Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización"

Transcripción

1 Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la derivada primera de una función permite conocer los intervalos de crecimiento y decrecimiento de la curva asociada a ella Además, en muchos casos posibilita la determinación de máimos y mínimos relativos Crecimiento y decrecimiento f () es creciente en un punto = a si f ( a h) f ( a) f ( a + h), para h > 0 y pequeño f () es decreciente en un punto = a si f ( a h) f ( a) f ( a + h), para h > 0 y pequeño La función f () es creciente (decreciente) en un intervalo cuando crece (decrece) en todos los puntos de él Caracterización mediante la derivada primera Si f ( a) > 0 f () es creciente en = a En general, si una función f () es tal que f ( ) > 0 para todo de un intervalo, entonces f () es creciente en ese intervalo La demostración de este resultado es fácil, pues si f ( a) > 0, se tiene f( a+ h) f( a) f( a+ h) f( a) que f ( a) = lím > 0 > 0 en un h 0 h h entorno de a Esto implica que los dos términos de la fracción deben tener el mismo signo Luego: Si h > 0, (a la derecha de a), entonces f( a+ h) f( a) > 0 f( a) < f( a+ h) Luego f es creciente en a Si h < 0, (a la izquierda de a), entonces f( a h) f( a) < 0 f( a h) < f( a) Luego f es creciente en a Si f ( a) < 0 f () es decreciente en = a Si una función f () es tal que f ( ) < 0 para todo de un intervalo, entonces f () es decreciente ese el intervalo Máimos El punto a es un máimo relativo cuando la función es creciente a su izquierda y decreciente a su derecha Por tanto: a es un máimo si: f ( a ) > 0, f ( a ) = 0, f ( a + ) < 0 (En un máimo, la recta tangente a la curva es horizontal: su pendiente vale 0) Mínimos El punto a es un mínimo relativo cuando la función es decreciente a su izquierda y creciente a su derecha Por tanto: a es un mínimo si: f ( a ) < 0, f ( a ) = 0, f ( a + ) > 0 (En un mínimo, la recta tangente a la curva es horizontal: su pendiente vale 0)

2 Ejemplo: La función f ( ) = + es creciente a la izquierda del punto =, y decreciente a su derecha, pues f ( ) = + es positiva para < y negativa para > Por tanto, f ( ) = + tiene un máimo en = (Es evidente que f () = 0 ) La determinación de los puntos singulares de una función (aquellos en los que la derivada vale 0, llamados también puntos estacionarios; y los puntos en lo que la función no está definida), permitirá obtener el crecimiento, el decrecimiento, los máimos y los mínimos Advertencias: No siempre que f ( ) = 0 se tiene un máimo o un mínimo; ni siquiera esto es una condición necesaria (lo es sólo para funciones derivables) Puede haber mínimo sin que f ( ) = 0 Así, la función f ( ) = tiene un mínimo en = 0 y en ese punto no es derivable la función Puede suceder que f ( ) = 0 y no haya mínimo ni máimo Así pasa en el punto = 0 para la función f ( ) = Su derivada, f ( ) =, se anula en = 0, pero: Si < 0, (por ejemplo, = ), f () > 0 f () es creciente Si > 0, (por ejemplo, = ), f () > 0 f () es creciente Por tanto, en = 0 no hay máimo ni mínimo Hay un punto de infleión Trazado de gráficas con ayuda de la derivada primera Dada la función y = f (), para dibujarla es útil el siguiente proceso: ) Determinar los puntos en los que no está definida f () Dominio de definición ) Hallar la derivada f () ) Calcular las soluciones de la ecuación f ( ) = 0 (puntos singulares) ) Marcar sobre el eje OX los puntos singulares y aquellos en los que la función no está definida Esos puntos dividen al eje OX en varios intervalos ) Estudiar el signo de la derivada en cada intervalo anterior: deducir si la función es creciente o decreciente (Basta con probar un punto de cada intervalo y ver si f () es positiva o negativa) ) Deducir (de lo anterior) dónde se dan los máimos y los mínimos, si es el caso 7) Trazar la gráfica ajustándose a la información obtenida y dando algunos de sus puntos, entre ellos los correspondientes a los puntos singulares y a los cortes con los ejes de coordenadas Ejemplo: Trazado de la gráfica de la función ) Está definida siempre: Dom(f) = R f ( ) = ) y ) f ( ) = = 0 ( ) = 0 = 0, =, = ), ) y ) Se marcan los puntos en la recta, y se observa que: Si <, (por ejemplo, = ), f () > 0 f () es creciente

