Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría"

Transcripción

1 ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío, y es una operación binaria interna : G G G (a, b) a b que cumple las siguientes propiedades: 1. Propiedad asociativa: (a b) c = a (b c), a, b, c G. 2. Elemento neutro: ɛ G tal que a G, a ɛ = ɛ a = a. 3. Elemento opuesto: a G, ã G tal que a ã = ã a = ɛ. Además, el grupo G se dice abeliano si cumple: 4. Propiedad conmutativa: a b = b a, a, b G. Nota: En un grupo abeliano, la operación se suele denotar + y llamarse suma, el elemento neutro se denota 0, y el opuesto de a se denota a. En este caso diremos que usamos notación aditiva. Otra notación muy común es la notación multiplicativa, en la que la operación simplemente se omite, escribiendo ab := a b, el elemento neutro se denota 1, y el opuesto de a se denota a 1 o 1/a, y se denomina inverso de a. Ejemplo: En Álgebra Básica estudiamos grupos de matrices con la multiplicación que eran no abelianos. Para este curso nos interesa especialmente el llamado grupo simétrico S n, que es el grupo de permutaciones de n elementos, es decir, el grupo de biyecciones de un conjunto de n elementos. La operación interna es la composición de funciones. Ejemplos: Los siguientes grupos son abelianos, como también vimos en Álgebra Básica: Z, Q, R y C, con la suma habitual. Q\{0}, R\{0}, C\{0}, con el producto habitual. Z/Zn, con la suma módulo n. El grupo V 4 de movimientos del plano que dejan invariante un rectángulo ( las formas de dar la vuelta a un colchón ), también llamado grupo de Klein. Tiene cuatro elementos: la identidad (que denotaremos ɛ), la simetría α de eje paralelo a los lados menores, la simetría β de eje paralelo a los lados mayores, y un giro γ de 180. Definición 1.2. Decimos que una aplicación entre dos grupos f : (G, ) (H, ) es un homomorfismo si f(a b) = f(a) f(b) para todo a, b G (obsérvese qué operación se aplica en cada caso). Un isomorfismo es un homomorfismo biyectivo. 1

2 Ejemplo: (grupos de orden 4) Dados dos grupos (G, ), (H, ) es muy sencillo probar que la operación definida sobre G H por (g, h) (g, h ) := (g g, h h ) dota a G H de estructura de grupo 1. Esto nos permite analizar dos ejemplos muy interesantes: Z/Z2 Z/Z2 es isomorfo a V 4. Z/Z2 Z/Z2 no es isomorfo a Z/Z4. Veamos un concepto que nos ayudará a demostrar la segunda afirmación: Definición 1.3. Sea G un grupo. El orden de un elemento a G es el menor entero positivo n tal que n {}}{ a a a = ɛ Si n existe, se dice que a es un elemento de torsión. En otro caso, se dice que a tiene orden infinito. Ejemplo: (grupos de orden 4, continuación) Es fácil ver que, bajo un isomorfismo φ, el orden de la imagen φ(g) de un elemento g en el grupo de llegada es igual al orden de g en el grupo de partida [Trabajo personal: demostrarlo]. En Z/Z4 tenemos ord(1) = 4 y en el grupo V 4 no hay elementos de orden 4. Es un problema muy interesante estudiar en general cuántos grupos hay no isomorfos de un cierto orden. Responderemos a estas preguntas en el tema 2 para el caso de los grupos abelianos, finitamente generados. Definición 1.4. Sea G un grupo. Diremos que un subconjunto S G es un sistema de generadores de G si todo elemento de G puede escribirse de la forma a 1 a 2 a r, donde a i S o ã i S para todo i = 1,..., r. En este caso escribiremos G = S. Ejemplo: Z = 1, ya que, dado n Z n {}}{ si n > 0 n = 1 + ( 1) si n = 0 ( 1) + + ( 1) }{{} n si n < 0 Definición 1.5. Diremos que G es cíclico si puede ser generado por un sólo elemento. Ejemplos: Z es cíclico. Z/Zn es cíclico, ya que Z/Zn = 1. V 4 no es cíclico, ya que todo sistema de generadores de V 4 necesita al menos dos elementos. Por ejemplo V 4 = α, β. Definición 1.6. El orden de un grupo G, G es el número de elementos de G. 1 A veces, cuando G y H son abelianos, el grupo G H se denota G H, y se llama suma directa de G y H. 2

