k }, es decir. 2 k. k=0 FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

1. Funciones Medibles

1. Funciones Medibles 1. Medibles Medibles simples... Hasta ahora hemos estudiado la medida de Lebesgue definida sobre los conjuntos de R n y sus propiedades. Vamos a aplicar ahora esta teoría al estudio de las funciones escalares

Más detalles

PROGRAMA DE MATEMÁTICA 2º AÑO DE BACHILLERATO ORIENTACIÓN CIENTÍFICO REFORMULACIÓN 2006 A) FUNDAMENTACIÓN

PROGRAMA DE MATEMÁTICA 2º AÑO DE BACHILLERATO ORIENTACIÓN CIENTÍFICO REFORMULACIÓN 2006 A) FUNDAMENTACIÓN PROGRAMA DE MATEMÁTICA 2º AÑO DE BACHILLERATO ORIENTACIÓN CIENTÍFICO REFORMULACIÓN 2006 A) FUNDAMENTACIÓN El programa se estructura sobre dos núcleos temáticos: "NUMEROS" y "ANALISIS MATEMATICO". NÚMEROS:

Más detalles

Ciencias Holguín E-ISSN: Centro de Información y Gestión Tecnológica de Santiago de Cuba.

Ciencias Holguín E-ISSN: Centro de Información y Gestión Tecnológica de Santiago de Cuba. Ciencias Holguín E-ISSN: 1027-2127 revista@ciget.holguin.inf.cu Centro de Información y Gestión Tecnológica de Santiago de Cuba Cuba Peña González, Marisol; Rodríguez Cora, Frank A.; Cruz Font, Jaime D.;

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Teoría de Conjuntos Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 20 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos.

Más detalles

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.

Más detalles

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia 1.. De una manera informal, una sucesión es una familia de elementos de un conjunto, ordenada según el índice de los números naturales. Los elementos pueden estar repetidos o no. Por ejemplo la familia

Más detalles

Cuatro Problemas de Algebra en la IMO.

Cuatro Problemas de Algebra en la IMO. Cuatro Problemas de Algebra en la IMO. Rafael Sánchez Lamoneda UCV. Escuela de Matemáticas Barquisimeto, 10 de Marzo de 2008 Introducción. El objetivo de esta conferencia es analizar cuatro problemas de

Más detalles

Construcción de Conjuntos B 2 [2] Finitos

Construcción de Conjuntos B 2 [2] Finitos Construcción de Conjuntos B [] Finitos Gladis J. Escobar Carlos A. Trujillo S. Oscar H. Zemanate Resumen Un conjunto de enteros positivos A se llama un conjunto B [g] si, para todo entero positivo s, la

Más detalles

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO El estudio de los conjuntos infinitos se inicia con Las Paradojas del Infinito, la última obra del matemático checo Bernard Bolzano, publicada

Más detalles

Volumen y conjuntos de medida cero

Volumen y conjuntos de medida cero Capítulo 2 Volumen y conjuntos de medida cero En la recta real normalmente las funciones se integran sobre intervalos. En R n es deseable poder considerar integrales de funciones sobre conjuntos más complicados

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 Cálculo diferencial e integral 4 http://academicos.fciencias.unam.mx/nataliajonard/calculo-4 menos que indiquemos lo contrario, R siempre denotará un rectángulo de la forma con a i < b i. R = [a 1, b 1

Más detalles

PROGRAMA DE MATEMÁTICA DIVERSIFICACIÓN CIENTÍFICA SEGUNDO AÑO DE BA CHILLERATO REFORMULACIÓN 2006 AJUSTE 2010 INTRODUCCIÓN

PROGRAMA DE MATEMÁTICA DIVERSIFICACIÓN CIENTÍFICA SEGUNDO AÑO DE BA CHILLERATO REFORMULACIÓN 2006 AJUSTE 2010 INTRODUCCIÓN PROGRAMA DE MATEMÁTICA DIVERSIFICACIÓN CIENTÍFICA SEGUNDO AÑO DE BA CHILLERATO REFORMULACIÓN 2006 AJUSTE 2010 INTRODUCCIÓN El programa se estructura en tres Bloques Temáticos: NÚMERO, ANÁLISIS MATEMÁTICO

Más detalles

Revista de Psicología ISSN: Pontificia Universidad Católica del Perú Perú

Revista de Psicología ISSN: Pontificia Universidad Católica del Perú Perú Revista de Psicología ISSN: 0254-9247 revpsicologia@pucp.edu.pe Pontificia Universidad Católica del Perú Perú Kudó T., Inés; Velásquez C., Tesania; Iza R., Mónica; Ángeles R., Alicia; Pezo del Pino, César;