3 Si < < 0, (por ejemplo, = ), f () < 0 f () es creciente en hay máimo = Si 0 < <, (por ejemplo, = ), f () < 0 f () es decreciente en = 0 no hay ni máimo ni mínimo Si >, (por ejemplo, = ), f () > 0 f () es creciente en mínimo 7) Dando algunos valores se obtiene la gráfica adjunta Para = 0, f ( 0) = 0 punto (0, 0) Para =,, f ( / ), 0 punto (,,,0) Para =,, f ( / ), 0 punto (,,,0) = Los cortes con el eje OX son las soluciones de 0, que son = 0 y = ± puntos (,0), (0, 0) y (,0) = hay Aplicaciones de la derivada segunda Curvatura: concavidad y conveidad; infleión La concavidad y la conveidad dependen del punto de vista del que mira Aquí se mirará siempre desde la parte negativa del eje OY Por tanto, la concavidad será así: ; y la conveidad, así: Concavidad y conveidad Observa lo que sucede en un intervalo de concavidad Las tangentes a la curva están por encima de ella Las rectas tangentes, de izquierda a derecha, tienen cada vez menor pendiente O, lo que es lo mismo, sus pendientes decrecen (La pendiente viene dada por la derivada) Luego la derivada decrece: f () es decreciente En consecuencia, su derivada (la de f () ) será negativa: f ( ) < 0 Los máimos se dan siempre en una concavidad Por tanto, si en = a hay un máimo de f (), se cumplirá que f ( a) < 0 Ejemplos: a) La función f( ) = + es cóncava, pues su derivada segunda es siempre negativa: f ( ) = + f ( ) = < 0 b) La función logaritmo, f( ) = ln es cóncava en todo su dominio: R + Efectivamente, derivando: f ( ) = f ( ) = < 0 para todo

4 Observa lo que sucede en un intervalo de conveidad Las tangentes a la curva están por debajo de ella Las rectas tangentes, de izquierda a derecha, tienen cada vez mayor pendiente O, lo que es lo mismo, sus pendientes crecen (La pendiente viene dada por la derivada) Luego la derivada crece: f () es creciente En consecuencia, su derivada será positiva: f ( ) > 0 Los mínimos se dan siempre en una conveidad Por tanto, si en = a hay un mínimo de f (), se cumplirá que f ( a) > 0 Resumiendo: Si f ( ) < 0 en el intervalo (, ) f () es cóncava en ese intervalo Si f ( ) > 0 en el intervalo (, ) f () es convea en ese intervalo Ejemplos: a) La función f( ) = es convea, pues su derivada segunda es siempre positiva: f ( ) = f ( ) = > 0 b) La función eponencial, f( ) = e es convea siempre, pues su derivada segunda es siempre positiva: f ( ) = e f ( ) = e > 0 para todo Máimos y mínimos Si f (a) = 0 y f ( a) < 0 f () tiene un máimo en = a Si f (a) = 0 y f ( a) > 0 f () tiene un mínimo en = a El recíproco no es cierto Esto es, puede suceder que f () tenga un máimo (o un mínimo) en = a siendo f (a) = 0 y f ( a) = 0 (sin que f ( ) < 0 o f ( a) > 0) En definitiva: La condición necesaria para que en = a se dé un máimo o un mínimo es que f (a) = 0; pero no es condición suficiente Ejemplos: a) La función f( ) = +, vista anteriormente, cumple: f ( ) = + la derivada se anula en = Como f ( ) = < 0 para todo, en = se da un máimo b) La función f( ) = sin, cumple: π Su derivada primera: f ( ) = cos, se anula cuando cos = 0 = + kπ Su derivada segunda: f ( ) = sin π π π π toma valores negativos cuando = + kπ Por ejemplo en = o en = + π= en esos puntos tendrá máimos π π π toma valores positivos cuando = + ( k+ ) π Por ejemplo en = +π= o en π 7π = + π= en esos puntos tendrá mínimos

5 Puede observarse que los máimos se dan en concavidades; y los mínimos, en conveidades Puntos de infleión Los puntos en los que la curva cambia de cóncava a convea, o al revés, se llaman puntos de infleión; en esos puntos, la tangente corta a curva Se cumple también que: Si = a es un punto de infleión de f () f ( a) = 0 El recíproco no es cierto Esto es, puede suceder que f ( a) = 0 y en = a no haya punto de infleión Por tanto, que f ( a) = 0 es condición necesaria, pero no suficiente Criterio general para la determinación de puntos máimos, mínimos y de infleión Si = a es un punto que cumple: ) f ( a) = 0, f ( a) = 0, f ( a) = 0, f n ) ( a) = 0 y f n ( a) 0, entonces: ) Si n es par y f n ( a) < 0, en = a hay un máimo ) Si n es par y f n ( a) > 0, en = a hay un mínimo Si n es impar, en = a hay un punto de infleión, aunque f ( a) 0 Ejemplos: a) La función f ( ) =, vista en un ejemplo anterior, cumple: f ( ) = = 0 si = 0, =, = Los puntos = 0, =, = son candidatos a máimos o mínimos Para decidirlo se hace la derivada segunda: f ( ) = 0 0 = 0 ( ) = 0 = 0, = ± Como: f ( / ) < 0, en = / se da un máimo relativo f ( 0) = 0, en = 0 se da un punto de infleión (Es un punto de infleión con tangente horizontal) f ( / ) > 0, en = / se da un mínimo relativo Otros puntos de infleión son = / y = / Para confirmar que los tres puntos indicados son de infleión hay que ver que f ( ) = 0 es 0 en los tres casos: así es, como puede comprobar el lector interesado b) La función f ( ) =, cumple: f ( ) = = 0 en = 0; f ( ) = = 0 en = 0; ) f ( ) = = 0 en = 0; f ( ) = > 0 en = 0 se da un mínimo