3 1.2. Subgrupos Definición 1.7. sea (G, ) un grupo. Diremos que un subconjunto no vacío H G es un subgrupo de G si (H, ) es un grupo. En este caso escribiremos H G. Proposición 1.8. Un subconjunto no vacío H G es un subgrupo si y sólo si se cumplen las dos propiedades siguientes: 1. a b H para todo a, b H. 2. ã H para todo a H. De hecho, estas dos propiedades se pueden fusionar en una sola: Proposición 1.9. Un subconjunto no vacío H G es un subgrupo si y sólo si se cumple: a b H para todo a, b H. DEMOSTRACIÓN: Trivial. Dado a H, tenemos a ã H, es decir, ɛ H. Pero entonces ɛ ã H, luego ã H. Por otra parte, dados a, b H, por el razonamiento anterior b H, por tanto a b H, es decir, a b H. Nota: Con notación aditiva, el resultado anterior se lee: H G es subgrupo si y sólo si a b H para todo a, b H. Dado un subgrupo H G, podemos definir una relación entre los elementos de G, como sigue: a b ã b H Es fácil ver que se trata de una relación de equivalencia. Esta relación de equivalencia conlleva una partición del conjunto G en unión disjunta de clases de equivalencia. La clase de equivalencia de un elemento a G es el conjunto de elementos de G que están relacionados con a. Observando la relación que acabamos de definir, esta clase de equivalencia, que llamaremos clase de a a izquierda módulo H, es el siguiente conjunto [Trabajo personal: demostrarlo]: a H = {a h; h H} Por otra parte, podemos definir otra relación de equivalencia entre los elementos de G, distinta a la anterior, como sigue: a b a b H En este caso, la clase de equivalencia de un elemento a G se denomina clase de a a derecha módulo H, y es el siguiente conjunto: H a = {h a; h H} Estas clases de equivalencia son el ingrediente principal de la prueba de un resultado fundamental de la teoría de grupos: Teorema 1.10 (Teorema de Lagrange). Dado un grupo G y H G, entonces H divide a G. 3

4 [Trabajo personal: demostración] Observemos que la clase de equivalencia de ɛ G, tanto a izquierda como a derecha, es precisamente el grupo H, ya que H = ɛ H = H ɛ. Observemos también que la clase a izquierda de un elemento a G, tanto a izquierda como a derecha, contiene al elemento a, ya que a ɛ = ɛ a = a, es decir, a a H H a. Pero esto no quiere decir que a H = H a. De hecho, hay ejemplos donde estos dos conjuntos no son iguales. Sin embargo, nos interesarán especialmente los subgrupos en los que las clases a izquierda y a derecha de cualquier elemento coinciden. Estos subgrupos de llaman normales. Definición Un subgrupo H G se dice normal, y se denotará H G, si a H = H a para todo a G. Una caracterización de los subgrupos normales, que puede servir para identificarlos, es la siguiente: Proposición Un subgrupo H G es normal si y sólo si a h ã H para todo a G y todo h H. DEMOSTRACIÓN: Sean a G y h H. Como a h a H = H a, existirá un elemento h H tal que a h = h a, luego a h ã = h H. Dado a h a H, tenemos a h = (a h ã) a H a, luego a H H a. Por otra parte, dado h a H a. Como ã G, tenemos ã h ã = ã h a H, luego h a = a (ã h a) a H. Por tanto H a H a, y entonces H a = a H para todo a G. La principal ventaja que se obtiene de que un subgrupo sea normal, es que podemos dotar al conjunto de sus clases de equivalencia de estructura de grupo. Es decir, podemos definir una operación binaria interna en el conjunto de clases de equivalencia (a izquierda o a derecha, es igual, puesto que son las mismas), que cumpla todas las propiedades de grupo. Este grupo se llama grupo cociente G sobre H, y se denota G/H. La operación viene definida como sigue: (a H) (b H) = (a b) H Esta operación está bien definida, esto es, si a H = a H y b H = b H entonces (a b) H = (a b ) H (ejercicio. Ejemplo: El núcleo ker(f) de un homomorfismo de grupos f : G H es el conjunto de elementos de G que van a parar al elemento neutro de H. El núcleo de un homomorfismo es un subgrupo normal de G. (ejercicio). Esto implica que siempre podremos considerar el grupo cociente G/ ker(f). De hecho, hay un resultado muy útil e importante que nos describe este grupo cociente: Teorema 1.13 (Primer teorema de isomorfía). Dado un homomorfismo de grupos f : G G, se tiene G/ ker(f) = im(f). DEMOSTRACIÓN: Basta ver que la aplicación ϕ : G/ ker(f) im(f), donde ϕ(a ker(f)) = f(a) es un isomorfismo de grupos bien definido. En primer lugar, es evidente que f(a) im(f) para todo a G. Por otra parte, hemos definido ϕ usando representantes de las clases de equivalencia, por tanto debemos probar que la definición no depende del representante escogido. Es decir, si tenemos a ker(f) = a ker(f), debemos probar que f(a) = f(a ). Pero si a ker(f) = a ker(f), entonces ã a ker(f), luego ɛ = f(ã a ) = f(ã) f(a ) = f(a) f(a ), y por tanto f(a) = f(a ). Luego f es una aplicación bien definida. 4

5 Claramente ϕ es un homomorfismo, ya que ϕ((a ker(f)) (b ker(f))) = ϕ((a b) ker(f)) = f(a b) = f(a) f(b) = ϕ(a ker(f)) ϕ(b ker(f)). Por último, ϕ es sobreyectiva ya que para todo elemento c im(f), existe a G tal que f(a) = c, luego ϕ(a ker(f)) = f(a) = c. Y ϕ es inyectiva ya que si ϕ(a ker(f)) = ϕ(b ker(f)), entonces f(a) = f(b), luego f(ã b) = ɛ, de donde ã b ker(f) lo que significa que a ker(f) = b ker(f). Por tanto, ϕ es un homomorfismo biyectivo bien definido, es decir, un isomorfismo, como queríamos demostrar. Es importante notar que si G es un grupo abeliano, entonces todo subgrupo de G es normal. En el caso de grupos abelianos, donde solemos usar la notación aditiva, las clases de equivalencia se denotan a + H, y la operación en G/H se lee: (a + H) + (b + H) = (a + b) + H Definición Un grupo se dice simple si sus únicos subgrupos normales son los triviales. Un último concepto sobre grupos que será esencial para demostrar uno de los resultados más espectaculares de la teoría de Galois: la irresolubilidad por radicales de la ecuación de grado 5. Definición Un grupo se dice resoluble si existe una serie finita de subgrupos tal que 1. G i G i+1 para i = 0,..., n 1. {ɛ} = G 0 G 1 G n = G 2. G i+1 /G i es abeliano para i = 0,..., n 1. Nótese que la primera condición no implica la segunda pues G i G i+1 G i+1 no implica G i G i+2. Teorema Un grupo resoluble es simple si y sólo si es cíclico de orden primo Permutaciones Dado un conjunto A denotamos en general por S A el conjunto de las biyecciones de A en A que es un grupo con la composición. Se suele denotar por S n si A = {1,..., n} y, como ya hemos dicho, se denomina grupo de permutaciones de n elementos. Proposición S n = n!. Proposición Si n 3, S n es un grupo no abeliano. Teorema 1.19 (Teorema de Cayley). Sea G un grupo finito. Existe n 1 tal que G es isomorfo a un subgrupo de S n. [Trabajo personal: demostración] Notacion: Se suele utilizar la notación usual de aplicaciones para permutaciones. Si σ S n con σ(1) = a 1,..., σ(a n ) = a n se escribe ( ) 1 2 n. a 1 a 2 a n 5

6 Para componer se sigue el mismo principio que para las aplicaciones en general: primero se aplica la de la derecha. Así, por ejemplo ( ) ( ) ( ) = Definición Un elemento σ S n es un ciclo de longitud m (m n) si existe I = {a 1,..., a n } {1,..., n} tal que: 1. σ(a i ) = a i+1 para i = 1,..., m 1 y σ(a m ) = a σ(j) = j si j / I. Un ciclo así se denota simplemente (a 1 a 2 a m ). Una trasposición es un ciclo de longitud 2. Es fácil ver que el orden de un ciclo coincide con su longitud. Definición Dos ciclos (a 1 a 2 a m ) y (b 1 b 2 b n ) se dicen disjuntos si a i b j para todo i {1,..., m}, j {1,..., n}. Dos ciclos disjuntos conmutan. Teorema 1.22 (Descomposición en ciclos disjuntos). Toda permutación se descompone de forma única en ciclos disjuntos (salvo orden de los factores). Aún más, dada σ S n con σ = σ 1 σ r para σ i disjuntos, se tiene que ord(σ) = m.c.m.(ord(σ 1 ),..., ord(σ r )). Del resultado anterior se deduce que los ciclos son un sistema generador de S n. Teorema Toda permutación se descompone como producto de trasposiciones. La paridad del número de trasposiciones de cualquiera de esas factorizaciones es constante. Las permutaciones que se descomponen en un número par de trasposiciones se denominan pares. Proposición El conjunto A n de las permutaciones pares de S n es un subgrupo de orden n!/2. Se denomina grupo alternado. Ejemplos: S 3 es resoluble usando {ɛ} (123) S 3. S 4 es resoluble usando {ɛ} V 4 A 4 S 4 (hay que ver V 4 como subgrupo de S 4 ). A 5 no es resoluble porque es simple y no tiene orden primo. Es de hecho el grupo no resoluble más pequeño. Proposición A 5 no es resoluble. [Trabajo personal: demostración] 6

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Definición 1.1 Sea G un conjunto. Una operación binaria en G es una aplicación m: G G G.

Definición 1.1 Sea G un conjunto. Una operación binaria en G es una aplicación m: G G G. 1 Definición y propiedades Definición 1.1 Sea G un conjunto. Una operación binaria en G es una aplicación m: G G G. Definición 1.2 Sea G un conjunto i) Si G tiene una operación binaria definida en G, se

Más detalles

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:

Más detalles

Ejercicios de Álgebra Básica. Curso 2015/16

Ejercicios de Álgebra Básica. Curso 2015/16 Ejercicios de Álgebra Básica Curso 2015/16 Tema 2: Introducción a la teoría de grupos Propiedades El grupo de las permutaciones Ejercicio 1 Probar que Z con la operación a b = a+b+1 es un grupo Ejercicio

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ). ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas

Más detalles

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano.

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano. Teoría de Grupos Definiciones Básicas Definición 5 (Grupo) Sea una estructura algebraica con una ley de composición interna. Decimos que es un grupo si: 1. es asociativa. 2. tiene neutro. 3. toda tiene

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar

Más detalles

Álgebra y estructuras finitas/discretas (Grupos A)

Álgebra y estructuras finitas/discretas (Grupos A) Álgebra y estructuras finitas/discretas (Grupos A) Curso 2007-2008 Soluciones a algunos de los ejercicios propuestos en el Tema 2 Antes de ver la solución de un ejercicio, repase la teoría correspondiente

Más detalles

Estructuras algebraicas

Estructuras algebraicas Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B

Más detalles

Estructuras algebraicas

Estructuras algebraicas Semana 10[1/14] 26 de abril de 2007 Semana 10[2/14] Grupos Un grupo es un caso particular de una estructura algebraica. Veremos que esta noción rescata ampliamente las propiedades de estructuras tales

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2017 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2017 1

Más detalles

Tema 2: El grupo de las permutaciones

Tema 2: El grupo de las permutaciones Tema 2: El grupo de las permutaciones Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Octubre de 2014 Olalla (Universidad de Sevilla) Tema 2: El grupo de las

Más detalles

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 - CICLO 01-2015 Estudiante: Grupo: 1. Aplicaciones 1.1. Aplicaciones.

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2016 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2016 1

Más detalles

LEYES, ESTRUCTURAS BÁSICAS Y COCIENTES CONJUNTOS Y GRUPOS

LEYES, ESTRUCTURAS BÁSICAS Y COCIENTES CONJUNTOS Y GRUPOS Todos los derechos de propiedad intelectual de esta obra pertenecen en exclusiva a la Universidad Europea de Madrid, S.L.U. Queda terminantemente prohibida la reproducción, puesta a disposición del público

Más detalles

Álgebra Básica C Grado en Matemáticas Examen 1

Álgebra Básica C Grado en Matemáticas Examen 1 Álgebra Básica C Grado en Matemáticas Examen 1 Lee detenidamente las preguntas antes de contestarlas. Justifica todas tus respuestas. Evita los cálculos innecesarios y las repeticiones. Nombre y apellido(s):

Más detalles

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos EL TEOREMA DE SEIFERT-VAN KAMPEN 1. Preliminares sobre grupos Sea G un grupo. Denotaremos de forma multiplicativa la operación en G. Así, el producto de x, y G es x y, y el inverso de x G es x 1. Para

Más detalles

Capítulo 4: Conjuntos

Capítulo 4: Conjuntos Capítulo 4: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2014 Olalla (Universidad de Sevilla) Capítulo 4: Conjuntos Septiembre de

Más detalles

Algebra II. Relación 2. Curso Grupos: generalidades y ejemplos. Ejercicio 2. Describir explícitamente la tabla de multiplicar de los grupos

Algebra II. Relación 2. Curso Grupos: generalidades y ejemplos. Ejercicio 2. Describir explícitamente la tabla de multiplicar de los grupos Algebra II Relación 2 Curso 2017-2018 Grupos: generalidades y ejemplos Ejercicio 1. Describir explícitamente la tabla de multiplicar de los grupos Z n para n = 4, n = 6 y n = 8, donde por Z n denotamos

Más detalles

a, b G a b G a (b c) = (a b) c a, b, c G (g4) Todo elemento de G tiene elemento simétrico para la operación : a G a G tal que a a = a a = e

a, b G a b G a (b c) = (a b) c a, b, c G (g4) Todo elemento de G tiene elemento simétrico para la operación : a G a G tal que a a = a a = e Grupos Este segundo cuatrimestre lo dedicaremos al estudio de estructuras algebraicas. Primero, las estructuras de grupo, anillo y cuerpo, y más adelante, la estructura de espacio vectorial y todo lo que

Más detalles

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad 1.1 Grupos Al haber alterado el orden de los temas, este apartado ya se ha visto en el tema 9 1.2 Anillos y cuerpos Definición 1.2.1.

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS GRUPOS: DEFINICIÓN Y EJEMPLOS. La Teoría de Grupos tiene muchas aplicaciones desde Cristalografía hasta Criptografía, pasando por la resolución de ecuaciones. Nosotros vamos a

Más detalles

Álgebra Básica. Departamento de Álgebra (2n 1) = n 2,

Álgebra Básica. Departamento de Álgebra (2n 1) = n 2, Ejercicios de Álgebra Básica. Curso 2012/13 Ejercicio 1. Probar, usando el método de inducción, la fórmula de la suma de n términos de una progresión geométrica de razón r, S n = ra n a 1 r 1. Ejercicio

Más detalles

Funciones y Cardinalidad

Funciones y Cardinalidad Funciones y Cardinalidad Definición 1 Llamaremos función f entre dos conjuntos A y B a una relación que verifica las siguientes propiedades: i) Dom(f) = A ii) Si (a, b), (a, c) f entonces b = c Dicho de

Más detalles

Grupos. Subgrupos. El Teorema de Lagrange. Grupo cociente. Teoremas de

Grupos. Subgrupos. El Teorema de Lagrange. Grupo cociente. Teoremas de TEMA 8 Grupos. Subgrupos. El Teorema de Lagrange. Grupo cociente. Teoremas de Isomorfía En la primera sección introducimos los conceptos de grupo y subgrupo y, además de presentar varios ejemplos, prestamos

Más detalles

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS GRUPOS PRODUCTO Y COCIENTE. El producto cartesiano de dos grupos y el conjunto cociente de un grupo respecto de ciertas relaciones, son dos formas de construir nuevos grupos.

Más detalles

2 Grupos simétricos y alternados

2 Grupos simétricos y alternados 4 TEORIA DE GRUPOS A continuación vamos a estudiar los grupos que históricamente dieron origen a su concepto. 2 Grupos simétricos y alternados Dado un número natural n el conjunto de permutaciones 1 de

Más detalles

Los isomorfismos básicos de la teoría de cuerpos algebraicos.

Los isomorfismos básicos de la teoría de cuerpos algebraicos. 4. AUTOMORFISMOS DE CUERPOS. En este tema probaremos que dos elementos α y β, conjugados sobre un cuerpo F, determinan un isomorfismo entre los cuerpos F (α) y F (β). También cierto recíproco será válido.

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 1: CONJUNTOS. 1 1. Conjuntos y funciones Ejercicio 1. Si I es un conjunto y A α es

Más detalles

Tema 1: Fundamentos.

Tema 1: Fundamentos. Tema 1: Fundamentos. 1. Nociones básicas de la Teoría de Conjuntos. Definición. Un conjunto es una colección de objetos. A los objetos de un conjunto se les llama elementos del conjunto. Se denominará

Más detalles

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R.

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R. Capítulo 7 Anillos 7.1 Definiciones Básicas El concepto de Anillo se obtiene como una generalización de los números enteros, en donde están definidas un par de operaciones, la suma y el producto, relacionadas

Más detalles

Permutaciones. 5.1 Introducción. Capítulo

Permutaciones. 5.1 Introducción. Capítulo Capítulo 5 Permutaciones 5.1 Introducción Las permutaciones son el ejemplo de grupo finito que más se utiliza dentro de la teoría de grupos. Su importancia se debe a que todo grupo es isomorfo a un grupo

Más detalles

SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES.

SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES. SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES La construcción más habitual, es la que se utiliza los límites las sucesiones de Cauchy del cuerpo Donde Una sucesión, se dice que es de CAUCHY si satisface:

Más detalles

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd)

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd) TEMA 3 Anillos. Dominios euclídeos. Ejercicio 3.1. Sea X un conjunto no vacío y R = P(X), el conjunto de partes de X. Si se consideran en R las operaciones: A + B = (A B) (A B) A B = A B demostrar que

Más detalles

Ejercicios de Estructuras Algebraicas 1

Ejercicios de Estructuras Algebraicas 1 Ejercicios de Estructuras Algebraicas 1 Números enteros y polinomios 1. Para cada una de las siguientes parejas de números enteros, hallar el máximo común divisor, el mínimo común múltiplo y una identidad

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO 1 2 cíclicos 3 Subgrupos 4 Algoritmos 5 ElGamal Definición Un grupo es un conjunto de elementos sobre los cuales

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

ELEMENTOS DE TEORÍA DE GRUPOS

ELEMENTOS DE TEORÍA DE GRUPOS ELEMENTOS DE TEORÍA DE GRUPOS CÉSAR ROSALES. TOPOLOGÍA II El objetivo de estas notas es recoger una serie de herramientas algebraicas que se utilizarán a lo largo de la asignatura. Expondremos las diferentes

Más detalles

Algebra Abstracta. 28 de diciembre de 2007

Algebra Abstracta. 28 de diciembre de 2007 Álgebra Abstracta. 28 de diciembre de 2007 2 Índice general 1. Grupos. 5 1.1. Semigrupos, monoides y grupos.......................... 5 1.1.1. Ejemplos de grupos............................. 7 1.2. Subgrupos......................................

Más detalles

Descomposición de dos Anillos de Funciones Continuas

Descomposición de dos Anillos de Funciones Continuas Miscelánea Matemática 38 (2003) 65 75 SMM Descomposición de dos Anillos de Funciones Continuas Rogelio Fernández-Alonso Departamento de Matemáticas Universidad Autónoma Metropolitana-I 09340 México, D.F.

Más detalles

1 Introducción al Álgebra conmutativa

1 Introducción al Álgebra conmutativa 1 Introducción al Álgebra conmutativa Escrito por: Patrizio Guagliardo y Miguel Monsalve. A continuación, daremos algunas definiciones básicas de estructuras algebraicas para empezar a trabajar rápidamente

Más detalles

Teoría de Geometría Afín y Proyectiva (G.A.P.) L A TEX

Teoría de Geometría Afín y Proyectiva (G.A.P.) L A TEX Teoría de Geometría Afín y Proyectiva (G.A.P.) L A TEX Juan Miguel Ribera Puchades 2 de julio de 2007 1 Índice 1. Introducción 4 2. Tema 1: Espacio Afín 5 2.1. Definición, ejemplos y notación.................

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

Extensiones normales.

Extensiones normales. 10. TEORÍA DE GALOIS Este capítulo, donde se establece el Teorema Principal de la Teoría de Galois, puede ser considerado como la culminación de la asignatura. Aquí se relacionarán las Teorías de Grupos

Más detalles

P(f) : P(B) P(A) (A.2)

P(f) : P(B) P(A) (A.2) TEMA 2. APLICACIONES 227 Tema 2. Aplicaciones Definición A.2.1. Una correspondencia entre dos conjuntos A y B es un subconjunto del producto cartesiano A B. Una aplicación f entre dos conjuntos A y B es

Más detalles

Conjuntos, relaciones de equivalencia y aplicaciones

Conjuntos, relaciones de equivalencia y aplicaciones CAPíTULO 1 Conjuntos, relaciones de equivalencia y aplicaciones 1. Conjuntos La idea de conjunto es una de las más significativas en Matemáticas. La mayor parte de los conceptos matemáticos están construidos

Más detalles

Conjuntos, Aplicaciones y Relaciones

Conjuntos, Aplicaciones y Relaciones Conjuntos, Aplicaciones y Relaciones Curso 2017-2018 1. Conjuntos Un conjunto será una colección de objetos; a cada uno de estos objetos lo llamaremos elemento del conjunto. Si x es un elemento del conjunto

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

0.1. Homomorfismos de Grupos

0.1. Homomorfismos de Grupos 0.1. HOMOMORFISMOS DE GRUPOS 1 0.1. Homomorfismos de Grupos Definición 1 Sean (G, ) y (H, ) dos grupos. Una función f de G a H f : G H se dice ser a) Un homomorfismo si f(x y) = f(x) f(y), x, y (G, ),

Más detalles

ÁLGEBRA MODERNA. Índice 1. Los grupos A n y S n Cíclos. 3

ÁLGEBRA MODERNA. Índice 1. Los grupos A n y S n Cíclos. 3 ÁLGEBRA MODERNA DANIEL LABARDINI FRAGOSO TOMÓ ESTAS NOTAS: JAIME ALEJANDRO GARCÍA VILLEDA. FECHA: 8 DE MARZO DEL 2016. Índice 1. Los grupos A n y S n. 1 1.1. Cíclos. 3 1. Los grupos A n y S n. Fijemos

Más detalles

TEMA 5: NÚMEROS RACIONALES ÍNDICE:

TEMA 5: NÚMEROS RACIONALES ÍNDICE: TEMA 5: NÚMEROS RACIONALES ÍNDICE: 1 INTRODUCCIÓN 2 EL CONJUNTO DE LOS NÚMEROS RACIONALES 3 REPRESENTACIÓN GEOMÉTRICA DE LOS NÚMEROS RACIONALES 4 SUMA DE NÚMEROS RACIONALES 5 MULTIPLICACIÓN DE NÚMEROS

Más detalles

El grupo lineal proyectivo. Homologías. Afinidades.

El grupo lineal proyectivo. Homologías. Afinidades. Tema 3- El grupo lineal proyectivo Homologías Afinidades 31 El grupo lineal proyectivo Recordamos que en el tema anterior hemos definido, para una variedad lineal proyectiva L P n no vacía, el grupo lineal

Más detalles

Anillos de Galois. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014

Anillos de Galois. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014 Anillos de Galois XXVII Escuela Venezolana de Matemáticas EMALCA Edgar Martínez-Moro Sept. 2014 Definición y primeras propiedades Un anillo asociativo A se llama anillo de Galois (denotado GR por sus siglas

Más detalles

TIPOS DE GRUPOS. 1. Generadores Hemos visto que una buena idea para expresar un grupo es mediante

TIPOS DE GRUPOS. 1. Generadores Hemos visto que una buena idea para expresar un grupo es mediante TIPOS DE GRUPOS 1. Generadores Hemos visto que una buena idea para expresar un grupo es mediante generadores. Por ejemplo: C 8 = g 2π/8, D 6 = g 2π/6, r 0, S 3 = (12), (123), O(2, R) = g α, r 0 : α R y

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Estructuras algebraicas

Estructuras algebraicas Semana 11[1/22] 4 de mayo de 2007 Anillos y cuerpos Semana 11[2/22] Anillos Comenzamos ahora el estudio de estructuras algebraicas que tengan definidas dos operaciones, y las clasificaremos en anillos

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aplicaciones Lineales 1 / 47 Objetivos Al finalizar este tema tendrás que: Saber si una aplicación es

Más detalles

Chapter 1. Grupos. 1.1 Introducción

Chapter 1. Grupos. 1.1 Introducción Chapter 1 Grupos 1.1 Introducción La estructura de grupo es una de las más comunes en toda la matemática pues aparece en forma natural en muchas situaciones, donde se puede definir una operación sobre

Más detalles

Operaciones extendidas de conjuntos

Operaciones extendidas de conjuntos 234 A. GENERALIDADES DE TEORÍA DE CONJUNTOS Tema 3. Operaciones extendidas de conjuntos En este tema extenderemos las operaciones de conjuntos anteriormente definidas a familias arbitrarias de conjuntos.

Más detalles

Para mensajes:

Para mensajes: INTRODUCCION AL ALGEBRA. 4- ESTRUCTURAS ALGEBRAICAS. Apuntes de la Cátedra. Alberto Serritella. Colaboraron: Silvia Capalbo Cristian Mascetti. Vanesa Bergonzi Edición Previa CECANA CECEJS CET Junín 010.

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

Estructura de los Grupos

Estructura de los Grupos Capítulo 6 Estructura de los Grupos 6.1 Introducción En nuestro viaje dentro de la teoría de grupos, hemos estudiado muchos ejemplos de grupos interesantes, como los grupos de simetría, los enteros módulo

Más detalles

2. Estructuras Algebraicas

2. Estructuras Algebraicas 2. Estructuras Algebraicas 2.1. Conjuntos Un conjunto es una reunión en un todo de determinados objetos bien definidos y diferentes entre sí. Llamamos elementos a los objetos que lo forman. Requisitos:

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones PRACTICO 1: CONJUNTOS. 1. Conjuntos y funciones Es útil saber de memoria las siguientes propiedades de conjuntos y funciones. Tanto como saber las tablas. Ejercicio 1. Si I es un conjunto y A α es un conjunto

Más detalles

Conjuntos. Relaciones. Aplicaciones

Conjuntos. Relaciones. Aplicaciones Conjuntos. Relaciones. Aplicaciones Conjuntos 1. Considera el subconjunto A de números naturales formado por los múltiplos de 4 y el conjunto B N de los números que terminan en 4. Comprueba que A B y B

Más detalles

TEMA 1. Teoría de Conjuntos. Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos:

TEMA 1. Teoría de Conjuntos. Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos: TEMA 1 Teoría de Conjuntos Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos: i) A = { }, B = {{ }} ii) A = {, { }}, B = {, {, { }}} iii) A = {{ }, {, { }}}, B = {{ }} Ejercicio 1.2. Dar

Más detalles

Conjuntos relaciones y grupos

Conjuntos relaciones y grupos Matemáticas NS Conjuntos relaciones y grupos Tema opcional 2 Índice 1. Conjuntos y relaciones 5 1.1. Introducción.......................................... 5 1.2. Operaciones con conjuntos..................................

Más detalles

Cuerpo de Fracciones de un Anillo Íntegro

Cuerpo de Fracciones de un Anillo Íntegro Cuerpo de Fracciones de un Anillo Íntegro René A Hernández Toledo 1997 * Cuando se desarrollan los sistemas numéricos a partir los conjuntos, primeramente se construyen los números naturales. A partir

Más detalles

9.1 Primeras definiciones

9.1 Primeras definiciones Tema 9- Grupos Subgrupos Teorema de Lagrange Operaciones 91 Primeras definiciones Definición 911 Una operación binaria en un conjunto A es una aplicación α : A A A En un lenguaje más coloquial una operación

Más detalles

Anillos finitos locales

Anillos finitos locales Anillos finitos locales XXVII Escuela Venezolana de Matemáticas EMALCA Edgar Martínez-Moro Sept. 2014 Estructura de los anillos finitos Un anillo conmutativo A es local si tiene un único ideal maximal

Más detalles

Grupos y Subgrupos El concepto de grupo Sea G un conjunto no vacío y sea G G G

Grupos y Subgrupos El concepto de grupo Sea G un conjunto no vacío y sea G G G Capítulo 1 Grupos y Subgrupos 001. El concepto de grupo Sea G un conjunto no vacío y sea G G G una operación interna en G para la cual denotaremos a la imagen de un par (x, y) mediante xy. Supongamos que

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ximo Beneyto Tema: Pàgina : 49 APLICACIONES LINEALES Definición : Sean (E(K), +, A) y (F(K), +, A), Espacios Vectoriales construídos sobre un mismo cuerpo K, una aplicación f:e 6

Más detalles

MATE 4032: Álgebra Abstracta. 1. Suponga que I, J son ideales de un anillo R. Demuestre que I J es un ideal

MATE 4032: Álgebra Abstracta. 1. Suponga que I, J son ideales de un anillo R. Demuestre que I J es un ideal Solución Asignación 9. Universidad de Puerto Rico Río Piedras Facultad de Ciencias Naturales Departamento de Matemáticas San Juan Puerto Rico MATE 4032: Álgebra Abstracta 1. Suponga que I J son ideales

Más detalles

Espacios Vectoriales. Tema Introducción. 1.2 Repaso de Estructuras Algebraicas

Espacios Vectoriales. Tema Introducción. 1.2 Repaso de Estructuras Algebraicas Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas se han escrito con el ánimo de facilitar al estudiante una guía para el estudio de la asignatura, y no como un libro de texto o manual de Álgebra

Más detalles

La estructura de un cuerpo finito.

