Clase 3. Procesos estocásticos en Teoría de la señal.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Clase 3. Procesos estocásticos en Teoría de la señal."

Transcripción

1 1 Introducción Clase 3. Procesos estocásticos en Teoría de la señal. Como ya se comentó en la clase anterior, el ruido es una señal inherente a cualquier transmisión de telecomunicación. El ruido es una señal que aparece por múltiples causas, todas ellas incontrolables. En realidad, podríamos imaginarnos cada realización del ruido {ε t } t R, en cada instante t como la agregación de los valores de muchas variables independientes: ε t = X 1t + X 2t + + X kt, por el Teorema Central del límite, para distintas realizaciones del ruido tendremos que ε t es una distribución normal. De ahí que el ruido se diga gaussiano, por otra parte, es deseable que fijado el instante t, tengamos que E[ε t ] = 0 y V ar[ε t ] = σ 2, puesto que esto significa que en media la distorsión es nula y los efectos distorsionantes se mueven en una banda fija. Finalmente, hay una tercera propiedad deseable y es que en distintos instantes de tiempo, los ruidos se comporten de modo independiente, es decir, si fijamos dos instantes de tiempo E[ε t ε t ] = 0. Con ello garantizamos que si hay una distorsión puntual esta no se lleva arrastrando en el transcurso del tiempo, afectando, por tanto, a la calidad de la transmisión. En definitiva, lo que hemos planteado en el párrafo anterior es, de nuevo, la definición de ruido blanco gaussiano. Por su importancia en la transmisión de señales es fundamental conocer técnicas que permitan detectarlo y este será el objetivo central de la clase de hoy. 2 Conceptos teóricos Recuerda que cuando en un proceso estocástico fijamos t, entonces disponemos de una variable aleatoria. Si obtenemos n variables aleatorias en otros tantos instantes de tiempo, sus propiedades estadísticas (media, varianza, covarianza, etc) se obtendrán a partir de su densidad conjunta. Un proceso aleatorio se dice estacionario en el tiempo cuando sus propiedades estadísticas no cambian en el tiempo. Existen distintos grados de estacionariedad, a menudo difíciles de comprobar en la práctica. Proceso estacionario de orden 1: su función de densidad no cambia al desplazar el origen de tiempos. Es decir, si f(x, t) es la función de densidad de la variable aleatoria X t, entonces f(x; t) = f(x; t + ), > 0. 1

2 Consecuencia:Un proceso estocástico que sea estacionario de orden 1 cumple que para cualquier instante de tiempo t en el que paremos el proceso se tiene que E[X t ] = µ y V ar[x t ] = σ 2, donde µ y σ 2 son constantes (no dependen de t). Proceso estacionario de orden 2: la función de densidad conjunta de cualquier par de variables X t1 y X t2 cumple para cualquier valor real > 0: f(x 1, x 2, t 1, t 2 ) = f(x 1, x 2, t 1 +, t 2 + ). Consecuencia: Fijados dos instantes de tiempo cualesquiera se tiene que la función de autocorrelación sólo depende de la distancia entre los dos instantes de tiempo. R XX (t 1, t 2 ) = E[X t1 X t2 ] = (τ = t 2 t 1 ) = R XX (τ) Proceso estacionario en sentido amplio: Es la acepción de estacionariedad más utilizada en la práctica. Aunque no es tan restrictiva como la estacionariedad de orden 2, mantiene alguna de sus propiedades. Diremos que un proceso es estacionario en sentido amplio cuando: E[X t ] = µ, E[X t X t+τ ] = R XX (τ), t, τ 0. Proceso estacionario en sentido estricto:cuando es estacionario para cualquier orden k. Ejercicio: Demuestra que siguiente proceso aleatorio es estacionario en sentido amplio, suponiendo que A y ω 0 son constantes y Θ se distribuye uniformemente en (0, 2π): X(t) = A cos(ω 0 t + Θ) Procesos estacionarios conjuntamente:dados dos procesos aleatorios X(t) e Y (t), decimos que son estacionarios conjuntamente en sentido amplio si cada uno de ellos tiene media constante y además R XY (t 1, t 2 ) = R XY (t, t + τ) = R XY (τ). En lo sucesivo, asumiremos que trabajamos con procesos estacionarios en sentido amplio. A continuación se presentan realizaciones de diversos procesos, se trata de que para cada realización detectes si el proceso es estacionario en sentido amplio y en 2

