Guía de Funciones Cuadráticas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Guía de Funciones Cuadráticas"

Transcripción

1 Colegio Raimapu Departamento de Matemática Guía de Funciones Cuadráticas Nombre del Estudiante: ) Cuál de los siguientes gráficos representa a la función f() =? A) B) C) D) E) º Medio ) El punto que no pertenece a la función = es: A) (,4) B) (-,0) C) (0,) D) (,9) E) (,) ) En la función = 4 4, las coordenadas de su vértice son: A), 4 B), 4 4) El recorrido de la función del ejercicio anterior es: C) (, 4) D) (,4) A) [ 4, [ B) ], 4] C) ],4] D) [, [ E), 4 4 E) N.A ) Dada la función f () =, el menor valor perteneciente al recorrido es A) - B) C) - D) 4 E) -4 ) La gráfica de la función cuadrática f() = (-) () corta al eje en A) B) C) D) E) 7) Cuál de los siguientes puntos no pertenece a la función cuadrática f ( ) =? A) (0,) B) (,0) C) (-,0) D) (,-) E) (,) 8) Las coordenadas del vértice del gráfico de la función f() = son A) (-, 4) B) (, ) C) (-, ) D) (0, ) E) (, 0) 9) Cuál de las siguientes figuras representa mejor al gráfico de la función f() =? 0) La figura representa el gráfico de f()=a bc. Se verifica que: f() A) a<0; c<0 B) a<0; c>0 C) a>0; c>0 D) a>0; c<0 E) Falta información ) Si f() = k si k > 0. Entonces la gráfica que corresponde a esta función es: A ) B ) C ) D ) E )

2 ) Cuál de las siguientes funciones puede representar la parábola de la figura? A) f() = B) f() = C) f() = ( ) D) f() = - E) f() = ( ) ) Cuál de los siguientes gráficos representa mejor a la función f() = - 4? A) B) C) D) E) 4) Si en la función f() = a b, a b son no nulos de signos opuestos, entonces cuál(es) de los siguientes gráficos puede(n) representar la función f()? I) II) III) IV) A) Sólo II B) Sólo III C) Sólo I III D) Sólo I IV E) Sólo I, III IV ) La parábola de la figura, es la representación gráfica de la función f() = c b a. Del gráfico se puede deducir que A) a < 0 b 4ac = 0 B) a > 0 b 4ac = 0 C) a < 0 b 4ac > 0 D) a > 0 b 4ac < 0 E) Nada se puede deducir Y X ) La intersección de la parábola 4 A) (,0) = con el eje es en los puntos:,0,0,0,,,0 (,0) B) (,0) ( ) C) ( ) ( ) D) ( 0 ) ( 0 ) E) ( ) (,0) 7) La intersección de la parábola = 4 4 con el eje es en el punto:,,,0 E) No se puede determinar A) (,0) B) ( 0 ) C) ( 0 ) D) ( ) 8) La función que representa la curva dada es: A) = 4 B) = 4 C) = 4 D) = 4 E) = 4-4

3 9) La función cua gráfica es la dada en la figura cumple las siguientes condiciones: A) > 0 ; a < 0 B) = 0 ; a > 0 C) = 0 ; a < 0 D) < 0 ; a > 0 E) > 0 ; a > 0 0) La gráfica que representa mejor a la función f() = (X ) es: A) B) C) D) E) ) El recorrido de la función cuadrática f() = 4-9=0 es: A) [-, ] B) [, ] B) 0 D) R (números reales) E) N.A. ) La función f() = -8 intersecta al eje en el punto: A) (, 0) B) (4, 0) C) (0, 8) D) (8, 0) E) (, 0) (4, 0) ) La función f()= --0 intersecta el eje en los puntos: A) (0, -0) B) (-0, 0) C) (-,0) (,0) D) (0, ) (0, -) E) (0, 0) 4) La ecuación de segundo grado 4 7 = 0, tiene: A) Dos soluciones reales, iguales B) Dos soluciones reales, distintas C) Dos soluciones complejas D) Una solución real una compleja E) No tiene solución ) El eje de simetría de la función: 0-9 es: A) = B) = C) = - D) = - E) 9 = - ) Cuál(es) de las siguientes parábolas ubicadas en un plano cartesiano corresponde(n) a la función f() = a b c, con a > 0, b - 4ac < 0 c > 0? A) Sólo I B) Sólo II C) Sólo III D) Sólo II III E) Ninguna de ellas.

