CONJUNTO DE LOS NÚMEROS REALES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CONJUNTO DE LOS NÚMEROS REALES"

Transcripción

1 NÚMEROS REALES 1. EL CONJUNTO DE LOS NÚMEROS REALES Al conjunto de todos los números que se pueden expresar mediante fracciones se le llama conjunto de los números racionales y se representa por Q. Tanto los números enteros como los decimales exactos y periódicos se pueden expresar mediante fracciones. Los números decimales no exactos y no periódicos no se pueden expresar en forma de fracción, y por lo tanto, no son racionales. A estos números se les llama números irracionales. Existen infinitos números irracionales, por ejemplo, cualquier raíz no exacta ( 2, 3, 5,...), algunos números especiales, π=3, , e=2, , el número áureo F = 1, Los números reales se representan como R, y son el conjunto formado por los números racionales y los irracionales. 2. VALOR ABSOLUTO Dado x un número real, definimos el valor absoluto de x, y se denota por x, como: ì- x si x =í î x si x<0 x>0 Si x e y son números reales, se verifica que: Matemáticas I: Tema 1. Números reales - 1

2 1. x = 0 Û x = 0 2. x x = x 4. x y = x y x x =, y¹0 y y 6. x + y x + y DESIGUALDADES Una desigualdad es una expresión numérica o algebraica unida por uno de los símbolos < (menor que), > (mayor que), (menor o igual que), (mayor o igual que). Gráficamente, la desigualdad a < b, significa que el punto representativo de a en la recta real, se encuentra a la izquierda del que representa a b. Propiedades de las desigualdades: Para cualquier par de números reales a y b, se verifica que a=b, o a < b, o a > b. Si a < b, y b < c, entonces a < c. Si a < b, y c < d, entonces a+c < b+d Si a < b, entonces a+c < b+c Si a > 0, y b > 0, entonces a+b > 0 Si a < 0, y b < 0, entonces a+b < 0 Si a < b, y c >0, entonces ac < bc y a/c < b/c Si a < b, y c <0, entonces ac > bc y a/c > b/c Una inecuación es una desigualdad algebraica en la que aparecen una o más incógnitas. Resolver una inecuación es calcular el valor o valores de la incógnita para los que se satisface la desigualdad. Estos se denominan soluciones de la misma. Por ejemplo: 2x > 3 x > 3/2. -2x 3 x -3/2. 4. DISTANCIAS EN LA RECTA REAL La distancia entre dos números reales a y b, que se escribe d(a, b), se define como el valor absoluto de la diferencia de ambos números: d(a, b) = b a Ejemplos: 1) La distancia entre 3 y 1 es: d( 3, 1) = 1 ( 3) = = 4 = 4 Matemáticas I: Tema 1. Números reales - 2

3 2) Si estamos en el sótano 2 y subimos hasta el 5º piso, cuántos pisos hemos subido? Hemos subido 7 pisos, pues d( 2, 5) = 5 ( 2) = = 7 = 7 5. INTERVALOS Y ENTORNOS Un intervalo es el conjunto de números reales que se corresponde con los puntos de un segmento o una semirrecta de la recta real. Según incluyan o no a los puntos extremos, los intervalos pueden ser abiertos, cerrados, semiabiertos (o semicerrados) y semirrectas: Se llama entorno de centro a y radio r >0, y se representa por E(a,r) o Er (a), al intervalo abierto (a-r, a+r ), es decir, es el conjunto de números reales que están a una distancia de a menor que r. También se puede expresar de la forma x-a < r. Existen entornos cerrados, pero son de uso menos frecuente. Ejemplos: 1) El entorno de centro de centro 5 y radio 2 es el conjunto de números que distan de 5 menos de 2 unidades, es decir, el intervalo (5-2, 5+2) = (3,7). 2) El intervalo (4,10) se corresponde con el entorno de centro 7 y radio 3, pues el centro siempre es el punto medio y el radio es la mitad de la amplitud del intervalo. Es decir: Matemáticas I: Tema 1. Números reales - 3

4 a= = 7, r = =3 2 2 E(7,3)=(7-3, 7+3)= (4, 10) En general el intervalo (b,c) es el entorno E ( b+2 c, c b2 ). 3) Determina el conjunto de los números reales que cumplen x 2. Hay dos números que tienen de valor absoluto 2, que son 2 y -2. Por tanto: x=2 x =2 x= -2 Representamos en la recta real dichos valores y comprobamos en qué intervalos se cumple la desigualdad: - La desigualdad la cumplen todos los puntos de las semirrectas (-,-2] U [2, ) 4) Si sabemos que x-1 <5, a qué intervalo pertenece x? Es el entorno de centro 1 y radio 5, con lo cual se corresponde con el intervalo (-4,6). Otra forma de resolverlo: Hay dos números que tienen de valor absoluto 5, que son 5 y -5. Por tanto: x-1=5 x=6 x-1= -5 x=-4 x-1 =5 Representamos en la recta real dichos valores y comprobamos en qué intervalos se cumple la desigualdad: Se puede comprobar fácilmente que la desigualdad la cumplen todos los puntos del intervalo (-4, 6). 6. APROXIMACIONES Y ERRORES Aproximar un número real consiste en reducirlo a otro número decimal exacto que tenga un valor próximo al suyo. Existen diferentes métodos de aproximación: Truncamiento: Se eliminan las cifras a partir de un lugar determinado. Matemáticas I: Tema 1. Números reales - 4