6 c) La función f ( ) =, cumple: f ( ) = = 0 en = 0; f ( ) = 0 = 0 en = 0; f ( ) = 0 = 0 en = 0; f ( ) = 0 = 0 en = 0; ) f ( ) = 0 en = 0 se da un punto de infleión Sugerencias para la representación gráfica de una función ) Para representar una función f (), puede seguirse el esquema siguiente: ) Determinar el dominio de definición y el recorrido de f () (Esto permite el estudio de posibles discontinuidades y de las regiones : intervalos en los que f () es positiva o negativa; para su determinación deben conocerse los puntos de corte de la curva con el eje OX) ) Asíntotas Puede haberlas verticales, horizontales y oblicuas Verticales Si lím f () = la recta = a es asíntota vertical f () a Las asíntotas verticales sólo pueden darse en puntos en los que la función no esté definida Horizontales Si lím f ( ) = b la recta y = b es una asíntota horizontal de f () f ( ) Oblicuas Si lím = m (m 0 y m ) y lím ( f ( ) m) = n, (n ) la recta y = m + n es una asíntota oblicua de la curva y = f () Es muy útil determinar, mediante el cálculo de límites laterales, la posición de la curva respecto de las asíntotas ) Simetrías Hay dos tipos de simetrías Función par : f () es simétrica respecto del eje OY Se cumple que f ( ) = f ( ) Función impar : f () es simétrica respecto del origen: Se cumple que f ( ) = f ( ) El estudio de las simetrías no es imprescindible, aunque facilita el trazado de la curva ) Periodicidad f () es periódica de período p si f ( + p) = f ( ) Las funciones periódicas se representan en un intervalo de amplitud p; después se repite el dibujo En la práctica, sólo se tiene en cuenta en las funciones trigonométricas ) Puntos singulares e intervalos de variación y curvatura Con la derivada primera, f () : Crecimiento y decrecimiento Máimos y mínimos Con la derivada segunda, f () : Concavidad, conveidad y puntos de infleión; y confirmación de máimos y mínimos ) Determinar algunos puntos significativos de la curva y = f () Puntos máimos, mínimos y de infleión Puntos de corte de la curva con los ejes 7) Trazado de la curva Todas las piezas deben encajar En caso contrario habrá que revisar los cálculos realizados A continuación se practica con ejemplos y ejercicios

7 7 Ejemplos: a) Para la función Dominio: R {} f ( ) = se tiene: ( ) Regiones (signo): por debajo del eje OX (negativa) si < 0; por encima de OX si > 0 (ecluido el punto = ) Asíntotas: Como lím f ( ) = lím Como lím f () = ± = = + la recta = es una asíntota vertical = = (L H) = lím = = 0 ± ( ) ± la recta y = 0 ( ) 0 lím ( ) ± es asíntota horizontal Hacia la asíntota va por debajo del eje, pues toma valores negativos Hacia + la asíntota va por encima del eje, pues el signo de la función es positivo Derivada primera: ( ) ( ) = ( ) ( ) f ( ) = Se anula en = Se marcan los puntos y en la recta Si <, f () < 0 f () es decreciente Si < <, f () > 0 f () es creciente En = hay mínimo Si >, f () < 0 f () es decreciente Derivada segunda: + f ( ) = Se anula en = ( ) Se marcan los puntos y en la recta Si <, f () < 0 f () es cóncava ( ) Si < <, f () > 0 f () es convea ( ) Si >, f () < 0 f () es convea ( ) Como f ( ) = > 0, se confirma que en = hay un mínimo relativo 8 Con toda esta información y calculando algunos puntos se puede hacer su representación gráfica Algunos puntos: (, 0,87); (, 0,); (, 0,); (0, 0); (0,, ); (, ); (, 0,7)

8 8 b) Para la función f( ) = e se tiene: Su dominio es R; y siempre es positiva Es par: ( ) = = f( ) e e Tiene una asíntota horizontal: Crecimiento y decrecimiento: lím e = 0 + La curva va por encima de la asíntota, y = 0 ± = se anula en = 0 f ( ) e Si < 0, f () > 0 la función crece Si > 0, f () < 0 la función decrece En = 0 hay un máimo Concavidad y conveidad: f ( ) = e + e = ( + ) e se anula en = ± Si < /, f ( ) > 0 la función es convea ( ) Si / < < /, f ( ) < 0 la función es cóncava ( ) Si > /, f ( ) > 0 la función es convea ( ) Pueden darse algunos valores: (, e ) (, 0,7), ( /, e ) / ; (0, ); / ( /, e ) ; (, 0,7) Su gráfica es la adjunta: c) Para la función f( ) = sin + cos se tiene: Dominio: R Y siempre toma valores entre y Es periódica de período π, pues f( ) = sin ( + π ) + cos( + π ) = sin + cos Se representará la función en uno de los periodos: intervalo [ π/, 7π/] Es obvio que no tiene asíntotas Crecimiento y decrecimiento: f ( ) = cos sin Se anula cuando sin = cos f ( ) = cos sin > 0 si decreciente si π/ < < π/ Concavidad y conveidad: π = + kπ (Má o mín) π π < < o si π 7 π < < la función es creciente; será f ( ) = sin cos Se anula cuando sin = cos f ( ) = sin cos > 0 si π π π = + kπ (Puntos de inf) < < la función es convea; y cóncava en el resto El valor máimo lo toma en π/ y vale ; el mínimo en π/, y vale En los puntos de infleión la función toma el valor 0 La función tiene infinitos máimos, infinitos mínimos e infinitos puntos de infleión

9 9 Ejercicio cos Dada la función f ( ) = Se pide: a) Sus asíntotas b) Los puntos de corte de la gráfica de f con el eje de abscisas; y el signo de la función c) Cuántos máimos y mínimos tiene? Indica algunos de ellos Solución: a) La función no está definida en = 0 En esa abscisa habrá una asíntota vertical si el límite se hace infinito cos 0 sin Como lím = = ( ) = = L H lím No hay asíntota vertical 0 cos Tiene una asíntota horizontal, pues lím = 0 La asíntota es la recta y = 0 b) La función se anula siempre que cos = 0 = kπ, k Z Salvo en esos puntos, como cos > 0, el signo de la función dependerá del denominador, de Por tanto, será negativa si < 0; y positiva, si > 0 c) La función se anula en los etremos de cada uno de los intervalos [ k π, ( k + ) π] Como la función es continua y derivable en cada uno de esos intervalos, salvo en [ π, π], por el teorema de Rolle, en cada caso habrá un punto que anule la derivada En todos esos puntos se da un máimo o un mínimo Cuando k > 0 se tienen máimos; si k < 0 se tienen mínimos (Los demás máimos y mínimos se dan cuando f ( ) = 0, que, como se dijo antes, sucede en = kπ : si = + kπ, se dan mínimos; si = kπ, máimos) Todo lo dicho puede ilustrase con la gráfica de f Ejercicio Haz un esbozo gráfico de la función f ( ) = ln( ) Solución: Dominio: R [, ] La epresión ln( ) sólo tiene sentido si > 0 Asíntotas: lím ln( ) = + En = y en = la función tiene sendas asíntotas verticales, pues ( ) ± No tiene asíntota horizontal, pues lím ( ln( ) ) = Observación lím ( ln( ) ) = [ ] : Si se sustituye se tiene que Esta indeterminación puede resolverse como sigue:

10 0 e e lím ( ln( ) ) = lím ( ln( e ) ln( ) ) = lím ln ln lím = Como e e e lím = ( L H ) lím ( L H ) lím ( ) = = = = = = lím ( ln( ) ) = Tampoco tiene asíntota oblicua, pues si fuese la recta y = m + n se tendría: ln( ) ln( ) / ( ) m = lím = lím = ( L H ) = lím = 0= n = lím ln( ) = lím ln( ) = Como n debe ser distinto de, se deduce ( ) ( ) que no hay asíntota oblicua Crecimiento y decrecimiento: f ( ) = = f ( ) = 0 si = 0 = ± Además hay que tener en cuenta los puntos = y = Con esto: Si <, f () > 0 f() crece (Entre y no hay curva) Si < < +, f () < 0 f() decrece Si > +, f () > 0 f() crece (En = + habrá un mínimo) Concavidad y conveidad: + f ( ) = > 0 para todo punto de su dominio ( ) La función es convea ( ) en todo su dominio Algunos puntos: (,,); (, 0,9); (+, 0,8); (,,9) Su gráfica es la adjunta Ejercicio Dada la función f( ) = ln, determina su dominio, asíntotas, crecimiento y decrecimiento + y concavidad y conveidad Haz un esbozo gráfico de ella Solución: Dominio: R [, 0] Hay que descartar los valores de tales que 0 + Asíntotas: En = (por la izquierda) y en = 0 (por la derecha) la función tiene sendas asíntotas verticales, pues: lím ln = ln = ; lím ln = ln ln 0 + = = 0 + Tiene una asíntota horizontal, pues lím ln = ln La asíntota es y = ln ± + Hacía, la curva va por encima de la asíntota, pues > ; hacia +, sucede al revés +

11 Crecimiento y decrecimiento: f( ) = ln = ln ln( + ) f ( ) = = + + ( + ) El valor de la derivada es positivo en todo su dominio, luego la función siempre es creciente Concavidad y conveidad: + f ( ) = ( + ) Si <, f ( ) > 0 f es convea ( ) Si > 0, f ( ) < 0 f es cóncava ( ) Un esbozo de su gráfica es la figura adjunta Ejercicio Se considera la curva definida por la función y = Se pide: + a) Dominio de definición, cortes con los ejes, simetrías y asíntotas b) Intervalos de crecimiento de la función Tiene etremos la función? c) Una representación aproimada de la curva Solución: a) La función está definida siempre, pues el denominador no se anula en ningún caso Corte ejes: si = 0 y = 0 punto (0, 0); si y = 0 = 0 el mismo punto La función es simétrica respecto del origen de coordenadas (impar), pues ( ) f ( ) = = = f ( ) ( ) + + Tiene una asíntota oblicua (y = m + n), pues: f ( ) m = lím = lím = ; n = lím ( f ( ) m) = lím = = 0 ( + ) lím + + La asíntota es la recta y = + Como y = = = se tiene: cuando +, la curva va por debajo de la asíntota ( resta) + cuando, la curva va por encima de la asíntota ( suma) + ( + ) ( ) ( + ) b) Derivando: y = = ( + ) ( + ) Salvo en = 0, la derivada siempre es positiva la función es creciente siempre En consecuencia no tiene etremos En = 0 hay un punto de infleión con tangente horizontal c) Algunos valores de la curva son: (0, 0), (, /), (, 8/), (, 7/0), y sus simétricos Representándolos se obtiene la gráfica adjunta

12 Optimización de funciones Problemas de optimización La optimización es uno de los problemas económicos más interesantes de resolver Consiste en determinar el valor que maimiza (beneficios) o minimiza (costes) una función sujeta a una serie de condiciones Un problema de optimización clásica es el siguiente: Se desea construir, al lado de una carretera, una zona de descanso para automovilistas Tendrá forma rectangular y estará vallada por los tres lados no adyacentes a la carretera Si su superficie es de 700 m², qué dimensiones debe tener para que el coste de la valla sea mínimo? La situación planteada se representa en la figura adjunta, que en este, como en la mayoría de los casos, es clave para entender el problema Planteamiento y resolución de un problema de optimización Un problema de optimización vendrá dado, generalmente, en términos de enunciado Se dice que está planteado cuando se sabe eactamente qué función hay que hacer máima o mínima; quedará resuelto cuando se halle y critique la solución Para ello, puede seguirse el proceso que se detalla a continuación: ) Saber qué objetivo hay que hacer máimo o mínimo Esto se deduce de la lectura del enunciado En el ejemplo anterior hay que hacer mínimo el coste de la valla (Este mismo ejemplo nos servirá para ilustrar los demás pasos) ) Epresar en forma de función el objetivo propuesto El coste de la valla será mínimo cuando su longitud (L) sea mínima Por tanto, la función que hay que hacer mínima es L= + y Generalmente esta función dependerá de varias variables; al menos dos Hay que determinar cuál de ellas depende de la(s) otra(s) y buscar en el enunciado la relación que liga esas variables; esta relación siempre es una igualdad Se obtendrá así una función de una sola variable, que puede designarse por f( ) o por cualquier otra letra Aquí se ha elegido L En L= + y aparecen dos variables, e y, que son las medidas del largo () y ancho (y) de la zona de descanso Qué relación eiste entre e y? Como se dice que la superficie de la zona es de 700 m², y esta superficie vale S= y, se tendrá que y = 700 De donde y = L ( ) = + (Aquí termina el planteamiento del problema Ahora hay que resolverlo) ) Determinar el máimo o mínimo buscado Los óptimos se encuentran entre los puntos críticos de la función, que son las soluciones de f ( ) = 0 Para que sea máimo hay que eigir que f ( ) < 0 ; y para que sea mínimo, que f ( ) > 0 En este caso hay que buscar un punto que cumpla: L ( ) = 0 y L ( ) > Como L ( ) = + = + 00 L ( ) = = 0 = 00 = ±0 La solución = 0 hay que descartarla por no ser del dominio de definición de la función 8800 La derivada segunda: L ( ) = y L (0) = > 0 Por tanto, el mínimo pedido se obtiene cuando = 0 metros e y = 0 m

13 Ejercicio Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha Para ello se recortará un cuadradito en cada esquina y se doblará Cuál debe ser el lado del cuadradito cortado para que el volumen de la caja resultante sea máimo? Solución: A partir del enunciado y siguiendo el proceso aplicado en el ejemplo anterior se tiene: ) El objetivo es que el volumen de la caja sea máimo La caja es un prisma rectangular, cuyo volumen = área de la base por la altura ) Para obtener la función conviene hacer un dibujo Si se corta un cuadradito de lado, el volumen de la caja obtenida será: V( ) = ( )( ) V( ) = + 78 ) Los puntos máimos o mínimos se encuentran, si eisten, entre las soluciones de V = 0 8 ± 08 V ( ) = + 78 = 0 = (se ha simplificado) Se obtienen, y, ) Para ver para qué valor se obtiene el máimo se hace V ( ) = y se evalúa en esas soluciones Como V (,) < 0 y V (,) > 0, el máimo se da para =, Esta es la solución buscada El valor =, no es posible, pues cm no da para cortar dos trozos de ese tamaño Ejercicio El coste de fabricación de unidades de un determinado producto viene dado por la función C ( ) = 0, Todas las unidades producidas se venden a un precio dado por p ( ) = 0, (C() y p() en unidades monetarias, um) Calcula el nivel de producción que: a) Minimiza el coste medio por unidad Cuál es ese coste? b) Maimiza los beneficios A cuánto asciende ese beneficio? Solución: El nivel de producción es el número de unidades que hay que producir para alcanzar un determinado fin a) El objetivo es determinar el número de unidades que hay que producir para que el coste medio por unidad, M(), sea mínimo El coste por unidad se halla dividiendo el coste total, C(), entre las unidades producidas, : 00 M( ) = 0, Para que M() sea mínimo, su derivada debe ser 0: M ( ) = 0, = 0 = 000, 00 Como M ( ) = M ( 000) > 0 Luego, el mínimo se da cuando = 000

14 El precio unitario mínimo será M ( 000 ) 9, um Observación: En este caso, la variable es discreta y sólo puede tomar valores enteros (de hecho, en el conteto del problema, la función considerada no es continua, y, por ende, tampoco derivable), por ello, la solución = 000 =, no es posible; la respuesta debe ser = o = Como M() = 9,8 y M() = 9,, debe elegirse = b) El objetivo es maimizar los beneficios obtenidos por la fabricación y venta de unidades de producto Estos beneficios, B(), se hallan restando los costes a los ingresos: B() = Ingresos totales Costes totales Los ingresos, I(), se calculan multiplicando el número de unidades vendidas por el precio por unidad Por tanto, I( ) = p( ) = ( 0,) = 0, De donde, B ( ) = I ( ) C ( ) = 0, 0, B ( ) = 0, + 00 ( ) ( ) Para que B() sea máimo, B ( ) = 0 : B ( ) = 0,8+ = 0 = 7, Como B ( ) = 0,8 < 0, el punto hallado da el máimo beneficio, que asciende a B(7,) = 0, um Nota: Como en el apartado a), la respuesta debe ser = 7 o = 8 En este caso es indiferente, pues B(7) = B(8) = 0, Ejercicio En el primer cuadrante y entre la curva y = y la recta y = se inscribe un rectángulo con uno de sus lados sobre el eje OY Determina sus vértices para que tenga superficie máima Solución: Si (, y) es el vértice sobre la curva, las dimensiones del rectángulo serán: base = ; altura y Como y =, su superficie viene dada por: S = ( y) S ( ) = ( ) = El máimo de S se da en la solución de S = 0 que hace negativa a S Derivando: S ( ) = = 0 = / Como S ( ) = < 0 siempre, para el valor = / se tiene la abscisa del vértice buscado La ordenada será y = / Por tanto, los vértices son: (0, /); (0, ); ( /, ); ( /, /)

Tema 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización

Tema 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización 09 Tema 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la derivada primera

Más detalles

Tema 7. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización

Tema 7. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Tema 7 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la derivada primera

Más detalles

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos 64 TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión. Dada la función

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

Funciones en explícitas

Funciones en explícitas Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos

Más detalles

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997)

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997) Matemáticas II. Curso 008/009 de funciones 1 1. Determinar las asíntotas de f () =. Estudiar la concavidad y conveidad. 1 + Determinar los puntos de infleión. (Junio 1997) 1 Por un lado, lim 1 = 0 y =

Más detalles

Representaciones gráficas

Representaciones gráficas 1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente.

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS)

EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS) EXAMEN DE MATEMÁTICAS (º DE BACHILLERATO) ANÁLISIS (DERIVADAS) 009 1 (CLS09) (1 punto) Probar que la ecuación e + 0 tiene alguna solución (CLJ13) (1 punto) Sea la función + Calcula sus asíntotas y estudia

Más detalles

ANÁLISIS (Selectividad)

ANÁLISIS (Selectividad) ANÁLISIS (Selectividad) 1 Sea f : R R la función definida por f() ln ( +1). (a) Determina los intervalos de crecimiento y decrecimiento y los etremos relativos de la función f (puntos donde se alcanzan

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Aplicaciones de la derivada. n la presente Unidad estudiamos la monotonía ( crecimiento y decrecimiento de

Aplicaciones de la derivada. n la presente Unidad estudiamos la monotonía ( crecimiento y decrecimiento de UNIDAD 9 Aplicaciones de la derivada n la presente Unidad estudiamos la monotonía ( crecimiento y decrecimiento de E las funciones), así como sus máimos y mínimos, estos conceptos tienen muchas aplicaciones

Más detalles

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que

Más detalles

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo. UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

Hacia la universidad Análisis matemático

Hacia la universidad Análisis matemático Hacia la universidad Análisis matemático OPCIÓN A. a) Deriva las funciones f( ) = 8, g ( ) =, h ( ) = e. f( ) si 0 b) Indica si la función m ( ) = es continua en =. g ( ) si < c) Escribe la ecuación de

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

x = 1 Asíntota vertical

x = 1 Asíntota vertical EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

Problemas resueltos funciones de una variable. Continuidad. Matemáticas I. La función es continua en { 3} La función es continua en (, 1) ( 1, )

Problemas resueltos funciones de una variable. Continuidad. Matemáticas I. La función es continua en { 3} La función es continua en (, 1) ( 1, ) Problemas resueltos funciones de una variable. Continuidad. Matemáticas I. 1.-Estudiar la continuidad de las siguientes funciones: + f( ) = f( ) = f( ) = 1 + + 1 1 + 1 f( ) = log 1 f( ) = + 1 f ( ) 6 La