4 7) En qué punto se encuentra el vértice de la función cuadrática f() = - 4 8? A) (, 4) B) (4, ) C) (, ) D) (, 8) E) (4, 4) 8) Cuál es el punto mínimo de la parábola: = 4 -? A) (-, -9) B) (, 9) C) (-, 9) D) (,-9) E) (-,8) 9) Cuál es el punto máimo de la parábola: = - 8-0? A) (-, -) B) (, ) C) (-, ) D) (,-) E) (-,4) 0) En qué puntos se intersectan la función cuadrática f() = la recta = -? A) (-, ) (-4, ) B) (-, -) (-4, -) C) (, -) (4, -) D) (-4, ) (4, ) E) (, ) (-4, ) ) En qué puntos se intersectan las parábolas f() = - 8 f() =- - 8? A) (-4, 0) (, 0) B) (4, 0) (-, 0) C) (-8, 0) (4, 0) D) (-4, ) (, ) E) No se intersectan ) Dada una ecuación cuadrática cuo discriminante es uno, se puede determinar que: A) No tiene raíces reales. B) Tiene dos raíces reales distintas. C) Tiene dos raíces reales e iguales. D) Tiene sólo una raíz real. E) Las dos raíces siempre son positivas. ) Dada la parábola: = - 4, en qué puntos intersecta al eje X? A) (-, 0) (-, 0) B) (0, ) (0, ) C) (-, 0) (, 0) D) (, 0) (, 0) E) (0, -) (0, -) 4) Si el discriminante de la ecuación de segundo grado asociada a una función cuadrática es 0, cuál(es) de las siguientes afirmaciones es(son) VERDADERA(S)? I. La parábola es tangente al eje X. II. El vértice está ubicado en el eje X. III. Las raíces de la ecuación de segundo grado asociada a la función son reales e iguales. A) Sólo I II B) Sólo I III C) Sólo II III D) I, II III E) Ninguna de ellas. ) Determine cuál de las siguientes parábolas corta al eje X. A) = 9 8 B) = C) = - 4 D) = 8 7 E) Todas cortan al eje X. ) Para que la ecuación ( ) = k carezca de raíces reales, deberá cumplirse que: A) k < - B) k > - C) k D) k < E) k > 7) Sea f() = 4 -, entonces, el mínimo valor que toma la función es : A) B) 8 C) 0 D) E) 8) Para qué valor de k, la parábola = k intersecta en un punto al eje? A) B) C) D) E) Ninguno de ellos 9) Sea f() = - 0, cuál(es) de las siguientes afirmaciones es(son) verdadera(s)? I) El gráfico de la función intersecta al eje X en puntos II) f (-)> 0 III) Su valor mínimo es -4 A) Sólo I B) Sólo II C) Sólo III D) Sólo I III E) I, II III 40) Sea f() = - - 4, entonces, el máimo valor que toma la función es: A) B) 8 C) 0 D) E) 4) La intersección de la parábola cua ecuación es = con el eje es en los puntos A), B),0 (-,0) C) 0, (0,-) D) 0, (0,) E),0 4) El vértice de la parábola cua ecuación es = 4 tiene por coordenadas (-,0) A) (,-) B) (,) C) (-,) D) (-,-) E) (0,-4) 4) Qué valor debe tener k en la función = k para que el punto (0,0) pertenezca a ella? A) 0 B) C) - D) 44) La función que representa la curva dada es: A) = E) B) = C) = D) = E) = - 4

5 4) A partir del siguiente gráfico podemos afirmar que la ecuación cuadrática asociada. A) Tiene solución imaginaria B) Tiene una raíz negativa C) Tiene raíces reales e iguales D) Tiene raíces reales distintas E) No tiene solución 4) La gráfica de la ecuación cuadrática = intersecta al eje en el punto: A), B),0 C) ( 0, ) D) (0,-) E) (-,0) 47) La función asociada al gráfico es: A) = B) = C) = D) = E) = - 48) La gráfica de la función = 8 intersecta al eje en: A) B) - C) - D) E) - 4 9) La función cua gráfica es la dada en la figura cumple las siguientes condiciones: A) > 0; a > 0 B) = 0; a < 0 C) > 0; a < 0 D) < 0; a < 0 E) = 0; a > 0 0) La función cua gráfica es la dada en la figura cumple las siguientes condiciones: A) = 0 ; a > 0 B) = 0 ; a < 0 C) = 0 ; a = 0 D) > 0 ; a > 0 E) < 0 ; a < 0 ) La gráfica de la función = intersecta al eje en: A) 0 B) 0 C) 0 D) 0 E) 0 ) La gráfica de la función = intersecta al eje en: A) = B) = 0 C) = - D) = - E) No lo intersecta ) Las coordenadas del vértice de la parábola cua función es = 9 8 son: A),9 B), 9 C), 9 4) El recorrido de la función =,,, A) ] ] B) ] ] es: D), 9 C) [ [ D) [, [ ) El recorrido de la función = es:,,, A) [ [ B) [ [ ) La función asociada al gráfico es: A) = 4 4 E) (, 9) E) [, ] C) ] ] D) ],] E) [,] B) = 4 4 C) = 4 4 D) = 4 4 E) = 4 4