5 Redondeo: Se eliminan las cifras a partir de un lugar determinado y se aumenta en una unidad la última cifra si la siguiente es mayor o igual que 5. Una aproximación es por defecto si la aproximación es menor que el número inicial, y por exceso, si es mayor. El truncamiento es siempre una aproximación por defecto, y el redondeo es por defecto si la primera cifra que se suprime es menor que 5, y por exceso, si es mayor o igual que 5. El redondeo es la mejor de las aproximaciones. Errores en la aproximación: Al trabajar con números aproximados se comete un error que debemos tener en cuenta al evaluar los resultados obtenidos. El error absoluto, Ea, es la diferencia, en valor absoluto, entre el valor exacto y la aproximación. Ea = Vexacto Vaproximación El error relativo, Er, es el cociente entre el error absoluto y el valor exacto: Er = Ea Vexacto El error relativo proporciona la magnitud del error cometido al compararlo con el valor exacto, y se expresa habitualmente en tanto por ciento (multiplicándolo por 100). En este caso, recibe el nombre de porcentaje de error. Ejemplos: Calcula el error absoluto y relativo al considerar: a) 3,5 m como la longitud de un terreno que mide realmente 3,59 m. b) 60 m como la distancia comprendida entre dos postes que están situados a 59,91 m. a) Ea= 3,59-3,5 =0,09 m b) Ea = 59,91-60 = 0,09 m 0,09 = 0,025 2,5% 3,59 0,09 = 0,0015 0,15% Er = 59,91 Er = Observa que el error absoluto es el mismo en los dos casos, pero el error relativo es considerablemente mayor en el primer caso y, por lo tanto, la aproximación es menos precisa. Llamamos cifras significativas a aquellas que se utilizan para representar un número aproximado. Son los dígitos que dan información válida y no engañosa de la magnitud que se mide. Sólo el último dígito está afectado de incertidumbre. Hay que tener en cuenta algunas reglas básicas para distinguir las cifras significativas de las que no lo son: Matemáticas I: Tema 1. Números reales - 5

6 Los ceros del final de un número entero no son cifras significativas si se han utilizado para expresar el número en unas determinadas unidades y no se conoce su verdadero valor. Los ceros después de la coma decimal sí son cifras significativas. Los ceros a la izquierda no son considerados como cifras significativas. Por ejemplo 1,23 tiene 3 cifras significativas, mientras que 0,03 solo tiene una, al estar los ceros situados a la izquierda del 3. Por otra parte, 1,20 también tiene 3 cifras significativas, ya que el 0 detrás de la coma decimal se considera como cifra significativa. Cotas de error absoluto: Considera, por ejemplo, el número de oro: = 1+ 5 = 1, Si tomamos 1,61 como aproximación de este número no es posible calcular el error absoluto cometido, puesto que el valor exacto es desconocido, pero sí podemos acotarlo, es decir, calcular un valor que con toda seguridad es mayor o igual que este error: 1, ,61 = 0, <0,01 El error absoluto es menor que una centésima. Decimos entonces que 0,01 es una cota del error absoluto cometido. Observa que 1,61 es una aproximación hasta las centésimas del número áureo y que 1 centésima es una cota del error absoluto. En general, podemos afirmar que: El error absoluto cometido al tomar una aproximación decimal será siempre menor que una unidad del orden de aproximación. En el caso de aproximaciones por redondeo, podemos dar un mejor acotamiento del error: La aproximación por redondeo hasta las centésimas de 1, es 1,62. El error absoluto es: 1, ,62 = 0, <0,005 Esta cota del error absoluto es de media centésima. En general: El error absoluto cometido al tomar una aproximación decimal por redondeo será siempre menor o igual que media unidad del orden de aproximación. En cada suma o resta el error absoluto es la suma de los errores absolutos. Por tanto puede aumentar peligrosamente si hacemos varias sumas y restas. Matemáticas I: Tema 1. Números reales - 6

7 Si operamos con números aproximados, y peor aún, si lo hacemos en repetidas ocasiones, los errores se van acumulando hasta el punto de poder hacerse intolerables. Cotas de error relativo: En el caso del error relativo, para obtener una cota llega con calcular el cociente entre una cota del error absoluto y una aproximación por defecto del valor exacto. Así, en el caso anterior, al tomar 1,61 como el valor del número áureo, una cota del error relativo será: 0,01 = 0,00625 <0,007 1,6 7. NOTACIÓN CIENTÍFICA La notación científica se utiliza para escribir números muy grandes o muy pequeños. Un número puesto en notación científica N= a,bcd n consta de: Una parte entera formada por una sola cifra que no es el cero (a). El resto de las cifras significativas puestas como parte decimal (bcd). Una potencia de base 10 que da el orden de magnitud del número (10 n). Si n es positivo, el número N es grande. Si n es negativo, entonces N es pequeño. Ejemplos: 1, = , =0, Operaciones con notación científica: Para operar con números dados en notación científica se procede de forma natural, teniendo en cuenta que cada número está formado por dos factores: la expresión decimal y la potencia de base 10. Para multiplicar números en notación científica, se multiplican las partes decimales y se suman los exponentes de la potencia de base 10. Para dividir números en notación científica, se dividen las partes decimales y se restan los exponentes de la potencia de base 10. Si hace falta se multiplica o se divide el número resultante por una potencia de 10 para dejar con una sola cifra en la parte entera. Matemáticas I: Tema 1. Números reales - 7

8 Ejemplos: Para sumar o restar números en notación científica, hay que poner los números con la misma potencia de base 10, multiplicando o dividiendo por potencias de base 10. Se saca factor común la potencia de base 10 y después se suman o restan los números decimales quedando un número decimal multiplicado por la potencia de 10. Por último si hace falta se multiplica o se divide el número resultante por una potencia de 10 para dejar en la parte entera una sola cifra. Por ejemplo: Matemáticas I: Tema 1. Números reales - 8