Más detalles

Semestre Económico ISSN: 0120-6346 semestreeconomico@udem.edu.co Universidad de Medellín Colombia

Semestre Económico ISSN: 0120-6346 semestreeconomico@udem.edu.co Universidad de Medellín Colombia Semestre Económico ISSN: 0120-6346 semestreeconomico@udem.edu.co Universidad de Medellín Colombia Martínez Crespo, Jenny Administracion y Organizaciones. Su desarrollo evolutivo y las propuestas para el

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Tema 2: Series numéricas

Tema 2: Series numéricas Tema 2: Series numéricas Una serie infinita (o simplemente serie) es una suma formal de infinitos términos a + a 2 + a 3 + + + Al número se le denomin-ésimo término de la serie Se llama sucesión de sumas

Más detalles

El teorema de Lebesgue

El teorema de Lebesgue Capítulo 3 El teorema de Lebesgue En este capítulo estudiaremos un teorema que nos dice exactamente qué funciones son integrables y cuán grande puede ser la frontera de un conjunto para que éste tenga

Más detalles

1. Problemas de inducción.

1. Problemas de inducción. Proyecto I: Más sobre números reales Objetivos: Profundizar el estudio de los números reales. 1. Problemas de inducción. Ejercicio 1.1 Sea n. Definiremos los coeficientes binomiales ( n ) mediante la expresión

Más detalles

Cómo citar el artículo Número completo Más información del artículo Página de la revista en redalyc.org

Cómo citar el artículo Número completo Más información del artículo Página de la revista en redalyc.org Revista de Relaciones Internacionales, Estrategia y Seguridad ISSN: 1909-3063 cinuv.relinternal@unimilitar.edu.co Universidad Militar Nueva Granada Colombia Gaviria Yara, Radamiro Estados Unidos, Profesionalización,

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

Conjuntos Medibles. Preliminares

Conjuntos Medibles. Preliminares Capítulo 18 Conjuntos Medibles Preliminares En el capítulo anterior vimos que la medida exterior de Lebesgue no resulta σ-aditiva en todo R n. Ahora vamos a construir una familia M de subconjuntos de R

Más detalles

El Teorema de Baire Rodrigo Vargas

El Teorema de Baire Rodrigo Vargas El Teorema de Baire Rodrigo Vargas Teorema 1 (Baire). Sea M un espacio métrico completo. Toda intersección numerable de abiertos densos es un subconjunto denso de M. Definición 1. Sea M un espacio métrico.

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones PRACTICO 1: CONJUNTOS. 1. Conjuntos y funciones Es útil saber de memoria las siguientes propiedades de conjuntos y funciones. Tanto como saber las tablas. Ejercicio 1. Si I es un conjunto y A α es un conjunto

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

Vniversitas ISSN: Pontificia Universidad Javeriana Colombia

Vniversitas ISSN: Pontificia Universidad Javeriana Colombia Vniversitas ISSN: 0041-9060 revistascientificasjaveriana@gmail.com Pontificia Universidad Javeriana Colombia Franco-Rodríguez, Paola; Wilches-Durán, Rafael E. ASIGNACIÓN DE FUNCIONES JUDICIALES A LOS NOTARIOS

Más detalles

Cálculo diferencial e integral I. Eleonora Catsigeras

Cálculo diferencial e integral I. Eleonora Catsigeras Cálculo diferencial e integral I Eleonora Catsigeras Universidad de la República Montevideo, Uruguay 01 de setiembre de 2011. CLASE 14 complementaria. Sobre sucesiones y conjuntos en la recta real. Sucesiones

Más detalles

SISTEMA DE MONOMIOS PARA UN CUERPO RESIDUAL REAL CERRADO

SISTEMA DE MONOMIOS PARA UN CUERPO RESIDUAL REAL CERRADO SISTEMA DE MONOMIOS PARA UN CUERPO RESIDUAL REAL CERRADO Francisco Ugarte Guerra 1,2 Mayo, 2011 Resumen Para etender técnicas tipo Polígono de Newton a ecuaciones algebraicas con coeficientes en cuerpos

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Tema 2: El grupo de las permutaciones

Tema 2: El grupo de las permutaciones Tema 2: El grupo de las permutaciones Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Octubre de 2014 Olalla (Universidad de Sevilla) Tema 2: El grupo de las

Más detalles

Números reales. por. Ramón Espinosa

Números reales. por. Ramón Espinosa Números reales por Ramón Espinosa Existe un conjunto R, cuyos elementos son llamados números reales. Los números reales satisfacen ciertas propiedades algebraicas y de orden que describimos a continuación.