6 7) El vértice de la parábola representado por la función = es: A) (0,0) B) (0,-) C) (0,) D) (0,) E) (0,-) 8) las coordenadas del punto en que la parábola asociada a la función f ( ) = 7 9 intersecta al eje Y son: A) (-9,0) B) (0,-9) C) (9,0) D) (0,9) E) No se puede determinar 9) Los ceros de la función = son: A) 4 B) 4 0 C) -4 D) 0 E) ) En la función = 4 4, las coordenadas de su vértice son: A), 4 C), 4 D) (,4) E), 4 f = 7 es: B) (, 4) ) El punto mínimo de la función ( ) 7 7 B), C) ( 7, 7) D) 7 7, = = A) ( 7,7) E) (,) ) Dadas las funciones f ( ), g ( ), r ( ) = A) Todas tienen su vértice en el punto (0,0) B) Todas tienen su concavidad positiva eje de simetría cua ecuación es = 0 C) Todas tienen igual eje de simetría D) Todas tienen concavidad positiva e intersectan al eje en el mismo punto, se afirma que: E) todas las afirmaciones anteriores son falsas ) La función = alcanza su máimo valor para: A) = B) = C) = D) = E) = 4) Sea la función f ( ) = 9 4. Determina en qué puntos el gráfico de la función corta al eje X. 9 ± 7 A) - -7 B) C) 9-4 D) 7 E) No corta el eje X. ) Se puede determinar el eje de simetría de la parábola cua función es f() = b c si: () b = - 4 () c = - A) () por sí sola. B) () por sí sola. C) Ambas juntas, () (). D) Cada una por sí sola. E) Se requiere información adicional. ) Se puede determinar que la representación gráfica de la función a b c = 0 intersecta en un punto al eje X si: () b = -8 () c = 0 A) () por sí sola. B) () por sí sola. C) Ambas juntas, () (). D) Cada una por sí sola, () ó (). E) Se requiere información adicional.

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN 1) El vértice de la parábola f ( x) x² 8x 5 corresponde al par ordenado: a) (4,11) b) (4, 11) c) ( 8,5) d) ( 4,11) e)

Más detalles

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23 C u r s o : Matemática Material N 9 GUÍA TEÓRICO PRÁCTICA Nº 3 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA GUÍA TEÓRICO PRÁCTICA Nº8 A la función de segundo grado f() = a + b + c, siendo a, b, c lr a 0 se le denomina función cuadrática. La

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA II

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA II C u r s o : Matemática 3º Medio Material Nº MT-11 UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA II INTERSECCIÓN CON EL EJE Y La parábola asociada a la función = a + b + c siempre intersecta al eje de

Más detalles

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1-

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1- Colegio Raimapu Departamento de Matemática Guía de Ejercicios Funciones Nombre del Estudiante: IV Medio Debes copiar cada enunciado en tu cuaderno realizar el desarrollo, indica la respuesta correcta en

Más detalles

Clase. Función cuadrática y ecuación de segundo grado

Clase. Función cuadrática y ecuación de segundo grado Clase Función cuadrática y ecuación de segundo grado Aprendizajes esperados Aplicar los conceptos matemáticos asociados al estudio de la función cuadrática. Graficar una función cuadrática, determinando

Más detalles

4 E.M. Curso: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: Unidad de Aprendizaje: Función Cuadrática y Función Raíz Cuadrada.

4 E.M. Curso: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: Unidad de Aprendizaje: Función Cuadrática y Función Raíz Cuadrada. Curso: Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Función Cuadrática y Función Raíz Cuadrada Habilidad: 4 E.M. 8 Racionamiento Matemático/ Comprensión, Aplicación/ A.S.E. Valores/

Más detalles

GUIA Nº3. FUNCIONES 2º MEDIO A) 30 B) 20 C) 10 D) 0 E) -10. A) sólo I B) sólo III C) I y II D) II y III E) I, II y III

GUIA Nº3. FUNCIONES 2º MEDIO A) 30 B) 20 C) 10 D) 0 E) -10. A) sólo I B) sólo III C) I y II D) II y III E) I, II y III Colegio Raimapu Departamento de Matemática GUIA Nº. FUNCIONES º MEDIO 1. Si f(x)= x + 10 y f(b)= 0, entonces b es igual a: A) 0 B) 0 C) 10 D) 0 E) -10. Si f(x) = x ; Cuál(es) de las siguientes afirmaciones

Más detalles

I) La pendiente de PS es cero. II) La pendiente de RQ es negativa. III) La pendiente de SR NO es un número real.

I) La pendiente de PS es cero. II) La pendiente de RQ es negativa. III) La pendiente de SR NO es un número real. Programa Estándar Anual Nº Guía práctica Ecuación de la recta en el plano cartesiano Ejercicios PSU 1. En la figura, PQRS es un trapecio. Entonces, cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

Guía de trabajo matemáticas

Guía de trabajo matemáticas Guía de trabajo matemáticas 3 año medio 016 Primer semestre Profesor: Gino Mangili Cuadra DEPARTAMENTO DE MATEMATICA Compendio Matemática 3 año medio Nombre: Curso: Números Complejos Reseña histórica:

Más detalles

FUNCIÓN. La Respuesta correcta es D

FUNCIÓN. La Respuesta correcta es D FUNCIONES FUNCIÓN La Respuesta correcta es D FUNCIÓN Función Continua: Es aquella en la que su gráfica se puede recorrer en forma ininterrumpida en toda su extensión. FUNCIÓN Función Discontinua: Es aquella

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

Guía de Matemática Tercero Medio

Guía de Matemática Tercero Medio Guía de Matemática Tercero Medio Aprendizaje Esperado: 1. Plantean y resuelven problemas que involucran ecuaciones de segundo grado; explicitan sus procedimientos de solución y analizan la existencia y

Más detalles

CÁLCULO. Función Lineal. Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en.