9 8. REPASO DE RADICALES Matemáticas I: Tema 1. Números reales - 9

10 EJERCICIOS 1. Indica cuáles de los siguientes números son racionales y cuáles son irracionales. Razona la respuesta. a) b) 3, ; 3,424 ; 3, ; 3, Describe y representa en la recta los siguientes intervalos: 3. Escribe el intervalo que corresponde a estas desigualdades: 4. Escribe el intervalo que corresponde a estas desigualdades: 5. Calcula los conjuntos A = (-2,5] [-1,7] ; B = (-,6] [-3,10] ; C = (-6,8] [-3,10), D = (-, 3) [0,12] 6. Expresa como un intervalo el conjunto de valores de x que verifican: a) x>5 x<8 b) x 3 x >4 c) x <1 x -4 d) - 2 < x 10-8 < x < 5 7. Calcula los valores de x que verifican: a) x = 7 ; b) x - 2 = 3 ; c) 2-3x = 1 ; d) x - 2 = 5 ; e) x - 1 = 0 ; f) x + 5 = 3 ; g) x = 0 8. Calcula los intervalos que corresponden a las siguientes desigualdades y represéntalos: a) x <1 d) x 2 g) -x-2 3 j) x+1 >0 b) 2x+4 <1 e) x-5 4 h) 3x-2 3 k) -x+1 0 c) 2-4x >4 f) -4x+5 2 i) 3x-6 1 l) -2x Calcula la distancia entre los números reales siguientes: a) d(5, 9), b) d(-2.3, -4.5), c) d(1/5, 9/5), d) d( , ). 10.Expresa como intervalo los números que están de 5 a una distancia inferior a Expresa en forma de intervalo los entornos: a) E(1, 5), b) E(-2, 8/3), c) E(-1,0.1). Matemáticas I: Tema 1. Números reales - 10

11 12.Expresa en forma de entorno los siguientes intervalos: a) (4, 7); b) (-7, -4); c) (-3,2). 13.Escribe en forma de intervalo los siguientes entornos: a) Centro -1 y radio 2. b) Centro 2 y radio 1/3. 14.Describe como entornos los siguientes intervalos: a) (-1,2); b) (1.3, 2.9); c) (-2.2, 0.2); d) (-4, -2.8) 15.Si aproximamos el número 10,469 por 10,5; qué error absoluto se comete? Y si lo aproximamos por 10,4? Cuál es la mejor aproximación? Razónalo. 16.Aproxima el número 1 7 para que el error sea menor que una centésima. 17. Medimos la base y la altura de un rectángulo y obtuvimos: b=(12,51±0,02)m; h=(23,77±0,01)m. Calcula una cota del error absoluto cometido al calcular el perímetro del rectángulo y una del cometido al calcular la superficie. (Soluc: 0,06 m, 0,60 m²) 18.Calcula un valor aproximado del área de un círculo de radio r, siendo r = ( 5,75 0,05 )cm y tomando una aproximación de π con un error menor que una diezmilésima. Calcula una cota del error absoluto cometido al calcular la superficie. ( Soluc: 103,87 cm2, 1,81 cm² ) 19.Calcula el error absoluto y relativo que cometemos al tomar 13/8 como 1, Calcula el error absoluto y relativo que cometemos al tomar 2 = 1, El lado de un triángulo equilátero es (5,8 ± 0,2) cm. Investiga el perímetro de este triángulo. Comprueba que el error absoluto cometido es igual a la suma de los errores absolutos. (Sol.: P= (17,4 ± 0,6) cm) 22.El lado de un cuadrado es (23,4 ± 0,05) cm. Investiga el área de este cuadrado. Comprueba que el error relativo cometido es el doble del error relativo cometido al medir el lado. (Sol.: A = (547,6 ± 2,3) cm²) 23.Escribe en notación científica los números siguientes: 0,000043; 12 centésimas; ; mil millones; 0, Efectúa: a) 2, , b) 3, , Un año-luz es la distancia que recorre la luz en un año. Si sabemos que la velocidad de la luz es de km/s, expresa en notación científica cuántos quilómetros son un año-luz. (Soluc: 9, km ) 26.Realiza estas operaciones: Matemáticas I: Tema 1. Números reales - 11

12 27.Realiza estas operaciones: 28.Realiza estas operaciones: 29.Calcula: 30.Calcula: 31.Efectúa y simplifica: 32.Efectúa y simplifica: 33.Racionaliza: a) b) c) d) Realiza las siguientes operaciones sin calculadora y expresando el resultado bajo un único o ningún radical: a ) 50. d) b ) c ) e) f ) Matemáticas I: Tema 1. Números reales - 12

13 35.Efectúa sin calculadora, dejando el resultado tan simplificado como puedas: a ) b ) c ) d) e) f) 3 h) = j) l) n) = i) = k) a ³ 4 a a+2 9 a ³ m) 4 g) ll) Extrae los factores posibles de los radicales: a) b) 3 x 4 y 6 3 c) 8 x ³ y 12 d) 36 a8 a Efectúa las siguientes operaciones, dejando el resultado en forma radical simplificada: 38.Reduce: 39.Simplifica: Matemáticas I: Tema 1. Números reales - 13

14 40. Racionaliza y simplifica: 41.Efectúa y da el resultado en notación científica con tres cifras significativas. Determina en cada caso, una cota del error absoluto y otra del error relativo cometidos: B+C. A Expresa el resultado con tres cifras significativas y da una cota del error absoluto y otra del error relativo cometidos. 42.Considera los números A=3,2 107; B=5,28 104; C=2, Calcula 43.Demuestra que 2 y 3 son números irracionales. Matemáticas I: Tema 1. Números reales - 14

N Ú M E R O S R E A L E S

N Ú M E R O S R E A L E S N Ú M E R O S R E A L E S 1. E L C O N J U N T O D E L O S N Ú M E R O S R E A L E S Al conjunto de todos los números que se pueden expresar mediante fracciones se le llama conjunto de los números racionales

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

E J E R C I C I O S P R O P U E S T O S. Indica, sin realizar la división, el tipo de expresión decimal de estos números.

E J E R C I C I O S P R O P U E S T O S. Indica, sin realizar la división, el tipo de expresión decimal de estos números. NÚMEROS REALES E J E R C I C I O S P R O P U E S T O S. Indica, sin realizar la división, el tipo de expresión decimal de estos números. a) b) 9 6 c) 7 d) 7 7 0 a) Periódico mixto c) 7 Periódico mixto

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

Tema 4. Los números reales.