Más detalles

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El teorema del valor medio Aplicaciones de las derivadas. El teorema del valor medio Ya hemos hablado en un par de artículos anteriores del concepto de derivada y de su interpretación tanto desde el punto de vista geométrico como

Más detalles

Revista Latinoamericana de Psicología ISSN: Fundación Universitaria Konrad Lorenz Colombia

Revista Latinoamericana de Psicología ISSN: Fundación Universitaria Konrad Lorenz Colombia Revista Latinoamericana de Psicología ISSN: 0120-0534 direccion.rlp@konradlorenz.edu.co Fundación Universitaria Konrad Lorenz Colombia Puente, Aníbal; Jiménez, Virginia; Ardila, Alfredo Anormalidades cerebrales

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y

5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y 5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y LÍMITES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.1.1. Las magnitudes variables: funciones. 5.1.1. Las magnitudes variables:

Más detalles

CONJUNTOS. Por ejemplo, el E del ejemplo 2 se escribe.

CONJUNTOS. Por ejemplo, el E del ejemplo 2 se escribe. CONJUNTOS La teoría de conjuntos nos permite describir de forma precisa conjuntos de números, de personas, de objetos, etc que comparten una propiedad común. Esto puede ser de gran utilidad al establecer

Más detalles

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Alonso Jiménez, Verónica Guía metodológica para elaborar proyectos de investigación

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 1: CONJUNTOS. 1 1. Conjuntos y funciones Ejercicio 1. Si I es un conjunto y A α es

Más detalles

UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA DE MATEMATICAS CON ÉNFASIS EN ESTADÍSTICA

UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA DE MATEMATICAS CON ÉNFASIS EN ESTADÍSTICA UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA DE MATEMATICAS CON ÉNFASIS EN ESTADÍSTICA IDENTIFICACION ASIGNATURA: ELECTIVA EN MATEMÁTICAS: INTRODUCCIÓN A LA TEORÍA DE GALOIS CODIGO: 0701-136 NIVEL:

Más detalles

Sea P el conjunto de todos los poliedros convexos del espacio, esto es P X / X es

Sea P el conjunto de todos los poliedros convexos del espacio, esto es P X / X es 2. LA FUNCIÓN VOLUMEN Definición 9. Volumen de un poliedro convexo Sea P el conjunto de todos los poliedros convexos del espacio, esto es P X / X es un poliedro convexo, X E. Definimos una función que

Más detalles

Reglas g-golomb. Carlos A. Martos O. Nidia Y. Caicedo. Universidad del Cauca - Universidad del Valle

Reglas g-golomb. Carlos A. Martos O. Nidia Y. Caicedo. Universidad del Cauca - Universidad del Valle Reglas g-golomb Carlos A. Martos O. Nidia Y. Caicedo Universidad del Cauca - Universidad del Valle ALGEBRA, TEORÍA DE NÚMEROS, COMBINATORIA Y APLICACIONES ALTENCOA-6 San Juan de Pasto Colombia Agosto 2014

Más detalles

Una topología de los números naturales*

Una topología de los números naturales* Una topología de los números naturales* Divulgación Gabriel Ruiz Hernández Instituto de Matemáticas, UNAM 1 de septimebre de 1997 resumen En este trabajo vamos a describir un espacio topológico X con las

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.  Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,

Más detalles

si este límite es finito, y en este caso decimos que f es integrable (impropia)

si este límite es finito, y en este caso decimos que f es integrable (impropia) Capítulo 6 Integrales impropias menudo resulta útil poder integrar funciones que no son acotadas, e incluso integrarlas sobre recintos no acotados. En este capítulo desarrollaremos brevemente una teoría

Más detalles

Tarea 1. A j. A k. b) Ley Distributiva. c) Ley Distributiva. (A i B j ). B j = (Topología.)

Tarea 1. A j. A k. b) Ley Distributiva. c) Ley Distributiva. (A i B j ). B j = (Topología.) Tarea 1. (Teoría de Conjuntos.) Estos no son obligatorios, pero sería bueno que los hicieran, si es que son ciertos. a) Ley Asociativa. Sea I conjunto y {J i } familia de conjuntos. Si K := J i, entonces

Más detalles

Cómo citar el artículo Número completo Más información del artículo Página de la revista en redalyc.org

Cómo citar el artículo Número completo Más información del artículo Página de la revista en redalyc.org Revista de Relaciones Internacionales, Estrategia y Seguridad ISSN: 1909-3063 cinuv.relinternal@unimilitar.edu.co Universidad Militar Nueva Granada Colombia Ripoll, Alejandra La Cooperación Internacional:

Más detalles

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Lutz, Bruno Enseñar y cursar la carrera de Sociología: caso de la licenciatura en

Más detalles

TEMA 4. Sucesiones de números reales.