Más detalles

Unidad 8 Representación gráfica de funciones

Unidad 8 Representación gráfica de funciones Unidad 8 Representación gráfica de funciones PÁGINA 187 SOLUCIONES 1. Las funciones quedan: a) f( ) = 8 Dominio: Dom f =R Puntos de corte con el eje OX: Puntos de corte con el eje OY Simetrías: f( ) =

Más detalles

, siendo ln(1+x) el logaritmo neperiano de 1+x. x

, siendo ln(1+x) el logaritmo neperiano de 1+x. x Selectividad CCNN 00. [ANDA] [JUN-B] Considera la función f: definida por f() = (+)e -. (a) Halla las asíntotas de la gráfica de f. (b) Determina los etremos de f y los puntos de infleión de su gráfica.

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REPRESENTACIÓN GRÁFICA DE FUNCIONES Para representar gráficamente funciones eplícitas (es decir del tipo y f()), deben seguirse los siguientes pasos, representando inmediatamente todos los datos que se

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES I ) DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN: Es el conjunto de puntos donde tiene sentido realizar las operaciones indicadas en el criterio de definición de la

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

Dos curvas interesantes: Unidad 10: REPRESENTACIÓN DE FUNCIONES TRACTRIZ INTRODUCCIÓN

Dos curvas interesantes: Unidad 10: REPRESENTACIÓN DE FUNCIONES TRACTRIZ INTRODUCCIÓN Unidad 10: REPRESENTACIÓN DE FUNCIONES INTRODUCCIÓN Concepto de función Una de las ideas más fecundas y brillantes del siglo XVII fue la de la coneión entre el concepto de función y la representación gráfica

Más detalles

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN . ASÍNTOTAS DE UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición más formal

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

APLICACIONES DE LA DERIVADA CCSS

APLICACIONES DE LA DERIVADA CCSS APLICACIONES DE LA DERIVADA CCSS Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m.

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m. Enunciados de problemas de selectividad. Matemáticas II. Funciones FUNCIONES.(97).- Hay alguna función f() que no tenga límite cuando y que, sin embargo, [f()] sí tenga límite cuando?. Si la respuesta

Más detalles

1. Calcula la tasa de variación media de las siguientes funciones en los intervalos que se indican. 1

1. Calcula la tasa de variación media de las siguientes funciones en los intervalos que se indican. 1 6 Derivadas CRITERIOS DE EVALUACIÓN ACTIVIDADES DE EVALUACIÓN A. Calcular la tasa de variación media de una función en un intervalo.. Calcula la tasa de variación media de las siguientes funciones en los

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN Teoría Práctica Los pasos a seguir para el estudio completo y representación de una Función son los siguientes: ) Hallar el Dominio de la función. En dicho

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

SOLUCIÓN. BLOQUE DE FUNCIONES.

SOLUCIÓN. BLOQUE DE FUNCIONES. SOLUCIÓN. BLOQUE DE FUNCIONES. Análisis de funciones 1. a) y c) son funciones, porque para cada valor de hay un único valor de y. b) no es una función, porque para cada valor de hay dos valores de y. 2.

Más detalles

ANÁLISIS MATEMÁTICO I (2012)

ANÁLISIS MATEMÁTICO I (2012) ANÁLISIS MATEMÁTICO I (2012) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio 1. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta. 1. El teorema

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 5 2.1. Reglas de derivación............................

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

9.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN. 2 utilizando la definición y halla su valor en xo = REGLAS DE DERIVACIÓN

9.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN. 2 utilizando la definición y halla su valor en xo = REGLAS DE DERIVACIÓN 9- DERIVADAS - DERIVADA EN UN PUNTO Calcula la derivada de y = + en o = utilizando la definición Solución: y'() = 8 Calcula la derivada de - en o = utilizando la definición Solución: y '() = -6 Calcula

Más detalles

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN

Más detalles

ESTUDIO LOCAL DE UNA FUNCIÓN

ESTUDIO LOCAL DE UNA FUNCIÓN ESTUDIO LOCAL DE UNA FUNCIÓN CRECIMIENTO. DECRECIMIENTO. MÁXIMOS Y MINIMOS. Sea Sea DEF.- f es creciente en a E(a) / { ( ) ( ) ( ) ( ) E(a) De la misma forma se define función decreciente. ***TEOREMA.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

Idea de Derivada. Tasa de variación media e instantánea

Idea de Derivada. Tasa de variación media e instantánea Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años) 0 6 9 8 Altura (cm.) 8 6 74 78 80 a) Representar

Más detalles

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN:

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: Ejemplo: 1 Dominio Representación de en el intervalo [,] Los puntos que no pertenecen al dominio de una función racional, son aquellos que anulan

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría 6 Funciones 1. Estudio gráfico de una función Piensa y calcula Indica cuál de las siguientes funciones es polinómica y cuál racional: 2 + 5 f() = f() = 3 5 2 + 6 4 2 4 Racional. Polinómica. Aplica la teoría

Más detalles

CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS.

CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS. pág.1 CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.4. APLICACIONES DE LA DERIVABILIDAD .4. APLICACIONES DE LA DERIVABILIDAD.4.1. Intervalos de crecimiento y decrecimiento.4.. Etremos locales de una función.4.3. Intervalos

Más detalles

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1)

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) 1) Halle los intervalos de monotonía y los etremos relativos, los intervalos de curvatura y los puntos de infleión de la función g() + +. Represéntela gráficamente.

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

. (Nota: ln x denota el logaritmo neperiano de x).

. (Nota: ln x denota el logaritmo neperiano de x). e - si 0. [04] [ET-A] Sea la función f() = k si = 0 a) Determine razonadamente el valor del parámetro k para que la función sea continua para todos los números reales. b) Estudie si esta función es derivable

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación

Más detalles

Idea de Derivada. Tasa de variación media e instantánea

Idea de Derivada. Tasa de variación media e instantánea TEMA 6. Derivadas Nombre CURSO: BACH CCSS Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años)

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014)

Más detalles

3º ESO PMAR FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES

3º ESO PMAR FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES FUNCIONES.- CARACTERÍSTICAS DE LAS FUNCIONES Definición: Una función es una relación entre dos variables de tal forma que a cada valor de la primera (variable independiente, ) le corresponde un valor o

Más detalles

x 3 si 10 <x 6; x si x>6;

x 3 si 10 <x 6; x si x>6; CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 A Primer parcial + 1 +8 1 a Trace su gráfica b Determine su dominio, rango y raíces Sean si 10 < 6; f

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

en su construcción sea mínima. Sol: r = 3, h =

en su construcción sea mínima. Sol: r = 3, h = RELACIÓN DE PROBLEMAS ) Encontrar los etremos absolutos de y 6+ definida en [0, ]. Sol. Má en 0 y ; mín -/ en,5. ) Hallar dos números positivos cuya suma sea 0, sabiendo que su producto es máimo. Sol.:

Más detalles

TEMA 11: ESTUDIO LOCAL Y GLOBAL DE FUNCIONES. OPTIMIZACIÓN

TEMA 11: ESTUDIO LOCAL Y GLOBAL DE FUNCIONES. OPTIMIZACIÓN TEMA 11: ESTUDIO LOCAL Y GLOBAL DE FUNCIONES. OPTIMIZACIÓN ESTUDIO DE LA MONOTONÍA DEF.- Una función es CRECIENTE en un intervalo I del dominio de la función si: x1 < x2 I f ( x1 ) f ( x2). Si se cumple

Más detalles

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?. ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

4. [2012] [JUN-A] Sea f una función continua en el intervalo [2,3] y F una primitiva de f tal que F(2) = 1 y F(3) = 2. Calcula: 3 5f(x)-7 dx

4. [2012] [JUN-A] Sea f una función continua en el intervalo [2,3] y F una primitiva de f tal que F(2) = 1 y F(3) = 2. Calcula: 3 5f(x)-7 dx . [] [SEP-B] Sea f: la función definida por f() = 9-. a) Halla la ecuación de la recta tangente a la gráfica de f en el punto de abscisa =. b) Esboza el recinto limitado por la gráfica de f, la recta +y

Más detalles

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula . [] [ET-A] Calcula d. --. [] [ET-B] Calcula / d. (Sugerencia: integración por partes) cos. [] [JUN-A] Sean f: y g: las funciones definidas respectivamente por: f() = y g() = +. a) Esboza las gráficas

Más detalles

y' nos permite analizar el crecimiento o decrecimiento

y' nos permite analizar el crecimiento o decrecimiento http://wwwugres/local/metcuant APLICACIONES DE LAS DERIVADAS La derivada de una función f (), en un punto = a, representa el valor de la pendiente de la recta tangente a dicha función, en el citado punto

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

REPRESENTACION GRÁFICA DE FUNCIONES

REPRESENTACION GRÁFICA DE FUNCIONES REPRESENTACION GRÁFICA DE FUNCIONES 1 REPRESENTACION GRÁFICA DE FUNCIONES UNIDADES Pag. 1. DEFINICIÓN DE DOMINIO UNA FUNCIÓN.3 2. CORTES CON LOS EJES...5 3. SIMETRÍA..7 4. PERIODICIDAD 9 5. FUNCIONES INVERSAS....10

Más detalles

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular . [0] [ET-A] a) Hallar el punto en el que la recta tangente a la gráfica de la función f() = -+ es paralela a la recta de ecuación y = 5-7. b) Calcular el área delimitada por la parábola de ecuación y

Más detalles

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 1.) Resuelve las siguientes derivadas: a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) f(x) = arcsen 2.) Resuelve la siguiente derivada, simplificando

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

el blog de mate de aida CS II: Representación de funciones y optimización.

el blog de mate de aida CS II: Representación de funciones y optimización. Pág.1 CRECIMIENTO Y DECRECIMIENTO. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que su pendiente será positiva

Más detalles

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h

Más detalles