Tema 4. Los números reales. Tema 4. Los números reales. Números irracionales. En el tema anterior, has visto que los números racionales pueden escribirse en forma decimal, produciendo siempre un decimal exacto o periódico. También

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

Tema 1: Números reales.

Tema 1: Números reales. Tema 1: Números reales. REALES se utilizan para Medir magnitudes se obtienen Cantidades todos son Números Errores vienen afectadas de errores clases se representan Recta real decimales Redondeos Truncamiento

Más detalles

3º ESO PMAR NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES

3º ESO PMAR NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES º ESO PMAR NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. NÚMEROS REALES.- NÚMEROS RACIONALES Los números racionales son lo que habitualmente conocemos como fracciones. Un número racional o fracción está

Más detalles

Longitud (L) = 85,2 cm. No es esta la única manera de expresar el resultado, pues también puede ser: L = 0,852 m. L = 8,52 dm.

Longitud (L) = 85,2 cm. No es esta la única manera de expresar el resultado, pues también puede ser: L = 0,852 m. L = 8,52 dm. Cifras significativas. Definición. Las cifras significativas de un número son aquellas que tienen un significado real y, por tanto, aportan alguna información. Toda medición experimental es inexacta y

Más detalles

b) Expresa como fracción aquellos que sea posible. c) Cuáles son irracionales? a) No pueden expresarse como cociente: 3; 3π y 2 5.

b) Expresa como fracción aquellos que sea posible. c) Cuáles son irracionales? a) No pueden expresarse como cociente: 3; 3π y 2 5. PÁGINA 9 Entrénate 1 a) Cuáles de los siguientes números no pueden expresarse como cociente de dos números enteros? 2; 1,7; ; 4, 2; ),75; ) π; 2 5 b) Expresa como fracción aquellos que sea posible. c)

Más detalles

1Soluciones a las actividades de cada epígrafe PÁGINA 20

1Soluciones a las actividades de cada epígrafe PÁGINA 20 Soluciones a las actividades de cada epígrafe PÁGINA 0 RACIONALES Q ENTEROS Z NO RACIONALES 8,, 8,, NATURALES N ENTEROS NEGATIVOS FRACCIONARIOS (racionales no enteros) 8 0, 7,,, 8, 8,, 7 8 8,9;,8; ) 7

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES . Numeros racionales Ejemplo: TEMA : NÚMEROS REALES 4.............................................. Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible.

Más detalles

Intervalos abiertos, cerrados, semiabiertos y semicerrados.

Intervalos abiertos, cerrados, semiabiertos y semicerrados. 008 _ 04-000.qxd 9//08 9:06 Página 69 Números reales INTRODUCCIÓN En la unidad anterior se estudiaron los números racionales o fraccionarios y se aprendió a compararlos, operar con ellos y utilizarlos

Más detalles

Soluciones a las actividades

Soluciones a las actividades Soluciones a las actividades BLOQUE I Aritmética. Los números reales. Potencias, radicales y logaritmos Los números reales. Números racionales e irracionales Calcula mentalmente el área de un cuadrado

Más detalles

Ejercicios Tema 1. a) b) c) d) e) f) Ejercicio 6. Escribe en forma de intervalo y representa:

Ejercicios Tema 1. a) b) c) d) e) f) Ejercicio 6. Escribe en forma de intervalo y representa: Ejercicios Tema 1 Números Reales Ejercicio 1. Clasifica los siguientes números en el lugar que conjunto que corresponde: a) b) c) Ejercicio 2. Clasifica los siguientes números: Ejercicio 3. a) Cuáles de

Más detalles

Los números reales. 1. Números racionales e irracionales

Los números reales. 1. Números racionales e irracionales Los números reales. Números racionales e irracionales Calcula mentalmente el área de un cuadrado de cm de lado. Expresa de forma exacta el lado, x, de un cuadrado de cm de área. P I E N S A Y C A L C U

Más detalles

PREPARACIÓN CONTROL TEMA 1 4ºESO

PREPARACIÓN CONTROL TEMA 1 4ºESO 1. (1,5 puntos). Efectúa las operaciones siguientes, expresando el resultado en forma de fracción irreducible: a) 4 2 4 8 13 : 5 3 5 7 14 4 2 b) 3 8 1 2 2 4 : 1 1 1 2 3 2 3 5 2. (1,5 puntos). Realiza las

Más detalles

Contenidos. Objetivos. 1. Los números reales Números irracionales Números reales Aproximaciones Representación gráfica Valor absoluto Intervalos

Contenidos. Objetivos. 1. Los números reales Números irracionales Números reales Aproximaciones Representación gráfica Valor absoluto Intervalos CUADERNO Nº NOMBRE: FECHA: / / Los números reales Contenidos. Los números reales Números irracionales Números reales Aproximaciones Representación gráfica Valor absoluto Intervalos. Radicales Forma exponencial

Más detalles

Los números reales. 1. Números racionales e irracionales

Los números reales. 1. Números racionales e irracionales Los números reales. Números racionales e irracionales Calcula mentalmente el área de un cuadrado de cm de lado. Expresa de forma exacta el lado, x, de un cuadrado de cm de área. P I E N S A Y C A L C U

Más detalles

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL El número real MATEMÁTICAS I 1 1. APROXIMACIONES APROXIMACIÓN DECIMAL DE UN NÚMERO REAL Al expresar un número real con muchas o infinitas cifras decimales, utilizamos expresiones decimales aproximadas,

Más detalles

1 Calcula la forma fraccionaria o decimal (identificando cada una de sus partes), según corresponda de:

1 Calcula la forma fraccionaria o decimal (identificando cada una de sus partes), según corresponda de: . NUMEROS REALES Calcula la forma fraccionaria o decimal (identificando cada una de sus partes), según corresponda de:,.. 8 0,... 0 Parte entera, anteperiodo, periodo 00 Parte entera, anteperiodo, periodo

Más detalles

8, ,125 4, ,5 0, , , ,25

8, ,125 4, ,5 0, , , ,25 1.- Escribe la fracción irreducible (representante canónico), la expresión decimal y el tipo de número decimal, de los números racionales del cuadro siguiente: número racional fracción irreducible expresión

Más detalles

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos Unidad Didáctica NÚMEROS REALES. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal

Más detalles

Indica cuáles de los números son racionales y cuáles son irracionales.

Indica cuáles de los números son racionales y cuáles son irracionales. SOLUCIONARIO ACTIVIDADES 06 0 08 09 040 Razona cuáles de los siguientes números decimales son racionales y cuáles son irracionales. a), e), b), f), c), g), d), h), a) Racional, periódico puro. e) Racional,

Más detalles

1Soluciones a los ejercicios y problemas PÁGINA 36

1Soluciones a los ejercicios y problemas PÁGINA 36 PÁGINA 6 Pág. P RACTICA Números reales a) Cuáles de los siguientes números no pueden expresarse como cociente de dos números enteros? ;,7; ;, ; ),7; ) π; b)expresa como fracción aquellos que sea posible.

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

Página 3. Página 4. Página 5

Página 3. Página 4. Página 5 Soluciones de las actividades Página 3. El menor de los conjuntos al que pertenecen estos números son: a) Entero b) Entero c) Racional d) Natural e) Racional. Cualquier fracción irreducible puede expresarse

Más detalles

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor.

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor. Números reales 1 Al trabajar con cantidades, en la vida real y en la mayoría de las aplicaciones prácticas, se utilizan estimaciones y aproximaciones. Sería absurdo decir que la capacidad de un pantano

Más detalles

a) 1,5 1,3:

a) 1,5 1,3: 1. Dados los siguientes números: 3,2 3 1 81 1,... Sitúa cada uno de ellos en su lugar correspondiente dentro del diagrama. Si alguno es racional indica de qué tipo es. 2. Efectúa las operaciones siguientes,

Más detalles

Tema 1 Los números reales Índice

Tema 1 Los números reales Índice Tema 1 Los números reales Índice 1. Números reales. La recta real... 2 1.1. Números naturales... 2 1.1.1. Representación de los números naturales... 2 1.2. Números enteros... 2 1.2.1. Valor absoluto de

Más detalles

SISTEMAS NUMERICOS. Todas las fracciones equivalentes a una fracción dada determinan un mismo número, que se llama número racional.

SISTEMAS NUMERICOS. Todas las fracciones equivalentes a una fracción dada determinan un mismo número, que se llama número racional. . NÚMEROS RACIONALES SISTEMAS NUMERICOS Desde la aparición de las sociedades humanas los números desempeñan un papel fundamental para ordenar y contar los elementos de un conjunto. Así surgen, en primer

Más detalles

1Soluciones a las actividades de cada epígrafe PÁGINA 20

1Soluciones a las actividades de cada epígrafe PÁGINA 20 Soluciones a las actividades de cada epígrafe PÁGINA 0 RACIONALES Q ENTEROS Z NO RACIONALES 8,, 8,, NATURALES N ENTEROS NEGATIVOS FRACCIONARIOS (racionales no enteros) 8 0,,,, 8, 8,, 8 8,;,8; ) ; 8 ; Pág.

Más detalles

TEMA 3: NÚMEROS REALES

TEMA 3: NÚMEROS REALES . Intervalos y semirrectas TEMA : NÚMEROS REALES Ejemplo Dados los siguientes intervalos y semirrectas, exprésalos en forma de conjunto y represéntalos sobre la recta real:. El intervalo abierto de extremos

Más detalles

Introducción histórica. Números irracionales

Introducción histórica. Números irracionales Introducción histórica A finales del siglo V a.c., la Escuela de Pitágoras descubrió que no existían dos números naturales m y n, cuyo cociente sea igual a la proporción entre el lado de un cuadrado y

Más detalles

TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo:

TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo: TEMA : NÚMEROS REALES. Numeros racionales Ejemplo: 4... Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible. En nuestro caso Otro ejemplo de número racional

Más detalles

NÚMEROS REALES. a de dos números enteros: a, y b Z con b 0. Con un número entero o con una expresión decimal exacta o no exacta y periódica.

NÚMEROS REALES. a de dos números enteros: a, y b Z con b 0. Con un número entero o con una expresión decimal exacta o no exacta y periódica. NÚMEROS REALES NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros: a, y b Z con b 0 Con un número entero o con una expresión

Más detalles

REALIZAR OPERACIONES CON POTENCIAS

REALIZAR OPERACIONES CON POTENCIAS REALIZAR OPERACIONES CON POTENCIAS OBJETIVO 1 Nombre: Curso: echa: POTENCIA Un número a, llamado base, elevado a un exponente natural n es igual al resultado de multiplicar a por sí mismo n veces: a? a?

Más detalles

Números reales ACTIVIDADES

Números reales ACTIVIDADES ACTIVIDADES No pueden representar el mismo número racional, puesto que si una fracción tiene un término negativo, el cociente es negativo; y si sus dos términos son positivos, el cociente es positivo.

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Valor de cada cifra en función de la posición que ocupa. Expresión polinómica de un número.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Valor de cada cifra en función de la posición que ocupa. Expresión polinómica de un número. 8966 _ 049-008.qxd /6/08 09: Página 49 Números reales INTRODUCCIÓN Los conceptos que se estudian en esta unidad ya han sido tratados en cursos anteriores. A pesar de ello, es importante volverlos a repasar,

Más detalles

1.1. Los conjuntos numéricos

1.1. Los conjuntos numéricos Capítulo NÚMEROS.. Los conjuntos numéricos Usted conoce los números desde su más tierna infancia cuando aprendió a contar. Recuerde que los campos numéricos son los siguientes: Los números naturales N

Más detalles

Pon tres ejemplos de números racionales que tengan la parte decimal de distinto tipo. Hazlo en forma de fracción y da la forma decimal también.