CÁLCULO. Función Lineal. Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en. Función Lineal Se llama función lineal a toda función que tiene la forma:. con Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en. Muchas son

Más detalles

FUNCIONES E INTERPRETACION DE GRÁFICOS

FUNCIONES E INTERPRETACION DE GRÁFICOS FUNCIONES E INTERPRETACION DE GRÁFICOS. Cuál(es) de las siguientes aseveraciones es(son) verdaderas respecto del gráfico de la función f(), en la figura? I) f(-) > f() II) f(-) + f() = f(-) III) f(-6)

Más detalles

LA INTERCEPCIÓN DE LA PARABOLA CON EL EJE X, depende del signo del Discriminante. >0, la parábola intercepta al eje OX en dos puntos.

LA INTERCEPCIÓN DE LA PARABOLA CON EL EJE X, depende del signo del Discriminante. >0, la parábola intercepta al eje OX en dos puntos. AX +BX+C=0, representa la ecuación general de segundo grado, a la cual se asocia la función de segundo grado representada por: F(x)= AX +BX+C En ella se define: : Aquel o aquellos que toma x para el cual

Más detalles

, x es la variable independiente e y es la variable dependiente.

, x es la variable independiente e y es la variable dependiente. INSTITUCIÓN EDUCATIVA COLEGIO ARTÍSTICO RAFAEL CONTRERAS NAVARRO OCAÑA N.S. ASIGANTURA: MATEMÁTICAS OCTAVO GRADO DOCENTE: Esp. HENRY CARRASCAL C. III PERÍODO FUNCIÓN Y ECUACIÓN CUADRÁTICA 1. DEFINICIÓN

Más detalles

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,

Más detalles

Programa Entrenamiento MT-21

Programa Entrenamiento MT-21 Programa Entrenamiento MT-1 SOLUCIONARIO Guía de ejercitación avanzada Función potencia y función raíz cuadrada SGUICEN05MT1-A16V1 TABLA DE CORRECCIÓN Guía de ejercitación Función potencia y función raíz

Más detalles

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1

Más detalles

Funciones. f : A B. Dominio: Es el conjunto de todos los valores para los cuales está definida la función y se denota Dom(f).

Funciones. f : A B. Dominio: Es el conjunto de todos los valores para los cuales está definida la función y se denota Dom(f). Funciones Definición Sean A y B conjuntos no vacíos. Una función de A en B es una relación que asigna a cada elemento x del conjunto A uno y sólo un elemento y del conjunto B. Se expresa como: Notación:

Más detalles

Este trabajo debe realizarce después de haber trabajado el taller virtual

Este trabajo debe realizarce después de haber trabajado el taller virtual Este trabajo debe realizarce después de haber trabajado el taller virtual qué se encuentra en la http://ceciba.escuelaing.edu.co/mre página bajo la pestaña de Talleres Virtuales.. Para las guientes funciones:

Más detalles

Guía de Matemática NM 3: Inecuaciones

Guía de Matemática NM 3: Inecuaciones Centro Educacional San Carlos de Aragón. Coordinación Académica Enseñanza Media. Sector: Matemática. Nivel: NM Prof.: Ximena Gallegos H. Guía de Matemática NM : Inecuaciones Nombre(s): Curso: Fecha. Contenido:

Más detalles

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera:

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera: Funciones cuadráticas Función cuadrática Deinición: Una unción cuadrática es una unción : R R deinida por la ormula = a + b + c Donde a, b y c son números reales y a 0. Esta epresión de la unción cuadrática

Más detalles

EJERCICIOS DE REFUERZO FUNCIONES 1) Calcula f(0), f(1), f(-1), f(2) y f(-3) de las siguientes funciones: 1

EJERCICIOS DE REFUERZO FUNCIONES 1) Calcula f(0), f(1), f(-1), f(2) y f(-3) de las siguientes funciones: 1 EJERCICIOS DE REFUERZO FUNCIONES 1) Calcula f(0), f(1), f(-1), f() y f(-3) de las siguientes funciones: 1 a) f () b)f () 3 c) f () ) Calcula f(3) f(-1) f(4) y f(-4) 4º ESO B d) f () 3) Cuáles de las siguientes

Más detalles

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo. SEMESTRE 018-1 SERIE CURVAS EN EL PLANO POLAR 1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.. Determinar las coordenadas polares del punto C simétrico

Más detalles

MATEMÁTICAS III CICLO COMÚN III PARCIAL UNIDDA DIDÁCTICA #3 FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS

MATEMÁTICAS III CICLO COMÚN III PARCIAL UNIDDA DIDÁCTICA #3 FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS UNIDDA DIDÁCTICA #3 CONTENIDO FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS OBJETIVOS Conocer la definición de la función cuadrática. Estudiar las propiedades de las funciones

Más detalles

FUNCIONES Y SUS GRÁFICAS. APLICACIONES GRADO: 11º AREA: MATEMÁTICAS.