3 caso de que no lo sea, transformes el proceso de modo adecuado para conseguir al estacionariedad. Nota: si un proceso no es estacionario en media, conviene aplicar la transformación diferencia; si no es estacionario en varianza, conviene aplicar la transformación logarítmica. Otras transformaciones matemáticas también pueden ser de utilidad (transformaciones de Box-Cox). Ejercicio: en el fichero datos.txt tienes, en cada columna, una realización de un proceso estocástico diferente. En este ejercicio debes realizar la correspondiente representación gráfica y las transformaciones que estimes necesarias para que la realización transformada se corresponda a un proceso estacionario en sentido amplio. Realización 1 (prices): serie de precios recogida en días consecutivos. Realización 2 (eur libra): serio de cambios de moneda del euro a la libra en días laborables consecutivos. Realización 3 (robos): serie mensual de robos denunciados en Boston desde enero de Realización 4 (cotiza): valores trimestrales desde el primer trimestre de 1955 que representan el porcentaje de ahorro de las familias americanas. Realización 5 (natali): tasa de natalidad anual de España desde Promedios temporales y ergodicidad Hasta el momento hemos parado un proceso en un instante de tiempo t, por lo que las propiedades que estudiamos requieren que dispongamos de distintas realizaciones para poder comprobar con técnicas estadísticas que se cumplen las propiedades señaladas. Sin embargo, muchas veces solo disponemos de una realización y nos planteamos... en qué casos y cómo se comprueban las propiedades anteriores que afectan a todo el proceso en su conjunto con una única realización?. Consideramos una realización del proceso, x(t), definimos: 1 Promedio temporal: A[x(t)] = lim T 2T T T x(t)dt 1 Función de autocorrelación temporal: R XX (τ) = A[x(t)x(t+τ)] = lim T 2T 3 T T x(t)x(t+τ)dt

4 Observa que la expresiones anteriores se pueden calcular para cada realización y los valores que toman irían cambiando. Así pues, son variables aleatorias. Supongamos que disponemos de un proceso estacionario en sentido amplio, entonces: E[A[x(t)] = µ E[R XX (τ))] = R XX (τ) Procesos ergódicos: Un proceso estocástico es ergódico cuando A[x(t)] y R XX (τ) son constantes para cualquier realización x(t) del proceso. En consecuencia: A[x(t)] = µ, R XX (τ) = R XX (τ). (1) La ergodicidad es una propiedad muy difícil de comprobar en la práctica. Primero, requerimos de un proceso estacionario en sentido amplio y, después, hay que asumir que una realización del proceso es un representante adecuado del proceso global, es decir, cualquier otra realización generaría resultados del tipo promedio temporal iguales. No obstante, como en la estacionariedad, existen grados de ergodicidad que son muy asumibles en la práctica. Proceso ergódico respecto a la media y a la autocorrelación: dado un proceso estacionario en sentido amplio se satisface (1). Theorem 3.1. Sea {X(t)} un proceso estacionario en sentido amplio. Sea 1 T T C XX (τ) = lim T 4T 2 (x(t) µ)(x(t + τ) µ)dtdτ, T T entonces el proceso es ergódico respecto a la media si a) C XX (0) < y C XX (τ) 0 cuando τ. b) C XX(τ) <. y también es ergódico respecto a la correlación si en las dos condiciones anteriores reemplazamos el proceso X(t) por W (t) = X(t)X(t + λ), para cualquier λ > 0. 4 La función de autocorrelación Esta función ya la hemos presentado en la sección anterior y en el caso de procesos estacionarios en sentido amplio es igual a R XX (τ) = E[X t X t+τ ]. Las propiedades de la función de autocorrelación son: 1. R XX (τ) R XX (0) 4

5 2. R XX (τ) = R XX ( τ) 3. R XX (0) = E[X 2 (t)] 4. Si el proceso es ergódico sin componentes periódico lim τ R XX (τ) = µ Si X(t) tiene un componente periódico, también lo tendrá R XX (τ) con el mismo periodo. 6. La función de autocorrelación no tiene una forma arbitraria La función de autocorrelación da mucha información sobre la serie en estudio. En general, trataremos de trabajar con series estacionarias en media y, si es el caso, en términos en desviaciones, es decir, con media igual a cero. En consecuencia, por la propiedad 4 tendremos que la función de autocorrelación debe converger a cero. Asimismo, tiene que ir decreciendo y el valor en el cero, cuando la media es nula, es la varianza del proceso estacionario. Para las series del ejercicio anterior, calculamos la función de autocorrelación muestral. Ejercicio 2: Estudia la función de autocorrelación muestral para las series del ejercicio anterior. Comprueba que si las has transformado para obtener estacionariedad, la función transformada satisface las propiedades teóricas de la función de autocorrelación. Ejercicio 3: Describe la función de autocorrelación de la serie AirPassengers, que ya se encuentra incluida en el paquete. Ejercicio 4: Sea X t es un proceso estacionario en sentido amplio con función de autocorrelación R XX (τ) = e a τ, donde a > 0 es una constante. Si la labor de X t es la de modular una onda cos(ω 0 t + Θ), donde ω 0 es una constante y Θ es una v.a. aleatoria independiente de X t y con distribución uniforme en ( π, π), cuál es la función de autocorrelación de Y t = X t cos(ω 0 t + Θ). Nota: cos(ω 0 t + Θ) cos(ω 0 t + ω 0 τ + Θ) = cos(ω 0 τ) + cos(2ω 0 t + ω 0 τ + 2Θ) Ejercicio 5: Calcula la función de autocorrelación de un ruido blanco. Ejercicio 6: Contrasta el ruido blanco para las series anteriores. Ejercicio 7: 5

6 Considera el proceso estocástico: X t = 2 cos(2πt) + ε t, 1 < t < 1 donde ε t es un proceso de ruido blanco con función de autocorrelación R ε (τ) = 0.01δ(τ). a) Implementa un programa en R que genere realizaciones de este proceso. b) Para una de estas realizaciones obtén con R la función de autocorrelación. c) Obtén en R la correspondiente función espectral de densidad de potencia. d) Tiene algún grado de estacionariedad el proceso anterior? e) Comprueba que el ruido generado es, efectivamente, blanco. 6

Ejercicios de Procesos Estocásticos

Ejercicios de Procesos Estocásticos Ejercicios de Procesos Estocásticos Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO MAGISTRAL GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES Otros Ejemplo Considerar

Más detalles

IDENTIFICACIÓN DE SISTEMAS SISTEMAS LINEALES Y PROCESOS ESTOCÁSTICOS

IDENTIFICACIÓN DE SISTEMAS SISTEMAS LINEALES Y PROCESOS ESTOCÁSTICOS IDENTIFICACIÓN DE SISTEMAS SISTEMAS LINEALES Y PROCESOS ESTOCÁSTICOS Ing. Fredy Ruiz Ph.D. ruizf@javeriana.edu.co Maestría en Ingeniería Electrónica Pontificia Universidad Javeriana 2013 Sistema Un sistema

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS CONVOCATORIA: ENERO 22/23 FECHA: 9 de Enero de 23 Duración del examen: 3 horas Fecha publicación

Más detalles

Procesos Estocásticos. Procesos Estocásticos. Procesos Estocásticos. 1 Introducción y conceptos básicos. Al final del tema el alumno será capaz de:

Procesos Estocásticos. Procesos Estocásticos. Procesos Estocásticos. 1 Introducción y conceptos básicos. Al final del tema el alumno será capaz de: Procesos Estocásticos Procesos Estocásticos Referencias: Capítulo 8 de Introducción a los Sistemas de Comunicación. Stremler, C.G. (993 Estadísticos de un proceso estocástico Apuntes de la Universidad

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Duración: horas Fecha: de Julio de Fecha publicación notas: -7- Fecha revisión examen: 8-7-

Más detalles

Tema 7: Procesos Estoca sticos

Tema 7: Procesos Estoca sticos Tema 7: Procesos Estoca sticos Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Definición 2 Caracterización Estadística 3 Estadísticos 4 Estacionariedad 5 Ergodicidad 6 Densidad Espectral de Potencia

Más detalles

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES Departamento de Matemática Aplicada a las T.I.C. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EAMEN FINAL Otoño 25-6 FECHA: 5 de Enero de 26 Fecha publicación notas: 22 de Enero de 26 Fecha revisión

Más detalles

Momentos de Funciones de Vectores Aleatorios

Momentos de Funciones de Vectores Aleatorios Capítulo 1 Momentos de Funciones de Vectores Aleatorios 1.1 Esperanza de Funciones de Vectores Aleatorios Definición 1.1 Sea X = (X 1,..., X n ) un vector aleatorio (absolutamente continuo o discreto)

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Primavera 15 FECHA: de Junio de 15 Fecha publicación notas: 11 de Junio de 15 Fecha revisión

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Otoño 3 Duración: 3 horas FECHA: 9 de Enero de 4 Fecha publicación notas: 6--4 Fecha revisión

Más detalles

Examen de Estadística Grado en Ingeniería de Telecomunicación

Examen de Estadística Grado en Ingeniería de Telecomunicación Cuestiones Examen de Estadística Grado en Ingeniería de Telecomunicación 3 de Junio de 5 solución h 45m C (.5 puntos). Una multinacional realiza operaciones comerciales en 3 mercados (A, B y C). El % de

Más detalles

SEÑALES ALEATORIAS Y RUIDO. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid.

SEÑALES ALEATORIAS Y RUIDO. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. SEÑALES ALEATORIAS Y RUIDO. Marcos Martín Fernández E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. CONTENIDOS INDICE. DE FIGURAS VII 1. PROBABILIDAD. 1 2. VARIABLES ALEATORIAS.

Más detalles

PROCESOS ALEATORIOS. Capítulo AXIOMAS DE PROBABILIDAD

PROCESOS ALEATORIOS. Capítulo AXIOMAS DE PROBABILIDAD Capítulo 2 PROCESOS ALEATORIOS Los procesos aleatorios son importantes porque en casi todos los aspectos de la vida se presentan este tipo de situaciones en donde el comportamiento de un fenómeno o evento

Más detalles

Sistemas de comunicación

Sistemas de comunicación Sistemas de comunicación Práctico 5 Ruido Pasabanda Cada ejercicio comienza con un símbolo el cuál indica su dificultad de acuerdo a la siguiente escala: básica, media, avanzada, y difícil. Además puede

Más detalles

EL4005 Principios de Comunicaciones Clase No.15: Ruido Blanco y Procesos Gaussianos

EL4005 Principios de Comunicaciones Clase No.15: Ruido Blanco y Procesos Gaussianos EL4005 Principios de Comunicaciones Clase No.15: Ruido Blanco y Procesos Gaussianos Patricio Parada Departamento de Ingeniería Eléctrica Universidad de Chile 6 de Octubre de 2010 1 of 21 Contenidos de

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Guía 3 - Densidad espectral de potencia, transformación de procesos, ergodicidad

Guía 3 - Densidad espectral de potencia, transformación de procesos, ergodicidad Guía 3 - Densidad espectral de potencia, transformación de procesos, ergodicidad Nivel de dificultad de los ejercicios Estrellas Dificultad Normal Intermedio Desafío Densidad espectral de potencia, transformación

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Técnicas de Predicción Solución Examen Final

Técnicas de Predicción Solución Examen Final Técnicas de Predicción Solución Examen Final Administración y Dirección de Empresas 23 de Junio, 2008 Prof. Antoni Espasa Secciones 3h Nota: Todas las respuestas deben ser adecuadamente razonadas. Respuestas

Más detalles

Estadística. Soluciones ejercicios: Procesos estocásticos. Versión 8. Emilio Letón

Estadística. Soluciones ejercicios: Procesos estocásticos. Versión 8. Emilio Letón Estadística Soluciones ejercicios: Procesos estocásticos Versión 8 Emilio Letón. Nivel. Calcular la media del proceso estocástico X (t) = A+t con A U (0; ). Utilizar dos métodos distintos: propiedades

Más detalles

Tema 3: Funcio n de Variable Aleatoria

Tema 3: Funcio n de Variable Aleatoria Tema 3: Funcio n de Variable Aleatoria Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Función de una Variable Aleatoria 2 3 Cálculo de la fdp 4 Generación de Números Aleatorios 5 Momentos de una

Más detalles

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 7 de Septiembre, 25 Cuestiones 2 horas C. A partir de los procesos estocásticos X(t e Y (t incorrelados y de media cero, con funciones

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

Cadenas de Markov Tiempo Discreto. Modelado y Análisis de Redes de Telecomunicaciones

Cadenas de Markov Tiempo Discreto. Modelado y Análisis de Redes de Telecomunicaciones Cadenas de Markov Tiempo Discreto Modelado y Análisis de Redes de Telecomunicaciones Motivación Ejemplo 1 Sea un enrutador al que arriban paquetes de otros (varios) routers Cuando más de un paquete llega