Pon tres ejemplos de números racionales que tengan la parte decimal de distinto tipo. Hazlo en forma de fracción y da la forma decimal también. Numeros Reales 1 Decimal Fracciones 1 Pon tres ejemplos de números racionales que tengan la parte decimal de distinto tipo. Hazlo en forma de fracción y da la forma decimal también. Qué es la parte decimal

Más detalles

Los números naturales sirven para numerar. Por ejemplo, decimos que una alumna es la 15º (decimoquinta) de la lista.

Los números naturales sirven para numerar. Por ejemplo, decimos que una alumna es la 15º (decimoquinta) de la lista. MATEMÁTICAS ºACT TEMA. REPASO. NÚMEROS NATURALES. Cuando contamos los alumnos y alumnas de una clase o el número de losetas que hay en el suelo, lo contamos con los números naturales. Los números naturales

Más detalles

UNIDAD 1 Números reales

UNIDAD 1 Números reales Pág. 1 de 6 I. Sabes clasificar los números en los distintos conjuntos numéricos (N, Z, Q, Á), representarlos en la recta real y reconocerlos en diferentes contextos? 1 Considera los números: 0,8; 1, ;

Más detalles

Números reales ACTIVIDADES

Números reales ACTIVIDADES ACTIVIDADES No pueden representar el mismo número racional, puesto que si una fracción tiene un término negativo, el cociente es negativo; y si sus dos términos son positivos, el cociente es positivo.

Más detalles

NÚMEROS REALES. El número áureo Para hallar la relación entre la diagonal y el lado del pentágono regular, da los siguientes

NÚMEROS REALES. El número áureo Para hallar la relación entre la diagonal y el lado del pentágono regular, da los siguientes NÚMEROS REALES Página PARA EMPEZAR, REFLEXIONA Y RESUELVE El número áureo Para hallar la relación entre la diagonal y el lado del pentágono regular, da los siguientes pasos: a) Demuestra que los triángulos

Más detalles

SOLUCIONARIO. UNIDAD 1: Conjuntos numéricos 18: : = = -9 ACTIVIDADES-PÁG. 8

SOLUCIONARIO. UNIDAD 1: Conjuntos numéricos 18: : = = -9 ACTIVIDADES-PÁG. 8 UNIDAD : Conjuntos numéricos ACTIVIDADES-PÁG. 8. Factoriza los siguientes números: 84 = 7 40= 0 = 6 40=. Calcula el mcm y el mcd: y 60 = 60 = m.c.m.= =60 m.c.d. = = 70 y 90 70 = 7 90 = m.c.m. = 7 = 60

Más detalles

1. NUMEROS REALES a. Los Números Reales

1. NUMEROS REALES a. Los Números Reales 1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.

Más detalles

Tema 1.- Los números reales

Tema 1.- Los números reales Tema 1.- Los números reales Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se puede expresar en forma de fracción. El número irracional

Más detalles

1Soluciones a los ejercicios y problemas

1Soluciones a los ejercicios y problemas PÁGINA Pág. P R A C T I C A N ú m e r o s r e a l e s a) Cuáles de los siguientes números no pueden expresarse como cociente de dos números enteros? ;,7; ;, ; ),7; ) π; b)expresa como fracción aquellos

Más detalles

Números fraccionarios y decimales

Números fraccionarios y decimales Unidad didáctica Números fraccionarios y decimales .- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

Tema 1: Aritmética. Repaso de 3º de ESO. NÚMEROS REALES. POTENCIAS Y RAÍCES. Ejercicios resueltos en video

Tema 1: Aritmética. Repaso de 3º de ESO. NÚMEROS REALES. POTENCIAS Y RAÍCES. Ejercicios resueltos en video Tema : Aritmética. Repaso de º de ESO. NÚMEROS REALES. POTENCIAS Y RAÍCES. EJERCICIOS Los conjuntos numéricos.. (º ESO) Cuáles de los números siguientes son racionales? e irracionales? Pon en forma de

Más detalles

Los números reales. Calcula mentalmente el volumen de un cubo de arista 2 m y escribe el valor exacto de la arista de un cubo de volumen 2 m 3

Los números reales. Calcula mentalmente el volumen de un cubo de arista 2 m y escribe el valor exacto de la arista de un cubo de volumen 2 m 3 Los números reales. Números racionales e irracionales Piensa y calcula Calcula mentalmente el volumen de un cubo de arista m y escribe el valor exacto de la arista de un cubo de volumen m V = = 8 m a =

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre CONJUNTO DE LOS NÚMEROS ENTEROS Los números enteros están formados por: los números naturales (o enteros positivos y el cero) y los números negativos. El cero no tiene signo, no es ni positivo ni negativo.

Más detalles

Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1. conjunto de todos ellos se les designa con la letra Q.

Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1. conjunto de todos ellos se les designa con la letra Q. Matemáticas B º E.S.O. Tema 1 Los números Reales 1 TEMA 1 LOS NÚMEROS REALES 1.1 CLASIFICACIÓN DE LOS NÚMEROS REALES º 1.1.1 TIPOS DE NÚMEROS º Los números naturales son : 1, 2,,..., 10, 11,..., 102, 10,....

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números

Más detalles

Soluciones a las actividades

Soluciones a las actividades Soluciones a las actividades BLOQUE I Aritmética y álgebra. Los números reales. Álgebra Los números reales. Números racionales e irracionales Piensa y calcula Calcula mentalmente el volumen de un cubo

Más detalles

NÚMEROS DECIMALES. PORCENTAJES

NÚMEROS DECIMALES. PORCENTAJES NÚMEROS DECIMALES. PORCENTAJES E.S.O.. UNIDADES DECIMALES. SISTEMA DE NUMERACIÓN DECIMAL En los números decimales se tiene en cuenta el valor posicional de las cifras al igual que en los números naturales

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

UNIDAD 8 INECUACIONES. Objetivo general.