FUNCIONES Y SUS GRÁFICAS. APLICACIONES GRADO: 11º AREA: MATEMÁTICAS. Gestores de Calidad 05 INSTITUCIÓN EDUCATIVA DEPARTAMENTAL RURAL EL ALTICO MUNICIPIO DE COGUA ESTRUCTURA CURRICULAR TECNICO PROFESIONAL EN AGROINDUSTRIA En equipo trabajando, personas mejorando FUNCIONES

Más detalles

Guía de aprendizaje Nº 2

Guía de aprendizaje Nº 2 Liceo Polivalente Juan Antonio Ríos Quinta Normal NIVEL : TERCERO MEDIO Guía de aprendizaje Nº 2 Unidad Temática: FUNCION CUADRATICA Objetivo General: Graficar y analizar las raices de la funcion cuadratica.

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5. Graficar. R: (x +8) 2 + (y 2) 2 = 25

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5. Graficar. R: (x +8) 2 + (y 2) 2 = 25 SECCIONES CONICAS CIRCUNFERENCIA 1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) r = 5. Graficar. R: ( +8) 2 + ( 2) 2 = 25 2- Dar la ecuación general de la circunferencia de centro

Más detalles

Es el estudio de la geometría a través de técnicas análisis matemático y el álgebra. y = mx + n. La recta intersecta al eje Y en el punto (0, n).

Es el estudio de la geometría a través de técnicas análisis matemático y el álgebra. y = mx + n. La recta intersecta al eje Y en el punto (0, n). Programa Acompañamiento Cuadernillo de ejercitación Ejercitación Ecuación de la recta GEOMETRÍA ANALÍTICA Qué es? Es el estudio de la geometría a través de técnicas del análisis matemático el álgebra.

Más detalles

FUNCIONES CUADRÁTICAS

FUNCIONES CUADRÁTICAS FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto

Más detalles

Guía Nº 2 Transformaciones Isométricas

Guía Nº 2 Transformaciones Isométricas Colegio Raimapu Departamento de Matemática Nombre Alumno o Alumna: Guía Nº 2 Transformaciones Isométricas Curso: Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo indicando la respuesta

Más detalles

C.P.U. MATEMATICA Trabajo Práctico 2 FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA.

C.P.U. MATEMATICA Trabajo Práctico 2 FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. UNSAM º cuatrimestre 008 I. FUNCIONES C.P.U. MATEMATICA Trabajo Práctico FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA.. De acuerdo a la siguiente descripción:

Más detalles

Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro)

Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro) (tema 7 del libro) 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto

Más detalles

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4 NÚMEROS COMPLEJOS (C) DEFINICIÓN DE LA UNIDAD IMAGINARIA El cuadrado de un número real siempre es no negativo. Por ejemplo, no existe ningún número real x para el cual x 2 = -1. Para remediar esta situación,

Más detalles

Resolver las actividades propuestas en el taller anexo y posteriormente realizar la sustentación de dicho trabajo de manera escrita y oral.

Resolver las actividades propuestas en el taller anexo y posteriormente realizar la sustentación de dicho trabajo de manera escrita y oral. Secretaria de Educación Bogotá D.C. COLEGIO INSTITUTO TECNICO JUAN DEL CORRAL "La formación humana, científica tecnológica en el desarrollo del ciudadano del siglo XXI" MODALIDAD TÉCNICA CON ESPECIALIZACIÓN

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 02 de 2012

UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 02 de 2012 UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 0 de 0 PARTE I: Ejercicios cortos de selección Múltiple. En cada uno de los siguientes

Más detalles

Ejercicios de funciones

Ejercicios de funciones Matemáticas 4º ESO. Ejercicios Tema 0. Funciones. Pág /6. Sean las funciones: Ejercicios de funciones Calcular:. Dadas las funciones: Calcular: Probar que: Probar que: 3. Dadas las funciones: Calcular:

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que

Más detalles

( ) ( ) -3. Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir,

( ) ( ) -3. Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir, Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir, f : x y Definida así: f ( x) = ax + bx + c donde a, b c R.(Por un Polinomio de º grado). Su gráfica es una

Más detalles

Nombre: + x + 2, se pide:

Nombre: + x + 2, se pide: IES ATENEA er CONTROL MATEMÁTICAS B 4º ESO GRUPO: BC Nombre: Evaluación: Segunda Fecha: 6 de febrero de 00 NOTA Ejercicio nº - a) Calcula el dominio de definición de función f() b) Calcula la tasa de variación

Más detalles

Función cuadrática. Ecuación de segundo grado completa

Función cuadrática. Ecuación de segundo grado completa Función cuadrática Una función cuadrática es aquella que puede escribirse como una ecuación de la forma: f(x) = ax 2 + bx + c donde a, b y c (llamados términos) son números reales cualesquiera y a es distinto

Más detalles

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 FUNCIONES LINEALES 1.- FUNCIÓN CONSTANTE Una función constante es aquella en la cual el valor de la variable dependiente siempre

Más detalles

Esta es la gráfica de la función lineal y = 3x + 2 Vemos que m = 3 y b = 2 (de la forma y = mx + b)

Esta es la gráfica de la función lineal y = 3x + 2 Vemos que m = 3 y b = 2 (de la forma y = mx + b) FUNCIÓN LINEAL Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio también todos los números reales, y cuya expresión analítica es un polinomio de primer grado.

Más detalles

La gráfica de la ecuación y = x 2

La gráfica de la ecuación y = x 2 INSTITUTO TECNOLÓGICO DE COSTA RICA UNIVERSIDAD DE COSTA RICA Randall Blanco B. La gráfica de la ecuación y = x 2 Cuando se habla de la gráfica de una ecuación con dos incógnitas, se hace referencia a

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA 1) La recta r 1, tiene ordenada al origen 4 y forma con los ejes coordenados en el segundo cuadrante, un triángulo de área 16. Determinar la distancia del punto

Más detalles

Listo para seguir? Intervención de destrezas

Listo para seguir? Intervención de destrezas 9A Listo para seguir? Intervención de destrezas 9-1 Cómo identificar funciones cuadráticas Busca estas palabras de vocabulario en la Lección 9-1 el Glosario multilingüe. Vocabulario función cuadrática

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

Otras Funciones Relevantes

Otras Funciones Relevantes PreUnAB Clase # 14 Septiembre 2014 Función Cuadrática o de Segundo Grado Definición de la función cuadrática La función cuadrática tiene la forma general: f(x) = ax 2 + bx + c Dominio y recorrido de la

Más detalles

Funciones I. Clasificación de funciones. PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES MATEMÁTICA Guía Teórico Práctica N 8.

Funciones I. Clasificación de funciones. PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES MATEMÁTICA Guía Teórico Práctica N 8. Funciones I Una función es una regla que relaciona los elementos de dos conjuntos y, es decir a todos los elementos del conjunto, que llamaremos dominio se le asigna por medio de alguna regla, uno y sólo

Más detalles

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura.

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura. Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 2014 Prof. K. Chang. Rectas y Cónicas Guía

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación

Más detalles

La gráfica de la ecuación

La gráfica de la ecuación INSTITUTO TECNOLÓGICO DE COSTA RICA UNIVERSIDAD DE COSTA RICA Randall Blanco B. La gráfica de la ecuación Cuando se habla de la gráfica de una ecuación con dos incógnitas, se hace referencia a la representación

Más detalles

Los números reales CAPÍTULO Desigualdades tipo ax 2 C bx C c 0 con a 0

Los números reales CAPÍTULO Desigualdades tipo ax 2 C bx C c 0 con a 0 CAPÍTULO Los números reales.7.8 Desigualdades tipo a C b C c 0 con a 0 Se considera a 0 a que a D 0 nos daría una desigualdad del tipo b C c 0 estudiado. Para resolver en general la desigualdad a C b C

Más detalles

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS Asignatura: Matemática 1 Ciclo Lectivo: 014 CONICAS La superficie que se muestra en la figura se llama doble cono circular recto, o simplemente cono. Es la superficie tridimensional generada por una recta

Más detalles

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5.Graficar.

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5.Graficar. SECCIONES CONICAS CIRCUNFERENCIA 1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) r = 5.Graficar. R: ( +8) 2 + ( 2) 2 = 25 2- Dar la ecuación general de la circunferencia de centro

Más detalles

EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:.

EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:. EJERCICIS RESUELTS TEMA 11 1. FUNCINES. FUNCIÓN LINEAL CUADRÁTICA Apellidos y Nombre:.Curso: º E.S.. Grupo:. 1 El coste del recibo del teléfono depende de los minutos hablados y una cuota fija de 1 euros.

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular

Más detalles

En todas las representaciones el valor de la constante a nos indica para donde abre la parábola: abre hacia arriba (a > 0) o hacia abajo (a < 0):

En todas las representaciones el valor de la constante a nos indica para donde abre la parábola: abre hacia arriba (a > 0) o hacia abajo (a < 0): COLEGIO COLOMBO BRITANICO DPTO DE MATEMATICAS TALLER DE FUNCION CUADRATICA Una función cuadrática se puede representar de tres formas diferentes, equivalentes entre si, cada una de las cuales suministra

Más detalles

Nombre: Curso: Fecha: -

Nombre: Curso: Fecha: - 1 Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 4: Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza

Más detalles

Guía N 2 Desigualdades e Inecuaciones. p < 0 E) x E) N.A IV) > 2 x C) x > 4 B) 4

Guía N 2 Desigualdades e Inecuaciones. p < 0 E) x E) N.A IV) > 2 x C) x > 4 B) 4 Colegio Raimapu Departamento de Matemática Guía N Desigualdades e Inecuaciones Nombre del Estudiante: π ) Para el conjunto de números reales A = R / es verdadero que: I) A II), A III) A ) Qué condición

Más detalles

FU CIÓ CUADRÁTICA. y = a.x 2 + b.x + c. Término Cuadrático Término Lineal Término Independiente. Matestay. a = 1 b = 4 c = 3. d 2.