Más detalles

Econometría II. Hoja de Problemas 1

Econometría II. Hoja de Problemas 1 Econometría II. Hoja de Problemas 1 Nota: En todos los contrastes tome como nivel de significación 0.05. 1. SeanZ 1,...,Z T variables aleatorias independientes, cada una de ellas con distribución de Bernouilli

Más detalles

Práctica 4 - Programación en MatLab

Práctica 4 - Programación en MatLab LABORATORIO DE TRANSMISIÓN Práctica 4 - Programación en MatLab Introducción En esta práctica veremos la utilización de diversas órdenes de MatLab, así como el uso de bucles y la creación de funciones y

Más detalles

Clase 1. Simulación de procesos estocásticos.

Clase 1. Simulación de procesos estocásticos. Clase 1 Simulación de procesos estocásticos 1 Introducción De un modo muy general, podemos decir que la probabilidad es la disciplina que se ocupa del estudio de lo aleatorio (o estocástico) y que un proceso

Más detalles

1 Tema 4: Variable Aleatoria Bidimensional y n-dimensional

1 Tema 4: Variable Aleatoria Bidimensional y n-dimensional 1 Tema 4: Variable Aleatoria Bidimensional y n-dimensional 4.1. Variable aleatoria bidimensional Las Variables Aleatorias Bidimensionales o N-Dimensionales surgen cuando es necesario trabajar en espacios

Más detalles

Receptor de Correlación. Sistemas de Comunicación

Receptor de Correlación. Sistemas de Comunicación Receptor de Correlación Sistemas de Comunicación Facundo Mémoli * -Versión 2.- mayo, 22 * memoli@iie.edu.uy Índice. Introducción 3 2. Hipótesis y Planteo del Problema 3 3. Procedimiento 4 3.. Hipótesis

Más detalles

GRADO de TELECOMUNICACIONES

GRADO de TELECOMUNICACIONES GRADO de TELECOMUNICACIONES ESTADISTICA 2009-2010 PRACTICA 2. PROBABILIDAD Y VARIABLES ALEATORIAS OBJETIVOS: Introducción a la probabilidad y a las variables aleatorias 1. Probabilidad 1. Simular 1000

Más detalles

Análisis Estadístico de Datos Climáticos SERIES TEMPORALES 2

Análisis Estadístico de Datos Climáticos SERIES TEMPORALES 2 Análisis Estadístico de Datos Climáticos SERIES TEMPORALES 2 2015 Contenido Procesos estacionarios y débilmente estacionarios Algunos procesos estocásticos útiles: Procesos puramente aleatorios (ruido

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Nombre y Apellidos:... EXAMEN ECONOMETRÍA II (Enero 2010)

Nombre y Apellidos:... EXAMEN ECONOMETRÍA II (Enero 2010) Nombre y Apellidos:... NIU:... Grupo:... EXAMEN ECONOMETRÍA II (Enero 2010) Lea cuidadosamente cada pregunta. Marque muy claramente la respuesta de cada pregunta en la hoja de respuestas. Observe que los

Más detalles

Tema 2: Modelos probabilísticos de series

Tema 2: Modelos probabilísticos de series Tema 2: Modelos probabilísticos de Tema 2: Modelos probabilísticos de 1 2 3 4 5 6 Definición Un proceso estocástico con conjunto de índices T es una colección de variables aleatorias {X t } t T sobre (Ω,

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

Modelo discreto Binomial.

Modelo discreto Binomial. Modelo discreto Binomial. Uniperíodo (con derecho a eercer en un sólo paso Consideremos una Call europea (con opción a eercer finalizado el período C, con strike K, se tienen dos posibles estados a tiempo

Más detalles

Estadística Grupo V. Tema 10: Modelos de Probabilidad

Estadística Grupo V. Tema 10: Modelos de Probabilidad Estadística Grupo V Tema 10: Modelos de Probabilidad Algunos modelos de distribuciones de v.a. Hay variables aleatorias que aparecen con frecuencia en las Ciencias Sociales y Económicas. Experimentos dicotómicos

Más detalles

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Curso 2016-2017 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable

Más detalles

Capítulo 2. Métodos estadísticos Simulación estadística. Simulación univariante

Capítulo 2. Métodos estadísticos Simulación estadística. Simulación univariante Capítulo 2 Métodos estadísticos 21 Simulación estadística La simulación estadística consiste en generar realizaciones de variables aleatorias que siguen unas distribuciones concretas Si esas variables

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:

Más detalles

Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo

Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos 1. Cadenas

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p

Más detalles

transmisión de señales

transmisión de señales Introducción al análisis y transmisión de señales La transmisión de información La información se puede transmitir por medio físico al variar alguna de sus propiedad, como el voltaje o la corriente. Este

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004 Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/004 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta (0,5 puntos c/u): 1. (V F) Los contrastes de hipótesis de dos muestras

Más detalles

MÉTODOS ESTADÍSTICOS AVANZADOS USADOS EN LOS Sistemas de Información Geográfica. Esperanza Ayuga (2008)

MÉTODOS ESTADÍSTICOS AVANZADOS USADOS EN LOS Sistemas de Información Geográfica. Esperanza Ayuga (2008) Imagen cortesía de la NASA MÉTODOS ESTADÍSTICOS AVANZADOS USADOS EN LOS Sistemas de Información Geográfica (II. Procesos y Modelo Lineal General ) Esperanza Ayuga (2008) Introducción Las técnicas estadísticas

Más detalles

Capítulo. Distribución de probabilidad normal. Pearson Prentice Hall. All rights reserved

Capítulo. Distribución de probabilidad normal. Pearson Prentice Hall. All rights reserved Capítulo 37 Distribución de probabilidad normal 2010 Pearson Prentice Hall. All rights 2010 reserved Pearson Prentice Hall. All rights reserved La distribución de probabilidad uniforme Hasta ahora hemos

Más detalles

Germán Bassi. 9 de septiembre de X(i) = 1 N 1T X. i=1

Germán Bassi. 9 de septiembre de X(i) = 1 N 1T X. i=1 . Estimación de la Media Germán Bassi 9 de septiembre de 00 Dada la variable aleatoria X, podemos estimar el valor esperado de la misma mediante la siguiente fórmula: µ X = X(i) = T X. Ambas representaciones

Más detalles

1.1. Distribución exponencial. Definición y propiedades

1.1. Distribución exponencial. Definición y propiedades CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -

Más detalles

Instituto de Matemática Aplicada del Litoral

Instituto de Matemática Aplicada del Litoral PROBLEMAS DE BARRERA EN PROCESOS ESTOCÁSTICOS Ernesto Mordecki http://www.cmat.edu.uy/ mordecki mordecki@cmat.edu.uy Facultad de Ciencias Montevideo, Uruguay. Instituto de Matemática Aplicada del Litoral

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo Estacionarias (Multivariadas) Carlos Capistrán Carmona ITAM 1 Principios de Pronóstico. 2 Pruebas de Hipótesis. 3 Estimación

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

Técnicas de Inferencia Estadística II. Tema 2. Contrastes de hipótesis en poblaciones normales

Técnicas de Inferencia Estadística II. Tema 2. Contrastes de hipótesis en poblaciones normales Técnicas de Inferencia Estadística II Tema 2. Contrastes de hipótesis en poblaciones normales M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2010/11 Tema 2. Contrastes

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

ENUNCIADO y SOLUCIONES. Problema 1

ENUNCIADO y SOLUCIONES. Problema 1 Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.

Más detalles

Variables aleatòries vectorials Els problemes assenyalats amb un (*) se faran a classe. 1.- Los estudiantes de una universidad se clasifican de acuerdo a sus años en la universidad (X) y el número de visitas

Más detalles

Probabilidad y Estadística Segundo del grado en Telecomunicaciones, UAM, Examen de la convocatoria extraordinaria,

Probabilidad y Estadística Segundo del grado en Telecomunicaciones, UAM, Examen de la convocatoria extraordinaria, Probabilidad y Estadística Segundo del grado en Telecomunicaciones, UAM, 2014-2015 Examen de la convocatoria extraordinaria, 22-6-2015 Nombre y apellidos.......................................................................

Más detalles

Conceptos básicos de inferencia estadística (IV): Inferencia no paramétrica: Contrastes de aleatoriedad.

Conceptos básicos de inferencia estadística (IV): Inferencia no paramétrica: Contrastes de aleatoriedad. Conceptos básicos de inferencia estadística (IV): Inferencia no paramétrica: Contrastes de aleatoriedad. Tema 1 (IV) Estadística 2 Curso 08/09 Tema 1 (IV) (Estadística 2) Contrastes de aleatoriedad Curso

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

TEORÍA DE LAS TELECOMUNICACIONES

TEORÍA DE LAS TELECOMUNICACIONES DEPARTAMENTO DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD NACIONAL DE QUILMES Roque Sáenz Peña 8 (B876BD) Bernal Buenos Aires Argentina TEORÍA DE LAS TELECOMUNICACIONES CLASIFICACIÓN DE LAS SEÑALES Básicamente

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución

Más detalles

Tema 4: Variable Aleatoria Bidimensional

Tema 4: Variable Aleatoria Bidimensional Curso 2016-2017 Contenido 1 Definición de Variable Aleatoria Bidimensional 2 Distribución y fdp Conjunta 3 Clasificación de Variables Aleatorias Bidimensionales 4 Distribuciones Condicionales 5 Funciones

Más detalles

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona Kolmogorov y la teoría de la la probabilidad David Nualart Academia de Ciencias y Universidad de Barcelona 1 La axiomatización del cálculo de probabilidades A. N. Kolmogorov: Grundbegriffe des Wahrscheinlichkeitsrechnung

Más detalles

Distribuciones de probabilidad multivariadas

Distribuciones de probabilidad multivariadas Capítulo 3 Distribuciones de probabilidad multivariadas Sobre un dado espacio muestral podemos definir diferentes variables aleatorias. Por ejemplo, en un experimento binomial, X 1 podría ser la variable

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

Tema 4. El Modelo de Regresión Lineal con Series Temporales.

Tema 4. El Modelo de Regresión Lineal con Series Temporales. Tema 4. El Modelo de Regresión Lineal con Series Temporales. En este tema, estudiaremos en detalle la estimación e inferencia del modelo de regresión con datos de series temporales. Dadas las diferencias

Más detalles

Análisis de señales biomédicas

Análisis de señales biomédicas Análisis de señales biomédicas Objetivo La adquisición y procesado de las variables fisiológicas del paciente para realizar una recomendación diagnóstica y/o un plan terapéutico utico. La bioengeniería

Más detalles

Variables aleatorias continuas y Teorema Central del Limite

Variables aleatorias continuas y Teorema Central del Limite Variables aleatorias continuas y Teorema Central del Limite FaMAF 17 de marzo, 2015 Variables aleatorias continuas Definición Una variable aleatoria X se dice (absolutamente continua) si existe f : R R

Más detalles

Procesos Integrados. Si (Y t ) no es estacionario pero la serie (Z t ) de las primeras diferencias. Z t = Y t = Y t Y t 1,

Procesos Integrados. Si (Y t ) no es estacionario pero la serie (Z t ) de las primeras diferencias. Z t = Y t = Y t Y t 1, Capítulo 5 Procesos Integrados Un proceso no estacionario puede no ser estable en la media, en la varianza o en las autocorrelaciones. Por ejemplo, las series 3, 5-13, 19, 29-31, 35-37, y 39 del Capítulo

Más detalles

GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática)

GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática) GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática) ESTADISTICA 2008-2009 PRACTICA 2. VARIABLES ALEATORIAS OBJETIVOS: Introducción a las variables aleatorias:

Más detalles

Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido

Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido Tema : Introducción a la Teoría de la Estimación Introducción Sea X la variable aleatoria poblacional con distribución de probabilidad f θ (x), donde θ Θ es el parámetro poblacional desconocido Objetivo:

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS Antonio Morillas A. Morillas: Contraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Introducción 2. Conceptos básicos 3. Región crítica óptima i. Teorema de Neyman-Pearson ii. Región

Más detalles

Tendencias y ciclos en las variables macroeconómicas

Tendencias y ciclos en las variables macroeconómicas . Tendencias y ciclos en las variables macroeconómicas Rafael Doménech Temas de Análisis Macroeconómico. Tema 2 1/30 Introducción Necesitamos una estimación que permita extraer el comportamiento tendencial

Más detalles

Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005

Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta o llene los espacios en blanco (0,5 puntos c/u): 1. (V F) La prueba

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

Tema 7. Variables Aleatorias Continuas

Tema 7. Variables Aleatorias Continuas Presentación y Objetivos. Tema 7. Variables Aleatorias Continuas En este tema se propone el estudio de las variables aleatorias continuas más importantes, desde la más simple incrementando el grado de

Más detalles

Procesos autorregresivos

Procesos autorregresivos Capítulo 3 Procesos autorregresivos Los procesos autorregresivos deben su nombre a la regresión y son los primeros procesos estacionarios que se estudiaron. Proceso autorregresivo: Un proceso autorregresivo

Más detalles

Tema 8. Introducción al análisis espectral de series temporales

Tema 8. Introducción al análisis espectral de series temporales Tema 8. Introducción al análisis espectral de series temporales Tema 8. Introducción al análisis espectral de series temporales Tema 8. Introducción al análisis espectral de series temporales 8.1 Introducción

Más detalles

Máster en comunicaciones. Clase 2. Modelos predictores.

Máster en comunicaciones. Clase 2. Modelos predictores. Máster en comunicaciones. Clase 2. Modelos predictores. 1. Introducción Uno de los cometidos más importantes de la estadística es la explotación de los datos observados de una o más características de

Más detalles

Transmisión digital por canales con ruido

Transmisión digital por canales con ruido Ingeniería Informática Medios de Transmisión (MT) Problemas del tema 8 Transmisión digital por canales con ruido Curso 008-09 18/1/008 Enunciados 1. Un sistema de transmisión binario con se nalización

Más detalles

9 APROXIMACIONES DE LA BINOMIAL

9 APROXIMACIONES DE LA BINOMIAL 9 APROXIMACIONES DE LA BINOMIAL 1 Una variable aleatoria sigue una distribución binomial B(n = 1000; p = 0,003). Mediante la aproximación por una distribución de POISSON, calcular P(X = 2), P(X 3) y P(X

Más detalles

5. Distribuciones de probabilidad multivariadas

5. Distribuciones de probabilidad multivariadas 5. Distribuciones de probabilidad multivariadas Sobre un dado espacio muestral podemos definir diferentes variables aleatorias. Por ejemplo, en un experimento binomial, X 1 podría ser la variable binomial

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

Cálculo de Probabilidades II Preguntas Tema 2

Cálculo de Probabilidades II Preguntas Tema 2 Cálculo de Probabilidades II Preguntas Tema 2 1. Demuestre que la suma de n v.a. Bernuolli(p) independientes tiene una distribución Binomial con parametros (n, p). 2. Se dice que una v.a tiene una distribución

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 8 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Modelo de Curso de nivelación Estadística y Matemática Pruebas de hipótesis, y Modelos ARIMA Programa Técnico en Riesgo, 2017 Agenda Modelo de 1 2 Asociación Medidas de asociación para variables intervalo

Más detalles

Variables Aleatorias y Distribución de Probabilidades

Variables Aleatorias y Distribución de Probabilidades Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables

Más detalles

Vectores Aleatorios. Vectores Aleatorios. Vectores Discretos. Vectores Aleatorios Continuos

Vectores Aleatorios. Vectores Aleatorios. Vectores Discretos. Vectores Aleatorios Continuos Definición Dado un espacio muestral S, diremos que X =(X 1, X 2,, X k ) es un vector aleatorio de dimension k si cada una de sus componentes es una variable aleatoria X i : S R, para i = 1, k. Notemos

Más detalles

Funciones en R n Conceptos métricos y topológicos Límites y continuidad en R 2. Funciones en R n : nociones topológicas

Funciones en R n Conceptos métricos y topológicos Límites y continuidad en R 2. Funciones en R n : nociones topológicas Funciones en R n : nociones topológicas 1 Funciones en R n 2 Conceptos métricos y topológicos 3 Límites y continuidad en R 2 Definición Definición Llamaremos función escalar real de n variables reales,

Más detalles

Ejercicios T.5 CONTRASTES PARAMÉTRICOS

Ejercicios T.5 CONTRASTES PARAMÉTRICOS Ejercicios T.5 CONTRASTES PARAMÉTRICOS 1. Un fabricante de perfume asegura que los frascos que produce contienen por término medio 100 ml. distribuyéndose el contenido de dichos frascos según una distribución

Más detalles

2 Modelos de probabilidad discretos sobre R

2 Modelos de probabilidad discretos sobre R UN CATÁLOGO DE MODELOS DE POBABILIDAD Julián de la Horra Departamento de Matemáticas U.A.M. Introducción En este capítulo vamos a dar un catálogo de algunos de los modelos de probabilidad más utilizados,

Más detalles