UNIDAD 8 INECUACIONES. Objetivo general. 8. 1 UNIDAD 8 INECUACIONES Objetivo general. Al terminar esta Unidad resolverás inecuaciones lineales y cuadráticas e inecuaciones que incluyan valores absolutos, identificarás sus conjuntos solución en

Más detalles

Lección 1 Números Reales

Lección 1 Números Reales Lección Números Reales 4º ESO MATEMÁTICAS ACADÉMICAS El número real 2 LECCIÓN. NÚMERO REAL.- CONJUNTOS NUMÉRICOS Números Naturales. Son los números más intuitivos y simples. Sirven, básicamente, para contar:

Más detalles

CONJUTOS NÚMERICOS NÚMEROS NATURALES

CONJUTOS NÚMERICOS NÚMEROS NATURALES CONJUTOS NÚMERICOS NÚMEROS NATURALES El conjunto de números naturales tiene gran importancia en la vida práctica ya que con sus elementos se pueden encontrar elementos u objetos de otros conjuntos. El

Más detalles

EJERCICIOS PROPUESTOS b) 2 20 x 8 x 5

EJERCICIOS PROPUESTOS b) 2 20 x 8 x 5 EJERCICIOS PROPUESTOS 1.1 Halla el valor de x para que las siguientes fracciones sean equivalentes. a) 1 x 4 b) x 8 a) 1 4 x x 4 b) x 8 x 8 1. Expresa estas fracciones con el mismo denominador. a), 1 1

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Estamos acostumbrados a trabajar con números naturales o enteros en la vida cotidiana pero en algunas ocasiones tendrás

Más detalles

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras. 1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más

Más detalles

1Soluciones a los ejercicios y problemas

1Soluciones a los ejercicios y problemas PÁGINA 8 Pág. 8 0 Divide y simplifica. a) 7 : b) : c) : 6 a) 7 : = 7 : = 9 b) : = : = = c) : = : = = 6 6 7 Reduce a índice común y efectúa. a) 6 b) : 6 c) 0 : 0 d) ( ) : ( ) 6 6 a) = b) = 0 6 0 8 78 6

Más detalles

LOS NÚMEROS DECIMALES

LOS NÚMEROS DECIMALES 1 LOS NÚMEROS DECIMALES Al dividir el numerador entre el denominador de una fracción se obtiene un número decimal. 5 5 0,; 1,5;,15 10 4 8 C D U d c m dm, 1 5 Parte entera Parte decimal Tres unidades, ciento

Más detalles

Revisora: María Molero

Revisora: María Molero 57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por

Más detalles

Números fraccionarios y decimales

Números fraccionarios y decimales Unidad didáctica Números fraccionarios y decimales 1.- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número

Más detalles

Una fracción decimal tiene por denominador la unidad. Número decimal. Es aquel que se puede expresar mediante una fracción

Una fracción decimal tiene por denominador la unidad. Número decimal. Es aquel que se puede expresar mediante una fracción Fracción decimal Una fracción decimal tiene por denominador la unidad seguida de ceros. Número decimal decimal. Es aquel que se puede expresar mediante una fracción Consta de dos partes: entera y decimal.

Más detalles

16/11/2015. Tema 1º Números reales 1.0) Conceptos previos. 1.1) Fracciones. Números racionales. 1.2) Operaciones con números racionales.

16/11/2015. Tema 1º Números reales 1.0) Conceptos previos. 1.1) Fracciones. Números racionales. 1.2) Operaciones con números racionales. Irracionales (I) 16/11/01 1.) Operaciones con números racionales. 1.) Expresiones fraccionarias y decimal de un número racional. Irracional 1.) Representación de números racionales 1.10) Intervalos y semirrectas.

Más detalles

NÚMEROS REALES UNIDAD 1. Página 28. Número áureo a) Demuestra que los triángulos BED y BCF son semejantes. Recordamos los ángulos de un pentágono: 1º.

NÚMEROS REALES UNIDAD 1. Página 28. Número áureo a) Demuestra que los triángulos BED y BCF son semejantes. Recordamos los ángulos de un pentágono: 1º. UNIDAD NÚMEROS REALES Página 8 Número áureo a) Demuestra que los triángulos BED y BCF son semejantes. Recordamos los ángulos de un pentágono: A E B F D C º. β β α β 0 80 7 α 7 ; β ; β 08 º. 08 γ γ B E

Más detalles

4 ; 3. d) 2 y 5 3. a) 2,2 b) c) 2,24 d) 2,236 e) 2,23607

4 ; 3. d) 2 y 5 3. a) 2,2 b) c) 2,24 d) 2,236 e) 2,23607 EL NÚMERO REAL.- LOS NÚMEROS IRRACIONALES. NÚMEROS REALES - Indicar a qué conjuntos ( Ν, Ζ, Q, R ) pertenecen los siguientes números: -2 ; ; -4/ 5; 6/ 4; 4 ; 25 ; Ν ; 6/ 4 Ζ -2 ; 25 Q -4/ 5 ; 6 ; 4 ; 8

Más detalles

TEMA 3: NÚMEROS DECIMALES

TEMA 3: NÚMEROS DECIMALES TEMA 3: NÚMEROS DECIMALES 1. NÚMEROS DECIMALES Para expresar cantidades comprendidas entre dos números enteros, utilizamos los números decimales. Los números decimales se componen de dos partes separadas

Más detalles

IES Juan García Valdemora NÚMEROS REALES Departamento de Matemáticas NÚMEROS REALES

IES Juan García Valdemora NÚMEROS REALES Departamento de Matemáticas NÚMEROS REALES NÚMEROS REALES. NÚMEROS RACIONALES Desde la aparición de las sociedades humanas los números desempeñan un papel fundamental para ordenar y contar los elementos de un conjunto. Así surgen, en primer lugar,