FU CIÓ CUADRÁTICA. y = a.x 2 + b.x + c. Término Cuadrático Término Lineal Término Independiente. Matestay. a = 1 b = 4 c = 3. d 2. FU CIÓ CUADRÁTICA La función cuadrática es una función mu común en Matemática. Se trata de una función de segundo grado: la "" aparece elevada al cuadrado como máima potencia. Su representación gráfica

Más detalles

Guía de estudio Nº 3: Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas

Guía de estudio Nº 3: Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas U.C.V. Facultad de Ingeniería CÁLCULO I (5) Guía de estudio Nº : Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas.- Determine la ecuación del lugar geométrico de los puntos (, ) del plano

Más detalles

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1 UCV FACULTAD DE INGENIERIA CALCULO I 16/04/010 Solución al primer eamen parcial 1. Encuentre el conjunto de todos los números reales que satisfacen el sistema de inecuaciones - 3 4 4 0 1 1 1 Solución:

Más detalles

Formulario: Geometría Analítica

Formulario: Geometría Analítica Universidad Autónoma del Estado de México UAEM Facultad de Ingeniería Formulario: Geometría Analítica Elaborado por: Estudiante en Ingeniería en Electrónica Formulario Geometría Analítica 1. VECTORES EN

Más detalles

Las funciones son relaciones entre dos o más variables expresadas en una ecuación algebraica.

Las funciones son relaciones entre dos o más variables expresadas en una ecuación algebraica. FUNCIONES Y GRÁFICAS Las funciones son relaciones entre dos o más variables epresadas en una ecuación algebraica. or ejemplo, la epresión relaciona la variable con la variable mediante una regla de correspondencia

Más detalles

FUNCIÓN POLINOMIAL. Ing. Caribay Godoy

FUNCIÓN POLINOMIAL. Ing. Caribay Godoy FUNCIÓN POLINOMIAL OBJETIVOS Definir una función polinomial. Reconocer la función constante, lineal y cuadrática como casos particulares de una función polinomial Identificar el coeficiente principal de

Más detalles

DEFINICION DE RELACIÓN

DEFINICION DE RELACIÓN DEFINICION DE RELACIÓN Se Define como relación o correspondencia R entre los conjuntos B C, a un subconjunto del producto cartesiano B C, compuesto por pares de elementos que cumplen cierta regla definida.

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

2) Cuáles de las siguientes gráficas corresponden a funciones lineales constantes? x x x

2) Cuáles de las siguientes gráficas corresponden a funciones lineales constantes? x x x Practica función lineal dominio máimo por AMEX MATEMATICA Lic David Ordonez C. ) De acuerdo a la gráfica adjunta, la ecuación de la recta m es A) 3 B) C) 3 D) 3 m -3 ) Cuáles de las siguientes gráficas

Más detalles

Matemáticas 3. ax + by + c = 0

Matemáticas 3. ax + by + c = 0 Matemáticas 3 Ecuaciones Lineales Una ecuación lineal es una ecuación de primer grado con 2 incógnitas cuya forma general es: ax + by + c = 0 a, b, c son constantes reales, X, Y" son variables. Toda ecuación

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

Clase 3 Funciones lineal y cuadrática

Clase 3 Funciones lineal y cuadrática Clase 3 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2014 Función lineal Definición Una relación de la forma f(x) = mx+n, donde m, n R, se llama función lineal

Más detalles

Funciones lineales, cuadráticas y polinómicas.

Funciones lineales, cuadráticas y polinómicas. Funciones lineales, cuadráticas El objetivo de esta ejercitación es familiarizarse con las epresiones matemáticas de funciones lineales cuadráticas, así como con sus representaciones gráficas. Matemáticamente,

Más detalles

FAMILIAS DE FUNCIONES CUADRÁTICAS

FAMILIAS DE FUNCIONES CUADRÁTICAS funciomaticascom- Jaqueline Cruz-1 FAMILIAS DE FUNCIONES CUADRÁTICAS La mejor manera de estudiar las funciones consiste en agruparlas por familias, donde cada una de éstas guarda características comunes

Más detalles

TEMA 7. FUNCIONES ELEMENTALES

TEMA 7. FUNCIONES ELEMENTALES TEMA 7. FUNCIONES ELEMENTALES 8.1. Funciones cuya gráfica es una recta. - Función constante. - Función de proporcionalidad. - Función lineal. - Pendiente. 8.2. Función cuadrática. - Representación gráfica

Más detalles

Ecuación de la recta tangente

Ecuación de la recta tangente Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto

Más detalles

MATEMÁTICAS-FACSÍMIL N 12

MATEMÁTICAS-FACSÍMIL N 12 MATEMÁTICAS-FACSÍMIL N 12 1. Se define A) B) C) E) 1 1 9 1 6 21 9 49 2 m p m p 2 1 =, luego = s t s t 5 2 2. En la figura ABC es equilátero y DCB es recto. Cuál(es) de las siguientes afirmaciones es(son)

Más detalles

GUÍA DE EJERCICIOS GEOMETRÍA ANALÍTICA (CURVAS CÓNICAS)

GUÍA DE EJERCICIOS GEOMETRÍA ANALÍTICA (CURVAS CÓNICAS) U N E X P O INTRODUCCIÓN: UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA GUÍA DE EJERCICIOS GEOMETRÍA

Más detalles

Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:.

Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:. Representa la función que relaciona el área de un triángulo rectángulo isósceles la longitud del cateto. a) Cuál es la variable dependiente? b) la variable independiente? = a) La variable independiente

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Clase 4 Ecuaciones lineales y cuadráticas

Clase 4 Ecuaciones lineales y cuadráticas Clase 4 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2013 Introducción Muchos de los errores que los estudiantes cometen en Matemática no se deben al tema que

Más detalles

Clase 4 Función cuadrática

Clase 4 Función cuadrática Clase 4 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2016 Definición Una relación de la forma f(x) = ax 2 + bx+c, donde a 0 y b, c R, se llama función cuadrática.

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS.

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tema EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. C.- Qué es cómo se representa un sistema de coordenadas cartesianas rectangulares

Más detalles

USO DE LA FÓRMULA CUADRÁTICA y 9.1.3

USO DE LA FÓRMULA CUADRÁTICA y 9.1.3 Capítulo 9 USO DE LA FÓRMULA CUADRÁTICA 9.1.2 y 9.1.3 Cuando una ecuación cuadrática no es factorizable, necesitas otro método para hallar x. La Fórmula cuadrática puede usarse para calcular las raíces

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie

Más detalles

Soluciones. Abril de 2010

Soluciones. Abril de 2010 FACULTAD CS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA1001-1 Introducción al Cálculo Semestre 010-01 Profesor: Jorge San Martín Auxiliares: Natalia Ruiz - Alfredo Torrico Soluciones Abril de 010 P1

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES E INECUACIONES CON DOS INCÓGNITAS. Prof. Esther Morales

RESOLUCIÓN DE SISTEMAS DE ECUACIONES E INECUACIONES CON DOS INCÓGNITAS. Prof. Esther Morales 1 U N E X P O UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA RESOLUCIÓN DE SISTEMAS DE ECUACIONES

Más detalles

La representación gráfica de una función cuadrática es una parábola.

La representación gráfica de una función cuadrática es una parábola. Función Cuadrática A la función polinómica de segundo grado +bx+c, siendo a, b, c números reales y, se la denomina función cuadrática. Los términos de la función reciben los siguientes nombres: La representación

Más detalles

SOLUCIONARIO Posiciones relativas de rectas en el plano

SOLUCIONARIO Posiciones relativas de rectas en el plano SOLUCIONARIO Posiciones relativas de rectas en el plano SGUICES0MT-A6V TABLA DE CORRECCIÓN GUÍA PRÁCTICA Posiciones relativas de rectas en el plano Ítem Alternativa B C Comprensión B 4 E 5 D 6 E 7 A 8

Más detalles

Departamento de Bachillerato Preparatoria UNAM Matemáticas V Plan 100 Ciclo 06 / 07 TAREA PARA EL SEGUNDO PERIODO SEMESTRAL

Departamento de Bachillerato Preparatoria UNAM Matemáticas V Plan 100 Ciclo 06 / 07 TAREA PARA EL SEGUNDO PERIODO SEMESTRAL Departamento de Bachillerato Preparatoria UNAM Matemáticas V Plan 100 Ciclo 06 / 07 TAREA PARA EL SEGUNDO PERIODO SEMESTRAL NOMBRE DEL ESTUDIANTE: Apellido paterno Apellido materno Nombre(s) GRUPO: No.

Más detalles

GUIA DIDACTICA MATEMATICA 5to PARABOLA

GUIA DIDACTICA MATEMATICA 5to PARABOLA UNIDAD EDUCATIVA COLEGIO LOS PIRINEOS DON BOSCO INSCRITO EN EL M.P.P.L N S2991D2023 RIF: J-09009977-8 GUIA DIDACTICA MATEMATICA 5to PARABOLA Asignatura: Matemática Año Escolar: 2013-2014 Lapso: 2do Año:

Más detalles

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones

Más detalles

Ecuación Función cuadrática

Ecuación Función cuadrática Eje temático: Álgebra y funciones Contenidos: Función cuadrática - Ecuaciones de segundo grado Traslaciones de función cuadrática y función raíz Nivel: 3 Medio Ecuación Función cuadrática 1. Ecuación cuadrática

Más detalles