La estructura de un cuerpo finito. 9. CUERPOS FINITOS El objetivo de este capítulo es determinar la estructura de todos los cuerpos finitos. Probaremos en primer lugar que todo cuerpo finito tiene p n elementos, donde p es la característica

Más detalles

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 - CICLO 01-2015 Estudiante: Grupo: 1. Aplicaciones 1.1. Aplicaciones.

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r AMPLIACIÓN DE MATEMÁTICAS CONGRUENCIAS DE ENTEROS. Dado un número natural m N\{0} sabemos (por el Teorema del Resto) que para cualquier entero a Z existe un único resto r de modo que con a = qm + r r {0,

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS GRUPOS CÍCLICOS. Los grupos que pueden ser generados por un único elemento se llaman Grupos Cíclicos. Un único elemento como generador hace que sea fácil trabajar con ellos. Además,

Más detalles

Grupos. Subgrupos. Teorema de Lagrange. Operaciones.

Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1 Tema 1.-. Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1.1. Primeras definiciones Definición 1.1.1. Una operación binaria en un conjunto A es una aplicación α : A A A. En un lenguaje más coloquial

Más detalles

Álgebra Moderna (Teoría de Grupos) por María Luisa Pérez Seguí

Álgebra Moderna (Teoría de Grupos) por María Luisa Pérez Seguí Álgebra Moderna (Teoría de Grupos) por María Luisa Pérez Seguí Introducción Se presenta aquí el material correspondiente a un curso de Teoría de Grupos introductorio. El material del libro constituye el

Más detalles

TEORÍA DE GRUPOS (Parte 1)

TEORÍA DE GRUPOS (Parte 1) TEORÍA DE GRUPOS (Parte 1 OPERACIONES BINARIAS Sea A un conjunto. Una relación de A A en A es una operación inaria (o ley de composición interna si es una función. La imagen del elemento (a, A A mediante

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Repaso de Estructuras Algebraicas 1. Producto cartesiano de conjuntos. Dados los conjuntos A y B, se llama producto cartesiano de A y B, y se denota por A B al conjunto

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Estructuras Algebraicas Luis Manuel Hernández Ramos 12 24 de mayo de 2007 1 Centro de Calculo Científico y Tecnológico, Facultad de Ciencias, Universidad Central de Venezuela, Caracas. 2 e-mail: luish@kuaimare.ciens.ucv.ve

Más detalles

Fundamentos algebraicos

Fundamentos algebraicos Fundamentos algebraicos 1. Grupos Sea S un conjunto. Se denota con S S el conjunto de los pares ordenados (s, t) con s, t en S. Un mapeo de S S en S se llama operación binaria en S. Esta definición requiere

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

TEMA 4. APLICACIONES LINEALES

TEMA 4. APLICACIONES LINEALES TEMA 4. APLICACIONES LINEALES 1.- Definición y propiedades. 2.- Aplicaciones lineales inyectivas y Suprayectivas. 3.- Núcleo, imagen, matriz asociada y rango de una aplicación lineal. 4.- Operaciones con

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Algebra I (Doble Grado Matemáticas-Informática)

Algebra I (Doble Grado Matemáticas-Informática) Algebra I (Doble Grado Matemáticas-Informática) Relación 1 Curso 2017-2018 Conjuntos y aplicaciones. Ejercicio 1. Construir todas las aplicaciones del conjunto X = {a, b, c} en el conjunto Y = {1, 2} y

Más detalles

ÁLGEBRA I. Curso Grado en Matemáticas

ÁLGEBRA I. Curso Grado en Matemáticas ÁLGEBRA I. Curso 2012-13 Grado en Matemáticas Relación 1: Lógica Proposicional y Teoría de Conjuntos 1. Establecer las siguientes tautologías: (a) A A A (b) A A A (c) A B B A (d) A B B A (e) (A B) C A

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas están elaboradas pensando simplemente en facilitar al estudiante una guía para el estudio de la asignatura, y en consecuencia se caracterizan por

Más detalles

Aplicaciones lineales

Aplicaciones lineales Aplicaciones lineales María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Aplicaciones lineales Matemáticas I 1 / 32 Contenidos 1 Definición y propiedades Definición de aplicación

Más detalles

Definición 1. Dado un conjunto C una aplicación definida por : C C C

Definición 1. Dado un conjunto C una aplicación definida por : C C C ESTRUCTURAS ALGEBRAICAS. En matemáticas aparecen distintos conjuntos cuyos elementos podemos operar de alguna manera. Los conjuntos de números usuales: N, Z, Q, y R son unos ejemplos claros. Otros ejemplos

Más detalles

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017 Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/2017 12 de septiembre de 2017 Ejercicio 1. Se pide lo siguiente: 1. (2 puntos) Dados unos conjuntos X, Y, unos subconjuntos A X,

Más detalles

EL GRUPO FUNDAMENTAL FRANCISCO URBANO

EL GRUPO FUNDAMENTAL FRANCISCO URBANO EL GRUPO FUNDAMENTAL FRANCISCO URBANO 1. Espacios conexos por arcos Definición 1. Un arco o camino (continuo) en un espacio topológico X es una aplicación continua f : [a, b] X, siendo [a, b] el intervalo

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que

Más detalles