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Naturales Con los números naturales contamos los elementos de un conjunto (número cardinal). O bien expresamos la posición u orden que ocupa un elemento en un conjunto (ordinal). El conjunto de

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

Fundamentos matemáticos. Tema 1 Números reales. Polinomios

Fundamentos matemáticos. Tema 1 Números reales. Polinomios Grado en Ingeniería agrícola y del medio rural Tema 1 Números reales. Polinomios José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las

Más detalles

NUMEROS REALES. Recordemos

NUMEROS REALES. Recordemos NUMEROS REALES Recordemos El conjunto de los números racionales está constituido por los números enteros y los números fraccionarios. Por tanto, cualquier número que pueda expresarse en forma de fracción

Más detalles

UNPAZ - APU - Algebra y Análisis I 1er cuatrimestre 2017

UNPAZ - APU - Algebra y Análisis I 1er cuatrimestre 2017 UNPAZ - APU - Algebra y Análisis I 1er cuatrimestre 017 Práctica 1- Números Reales Entre los conjuntos numéricos más conocidos con los que trabajaremos en esta práctica se encuentran los Naturales (N),

Más detalles

Lección 2: Notación exponencial

Lección 2: Notación exponencial GUÍA DE MATEMÁTICAS III Lección 2: Notación exponencial En la lección anterior hemos visto cómo trabajar con números reales y cómo para facilitar el trabajo con ellos es conveniente utilizar aproximaciones,

Más detalles

Al trabajar con cantidades, en la vida real y en la mayoría de las aplicaciones prácticas, se utilizan aproximaciones.

Al trabajar con cantidades, en la vida real y en la mayoría de las aplicaciones prácticas, se utilizan aproximaciones. APROXIMACIONES EN LOS NÚMEROS REALES. Al expresar un número real con muchas o infinitas cifras decimales, utilizamos expresiones decimales aproximadas, es decir, recurrimos al redondeo. Al realizar estas

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 7 PRACTICA Aproximación y errores Expresa con un número adecuado de cifras significativas: a) Audiencia de un programa de televisión: 07 9 espectadores. b) Tamaño de un virus: 0,007 mm. c)

Más detalles

2 Números racionales

2 Números racionales 008 _ 0-000.qxd 9//08 9:06 Página Números racionales INTRODUCCIÓN Los conceptos que se estudian en esta unidad ya han sido tratados en cursos anteriores. A pesar de ello, es importante volverlos a repasar,

Más detalles

CUADERNO DE REPASO DE VERANO

CUADERNO DE REPASO DE VERANO CUADERNO DE REPASO DE VERANO MATEMÁTICAS ACADÉMICAS 3º ESO Las actividades deben realizarse en estos folios, si algún proceso no te cabe en el hueco destinado para ello, lo haces en otra hoja o por detrás.

Más detalles

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES FUNCIONES REALES DE UNA VARIABLE Índice Presentación... 3 Conjunto de los números reales... 4 Los intervalos... 6 Las potencias... 7 Los polinomios... 8 La factorización de polinomios (I)... 9 La factorización

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 8 _ 0-0.qxd //0 : Página Números reales INTRODUCCIÓN Los alumnos han trabajado en cursos anteriores con las potencias, y conocen el significado de las potencias de exponente natural y de las partes que

Más detalles

EJERCICIOS REFUERZO MATEMÁTICAS 3 ESO 1º TRIMESTRE

EJERCICIOS REFUERZO MATEMÁTICAS 3 ESO 1º TRIMESTRE EJERCICIOS REFUERZO MATEMÁTICAS ESO º TRIMESTRE NÚMEROS RACIONALES º. Amplifica las siguientes fracciones para que todas tengan denominador º. Cuál de las siguientes fracciones es una fracción amplificada

Más detalles

Ejercicios Tema 1 El número real Matemáticas I 1º Bach. 1

Ejercicios Tema 1 El número real Matemáticas I 1º Bach. 1 Ejercicios Tema El número real Matemáticas I º Bach. TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN GRÁFICA DE NÚMEROS REALES EJERCICIO : Clasifica los siguientes números como 0 π ; ;,...; ; 6; ; ;,

Más detalles

Introducción a los Sistemas Digitales. Conceptos básicos de matemática aplicada a los sistemas digitales

Introducción a los Sistemas Digitales. Conceptos básicos de matemática aplicada a los sistemas digitales Curso-0 1 Introducción a los Sistemas Digitales Conceptos básicos de matemática aplicada a los sistemas digitales 2 Contenidos Conjuntos numéricos Notación científica Redondeo Logaritmos Resumen 3 Conjuntos

Más detalles

Números irracionales.

Números irracionales. Números irracionales. Qué son números irracionales? Los números irracionales son números que poseen infinitas cifras decimales no periódicas, por lo tanto no pueden ser expresados como fracciones. Números

Más detalles

NM1: APROXIMACIONES Y NUMEROS REALES

NM1: APROXIMACIONES Y NUMEROS REALES NM1: APROXIMACIONES Y NUMEROS REALES Una empresa de productos en conserva debe etiquetar 30.000 tarros para un nuevo producto que lanzará al mercado. Las etiquetas deben quedar a 0, cm de las bases del

Más detalles

LOS NUMEROS IRRACIONALES:

LOS NUMEROS IRRACIONALES: LOS NUMEROS IRRACIONALES: Operaciones con decimales finitos. Adición, sustracción, multiplicación, división y aplicación a la resolución de problemas. Los números Irracionales (II). Representación de irracionales

Más detalles

CUADERNO Nº 1 NOMBRE:

CUADERNO Nº 1 NOMBRE: IES Los números reales Contenidos 1. Números racionales e irracionales Decimales periódicos Fracción generatriz Números racionales Números irracionales Números reales 2. Calculando con números reales Aproximaciones

Más detalles

Trabajo de Matemáticas AMPLIACIÓN 3º ESO

Trabajo de Matemáticas AMPLIACIÓN 3º ESO Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito

Más detalles