TEMA 4. Sucesiones de números reales. Cálculo I E.T.S.I. de Minas Curso 2008-2009 TEMA 4. Sucesiones de números reales. Definición. Una sucesión de números reales es una aplicación que a cada número natural n 1leasignaunúnico número real x

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE. MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Aritmética Entera Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 36 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Programa Probabilidad Teoría de conjuntos Diagramas de Venn Permutaciones y combinaciones Variables aleatorias y distribuciones Propiedades de distribuciones Funciones generadoras

Más detalles

Conjuntos. Relaciones. Aplicaciones

Conjuntos. Relaciones. Aplicaciones Conjuntos. Relaciones. Aplicaciones Conjuntos 1. Considera el subconjunto A de números naturales formado por los múltiplos de 4 y el conjunto B N de los números que terminan en 4. Comprueba que A B y B

Más detalles

Aplicarán conocimientos básicos de probabilidad

Aplicarán conocimientos básicos de probabilidad Materia: MATEMÁTICA Año: 10º AÑO DE EDUCACIÓN BÁSICA BREVE DESCRIPCIÓN DE LA CLASE: Formar entre el profesor y los alumnos una comunidad de trabajo por medio de la creatividad y estructura de los conocimientos

Más detalles

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Vegas Guerrero, Carmen Inés Proceso de aplicación de la Nueva Gestión Pública en la

Más detalles

Ingeniería y Competitividad ISSN: 0123-3033 inycompe@gmail.com Universidad del Valle Colombia

Ingeniería y Competitividad ISSN: 0123-3033 inycompe@gmail.com Universidad del Valle Colombia Ingeniería y Competitividad ISSN: 0123-3033 inycompe@gmail.com Universidad del Valle Colombia Minotta-Hurtado, Javier A.; Bacca-Cortés, Eval B. Herramienta para la identificación de procesos y simulación

Más detalles

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México

Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Espacios Públicos ISSN: 1665-8140 revista.espacios.publicos@gmail.com Universidad Autónoma del Estado de México México Sánchez Ramos, Miguel Ángel Tendencia hacia el isomorfismo en la administración pública

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

ELEMENTOS DE LA MATEMATICA

ELEMENTOS DE LA MATEMATICA ELEMENTOS DE LA MATEMATICA SEMESTRE: Primero CODIGO ANTERIOR: 22G7 CODIGO: 8101 REQUISITOS: No tiene CREDITOS: 6 HORAS DE TEORIA: 4 HORAS DE PRACTICA : 4 TEMA 1: Lógica simbólica. Las conectivas lógicas.

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

John Venn Matemático y filósofo británico creador de los diagramas de Venn

John Venn Matemático y filósofo británico creador de los diagramas de Venn Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Recursión Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 15 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema 2. Lógica

Más detalles

Revista Cubana de Cirugía ISSN: Sociedad Cubana de Cirugía Cuba

Revista Cubana de Cirugía ISSN: Sociedad Cubana de Cirugía Cuba Revista Cubana de Cirugía ISSN: 0034-7493 ecimed@infomed.sld.cu Sociedad Cubana de Cirugía Cuba Díaz Mesa, C. Julio; Taquechel Barreto, Fidel; Gómez-Quintero, Rocío Queral; Domínguez Cordovés, Janet Diagnóstico

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES.

SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES. SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES La construcción más habitual, es la que se utiliza los límites las sucesiones de Cauchy del cuerpo Donde Una sucesión, se dice que es de CAUCHY si satisface:

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Colombia ESCUDERO S., CARLOS A; POVEDA, YURI A.; VALENCIA, EDGAR A UN PROBLEMA DE TIPO ISOPERIMETRICO PARA TRIANGULOS Scientia Et Technica, vol.

Más detalles

GEOMETRIA EUCLIDEA II

GEOMETRIA EUCLIDEA II Bachillerato y Licenciatura en la Enseñanza de la Matemática GEOMETRIA EUCLIDEA II Código: MAB303 Nivel: II Ciclo lectivo: I Modalidad: Ciclo Naturaleza: Teórico-práctico Tipo de curso: Regular Área: Álgebra

Más detalles

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente.

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. ANÁLISIS MATEMÁTICO BÁSICO. SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. Ejemplo.. Sea la sucesión (x n

Más detalles

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto CONJUNTOS COMPACTOS Denición. Se dice que un conjunto K es compacto si siempre que esté contenido en la unión de una colección g = {G α } de conjuntos abiertos, también esta contenido en la unión de algún

Más detalles

Ingeniería en Tecnologías de Automatización

Ingeniería en Tecnologías de Automatización Ingeniería en Tecnologías de Automatización Teoría de Conjuntos Dr. Farid García Lamont Enero-Junio de 2012 Tema: Teoría de Conjuntos Abstract These slides introduce the definition of set, subset and their

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles