Curso de Métodos Numéricos. Ecuaciones diferenciales ordinarias

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curso de Métodos Numéricos. Ecuaciones diferenciales ordinarias"

Transcripción

1 Curso de Métodos Numéricos. Ecuaciones diferenciales ordinarias Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Universidad: ITESM CEM Fecha: Lunes, 11 de noviembre de 2014

2 Tópicos 1 Introducción 2 Método de Euler Ejemplo Error de truncamiento del método de Euler 3 Método de Heun Ejemplo 2 4 Programa MATLAB

3 Tópicos 1 Introducción 2 Método de Euler Ejemplo Error de truncamiento del método de Euler 3 Método de Heun Ejemplo 2 4 Programa MATLAB

4 Ecuaciones diferenciales ordinarias En esta clase nos dedicaremos a la solución de ecuaciones diferenciales ordinarias de la forma: dy = f(x, y) dx Anteriormente se utilizó un método numérico para resolver una ecuación como la anterior (caso de la velocidad del paracaidista). En este caso se utilizo el método: Nuevo valor = valor anterior + pendiente tamaño

5 Ecuaciones diferenciales ordinarias En esta clase nos dedicaremos a la solución de ecuaciones diferenciales ordinarias de la forma: dy = f(x, y) dx Anteriormente se utilizó un método numérico para resolver una ecuación como la anterior (caso de la velocidad del paracaidista). En este caso se utilizo el método: Nuevo valor = valor anterior + pendiente tamaño

6 Ecuaciones diferenciales ordinarias En esta clase nos dedicaremos a la solución de ecuaciones diferenciales ordinarias de la forma: dy = f(x, y) dx Anteriormente se utilizó un método numérico para resolver una ecuación como la anterior (caso de la velocidad del paracaidista). En este caso se utilizo el método: Nuevo valor = valor anterior + pendiente tamaño

7 Ecuaciones diferenciales ordinarias Matemáticamente: y i+1 = y i + φh φ es la pendiente estimada. La pendiente estimada se utiliza para extrapolar desde el valor anterior y i = y(x i ) a un nuevo valor y i+1 = y(x i+1 ) a una distancia h. Esta fórmula se aplica paso a paso para buscar los valores de y posteriores. Todos los métodos de un paso que se expresen de esta forma se diferencian solamente por la manera en la que se estime la pendiente.

8 Ecuaciones diferenciales ordinarias Matemáticamente: y i+1 = y i + φh φ es la pendiente estimada. La pendiente estimada se utiliza para extrapolar desde el valor anterior y i = y(x i ) a un nuevo valor y i+1 = y(x i+1 ) a una distancia h. Esta fórmula se aplica paso a paso para buscar los valores de y posteriores. Todos los métodos de un paso que se expresen de esta forma se diferencian solamente por la manera en la que se estime la pendiente.

9 Ecuaciones diferenciales ordinarias Matemáticamente: y i+1 = y i + φh φ es la pendiente estimada. La pendiente estimada se utiliza para extrapolar desde el valor anterior y i = y(x i ) a un nuevo valor y i+1 = y(x i+1 ) a una distancia h. Esta fórmula se aplica paso a paso para buscar los valores de y posteriores. Todos los métodos de un paso que se expresen de esta forma se diferencian solamente por la manera en la que se estime la pendiente.

10 Ecuaciones diferenciales ordinarias Matemáticamente: y i+1 = y i + φh φ es la pendiente estimada. La pendiente estimada se utiliza para extrapolar desde el valor anterior y i = y(x i ) a un nuevo valor y i+1 = y(x i+1 ) a una distancia h. Esta fórmula se aplica paso a paso para buscar los valores de y posteriores. Todos los métodos de un paso que se expresen de esta forma se diferencian solamente por la manera en la que se estime la pendiente.

11 Métodos de un paso Método de Euler Método de Heun

12 Tópicos 1 Introducción 2 Método de Euler Ejemplo Error de truncamiento del método de Euler 3 Método de Heun Ejemplo 2 4 Programa MATLAB

13 Método de Euler Dada la ecuación diferencial: dy = f(x, y) dx Se puede encontrar la solución como: y i+1 = y i + f(x i, y i ) h Esta fórmula se conoce como método de Euler.

14 Método de Euler

15 Ejemplo Ejemplo Con el método de Euler resuelva numéricamente la ecuación: dy dx = 2x3 + 12x 2 20x desde x = 0 hasta x = 4 con un tamaño de paso de 0.5. La condición inicial en x = 0 es y = 1. Calcule el error relativo verdadero si se conoce que la solución exacta es: y = 0.5x 4 + 4x 3 10x x + 1

16 Ejemplo Solución ejemplo clear ; clc ; h =0.5; x = [ 0 : h : 4 ] ; n=length ( x ) ; f = i n l i n e ( 2 xˆ3+12 xˆ2 20 x +8.5, x, y ) ; y exacto= i n l i n e ( 0.5 x ˆ4+4 xˆ3 10 x ˆ2+8.5 x+1, x ) ; y ( 1 ) =1; ev ( 1 ) =abs ( y ( 1 ) y exacto ( x ( 1 ) ) ) / y exacto ( x ( 1 ) ) 100; for i =2:n y ( i ) =y ( i 1)+ f ( x ( i 1), y ( i 1) ) h ; ev ( i ) =abs ( y ( i ) y exacto ( x ( i ) ) ) / y exacto ( x ( i ) ) 100; end s a l i d a =[ x y ev ] ; disp ( s a l i d a ) e z p l o t ( y exacto, [ 0, 4, 0, 7. 5 ] ) ; hold on plot ( x, y, o )

17 Ejemplo Solución ejemplo x y E r r o r

18 Ejemplo Solución ejemplo

19 Ejemplo Solución ejemplo

20 Error de truncamiento del método de Euler Error de truncamiento Serie de Taylor y i+1 = y i + y ih + y i 2! h2 + donde h = x i+1 x i. Pero y i = f(x i, y i ), entonces: y i+1 = y i + f(x i, y i )h + f (x i, y i ) h 2 + 2! Error de truncamiento ε t = f (x i, y i ) h 2 2!

21 Error de truncamiento del método de Euler Error de truncamiento Serie de Taylor y i+1 = y i + y ih + y i 2! h2 + donde h = x i+1 x i. Pero y i = f(x i, y i ), entonces: y i+1 = y i + f(x i, y i )h + f (x i, y i ) h 2 + 2! Error de truncamiento ε t = f (x i, y i ) h 2 2!

22 Error de truncamiento del método de Euler Error de truncamiento Serie de Taylor y i+1 = y i + y ih + y i 2! h2 + donde h = x i+1 x i. Pero y i = f(x i, y i ), entonces: y i+1 = y i + f(x i, y i )h + f (x i, y i ) h 2 + 2! Error de truncamiento ε t = f (x i, y i ) h 2 2!

23 Error de truncamiento del método de Euler Solución ejemplo clear ; clc ; h =0.5; x = [ 0 : h : 4 ] ; n=length ( x ) ; f = i n l i n e ( 2 xˆ3+12 xˆ2 20 x +8.5, x, y ) fd= i n l i n e ( d i f f ( sym ( 2 xˆ3+12 xˆ2 20 x +8.5 ) ), x, y ) ; y exacto= i n l i n e ( 0.5 x ˆ4+4 xˆ3 10 x ˆ2+8.5 x+1, x ) ; y ( 1 ) =1; for i =2:n y ( i ) =y ( i 1)+ f ( x ( i 1), y ( i 1) ) h ; ev ( i ) =abs ( y ( i ) y exacto ( x ( i ) ) ) / y exacto ( x ( i ) ) 100; et ( i ) =fd ( x ( i 1), y ( i 1) ) /2 h ˆ 2 ; end s a l i d a =[ x ( 2 : n ) y ( 2 : n ) ev ( 2 : n ) et ( 2 : n ) ] ; disp ( s a l i d a )

24 Error de truncamiento del método de Euler Solución ejemplo con h = 0.5 x y ErrorVer ErrorTrun

25 Error de truncamiento del método de Euler Solución ejemplo con h = 0.25 x y ErrorVer ErrorTrun

26 Tópicos 1 Introducción 2 Método de Euler Ejemplo Error de truncamiento del método de Euler 3 Método de Heun Ejemplo 2 4 Programa MATLAB

27 Método de Heun Dada la ecuación diferencial: dy = f(x, y) dx Se puede encontrar la solución como: y 0 i+1 = y i + f(x i, y i ) h y i+1 = y i + f(x i, y i ) + f(x i+1, y 0 i+1 ) 2 h

28 Método de Heun

29 Ejemplo 2 Ejemplo 2 Con el método de Heun resuelva numéricamente la ecuación: dy dx = 2x3 + 12x 2 20x desde x = 0 hasta x = 4 con un tamaño de paso de 0.5. La condición inicial en x = 0 es y = 1. Calcule el error relativo verdadero si se conoce que la solución exacta es: y = 0.5x 4 + 4x 3 10x x + 1

30 Ejemplo 2 Solución ejemplo 2 clear ; clc ; h =0.5; x = [ 0 : h : 4 ] ; n=length ( x ) ; f = i n l i n e ( 2 xˆ3+12 xˆ2 20 x +8.5, x, y ) ; y exacto= i n l i n e ( 0.5 x ˆ4+4 xˆ3 10 x ˆ2+8.5 x+1, x ) ; y ( 1 ) =1; ev ( 1 ) =abs ( y ( 1 ) y exacto ( x ( 1 ) ) ) / y exacto ( x ( 1 ) ) 100; for i =2:n y0 ( i ) =y ( i 1)+ f ( x ( i 1), y ( i 1) ) h ; y ( i ) =y ( i 1)+( f ( x ( i 1), y ( i 1) ) + f ( x ( i ), y0 ( i ) ) ) /2 h ; ev ( i ) =abs ( y ( i ) y exacto ( x ( i ) ) ) / y exacto ( x ( i ) ) 100; end s a l i d a =[ x y ev ] ; disp ( s a l i d a ) % e z p l o t ( y exacto, [ 0, 4, 0, 7. 5 ] ) ; % hold on plot ( x, y, )

31 Ejemplo 2 Solución ejemplo 2 x y ErrorVerd

32 Ejemplo 2 Solución ejemplo 2

33 Tópicos 1 Introducción 2 Método de Euler Ejemplo Error de truncamiento del método de Euler 3 Método de Heun Ejemplo 2 4 Programa MATLAB

34 Método de Euler function edoeuler ( F, x0, xf, y0, h ) f = i n l i n e ( F, x, y ) ; x =[ x0 : h : x f ] ; n = length ( x ) ; i f x ( n )<x f x ( n+1) = x f ; n = n+1; end y = y0 ones ( n, 1 ) ; for i = 1 : n 1 y ( i +1) = y ( i ) + f ( x ( i ), y ( i ) ) ( x ( i +1) x ( i ) ) ; end fd= i n l i n e ( d i f f ( sym ( F ) ), x, y ) ; for i i =1:n et ( i i ) =fd ( x ( i i ), y ( i i ) ) /2 h ˆ2 end s a l i d a =[ x y et ] ; disp ( s a l i d a )

35 Solución ejemplo x y

36 Método de Heun function edoheun ( F, x0, xf, y0, h ) f = i n l i n e ( F, x, y ) ; x =[ x0 : h : x f ] ; n = length ( x ) ; i f x ( n )<x f x ( n+1) = x f ; n = n+1; end y = y0 ones ( n, 1 ) ; for i = 1 : n 1 y00 ( i +1)=y ( i ) + f ( x ( i ), y ( i ) ) ( x ( i +1) x ( i ) ) ; y ( i +1) = y ( i ) + ( f ( x ( i ), y ( i ) ) + f ( x ( i +1), y00 ( i +1) ) ) / 2 ( x ( i +1) x ( i ) ) ; end s a l i d a =[ x y ] ; disp ( s a l i d a )

37 Solución ejemplo x y

Curso de Métodos Numéricos. Derivada Numérica

Curso de Métodos Numéricos. Derivada Numérica Curso de Métodos Numéricos. Derivada Numérica Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Universidad: ITESM CEM Fecha: Jueves, 01 de octubre de 2014 Tópicos 1 Definición

Más detalles

Programación MATLAB: Derivación e integración. Ecuaciones diferenciales ordinarias

Programación MATLAB: Derivación e integración. Ecuaciones diferenciales ordinarias Programación MATLAB: Derivación e integración. Ecuaciones diferenciales ordinarias Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com

Más detalles

Programación MATLAB: Derivación e integración. Ecuaciones diferenciales ordinarias

Programación MATLAB: Derivación e integración. Ecuaciones diferenciales ordinarias Programación MATLAB: Derivación e integración. Ecuaciones diferenciales ordinarias Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com

Más detalles

Programación MATLAB: Derivación e integración.

Programación MATLAB: Derivación e integración. Programación MATLAB: Derivación e integración. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad:

Más detalles

Curso de Métodos Numéricos. Errores

Curso de Métodos Numéricos. Errores Curso de Métodos Numéricos. Errores Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM

Más detalles

Programación MATLAB: Programas y Funciones.

Programación MATLAB: Programas y Funciones. Programación MATLAB: Programas y Funciones. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad:

Más detalles

Curso de Métodos Numéricos. Ajuste de curvas. Regresión.

Curso de Métodos Numéricos. Ajuste de curvas. Regresión. Curso de Métodos Numéricos. Ajuste de curvas. Regresión. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Universidad: ITESM CEM Fecha: Lunes, 20 de octubre de 2014 Tópicos

Más detalles

Programación MATLAB: Ecuaciones, polinomios, regresión e interpolación.

Programación MATLAB: Ecuaciones, polinomios, regresión e interpolación. Programación MATLAB: Ecuaciones, polinomios, regresión e interpolación. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com

Más detalles

APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA

APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA ECUACIONES DIFERENCIALES ORDINARIAS (EDO) MOTIVACIÓN Se llamará ecuación diferencial a aquella ecuación que contiene una variable dependiente

Más detalles

Sistemas de ecuaciones no lineales

Sistemas de ecuaciones no lineales Sistemas de ecuaciones no lineales Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 3

Análisis Numérico para Ingeniería. Clase Nro. 3 Análisis Numérico para Ingeniería Clase Nro. 3 Ecuaciones Diferenciales Ordinarias Introducción Problemas de Valores Iniciales Método de la Serie de Taylor Método de Euler Simple Método de Euler Modificado

Más detalles

Sistema de ecuaciones algebraicas. Eliminación de Gauss.

Sistema de ecuaciones algebraicas. Eliminación de Gauss. Sistema de ecuaciones algebraicas. Eliminación de Gauss. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com

Más detalles

Raíces de ecuaciones no lineales

Raíces de ecuaciones no lineales Raíces de ecuaciones no lineales Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

Raíces de Polinomios. beamer-tu-log

Raíces de Polinomios. beamer-tu-log Raíces de Polinomios Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM TÓPICOS 1

Más detalles

Integración Numérica. Las reglas de Simpson.

Integración Numérica. Las reglas de Simpson. Integrción Numéric. Ls regls de Simpson. Curso: Métodos Numéricos en Ingenierí Profesor: Dr. José A. Otero Hernández Correo: j..otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidd: ITESM

Más detalles

Integración Numérica. La regla del trapecio.

Integración Numérica. La regla del trapecio. Integrción Numéric. L regl del trpecio. Curso: Métodos Numéricos en Ingenierí Profesor: Dr. José A. Otero Hernández Correo: j..otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidd: ITESM

Más detalles

Sea una ecuación diferencial ordinaria explícita de primer orden con una condición en el inicio: y (x) = f(x, y), y(x 0 ) = y 0

Sea una ecuación diferencial ordinaria explícita de primer orden con una condición en el inicio: y (x) = f(x, y), y(x 0 ) = y 0 187 9.1. Fórmula de Euler El objetivo de los métodos numéricos es proporcionar fórmulas generales y algoritmos que no dependan de los datos de un problema particular. Las siguientes fórmulas y algoritmos

Más detalles

Licenciatura en Electrónica y Computación: Métodos Numéricos

Licenciatura en Electrónica y Computación: Métodos Numéricos Licenciatura en Electrónica Computación: Métodos Numéricos METODO DE EULER Este método se aplica para encontrar la solución a ecuaciones dierenciales ordinarias (EDO), esto es, cuando la unción involucra

Más detalles

Diferenciación numérica: Método de Euler explícito

Diferenciación numérica: Método de Euler explícito Clase No. 21: MAT 251 Diferenciación numérica: Método de Euler explícito Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Operaciones matemáticas con arreglos

Operaciones matemáticas con arreglos Operaciones matemáticas con arreglos Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM

Más detalles

Programación MATLAB: Ficheros de Comandos y Gráficos.

Programación MATLAB: Ficheros de Comandos y Gráficos. Programación MATLAB: Ficheros de Comandos y Gráficos. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com

Más detalles

Curso de Métodos Numéricos. Introducción.

Curso de Métodos Numéricos. Introducción. Curso de Métodos Numéricos. Introducción. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad:

Más detalles

Universidad de Concepción, Chile Departamento de Geofísica Programación Científica con Software libre

Universidad de Concepción, Chile Departamento de Geofísica Programación Científica con Software libre Universidad de Concepción, Chile Departamento de Geofísica Programación Científica con Software libre Primavera, 2011 Universidad de Concepción Contenidos 1 Ecuaciones Diferenciales Ordinarias Método de

Más detalles

SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN SOLUCION NUMERICA Una solucón de esta ecuacón ncal con CI es una funcón ϕ : ( x ε, x + ε ) R tal que 0 0 ϕ '( x) = f ( x, ϕ( x)),

Más detalles

Ecuaciones Diferenciales (MA-841)

Ecuaciones Diferenciales (MA-841) Ecuaciones Diferenciales (MA-841) Ecuaciones de Departmento de Matemáticas / CSI ITESM Ecuaciones de Ecuaciones Diferenciales - p. 1/16 Ecuaciones de Iniciaremos nuestras técnicas de solución a ED con

Más detalles

ETS Minas: Métodos matemáticos

ETS Minas: Métodos matemáticos ETS Minas: Métodos matemáticos Guía de estudio: Tema 7 EDOs de primer orden Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Noviembre 2008,

Más detalles

Ecuaciones Diferenciales. Conceptos Generales

Ecuaciones Diferenciales. Conceptos Generales Tema 1 Ecuaciones Diferenciales. Conceptos Generales Introducción La Modelización y Simulación es una área enorme de la ciencia pura y aplicada, a la que intentamos aproximarnos en esta asignatura. Dadas

Más detalles

Métodos numéricos. Aproximación para la solución de ecuaciones diferenciales ordinarias. Bioing. Analía S. Cherniz

Métodos numéricos. Aproximación para la solución de ecuaciones diferenciales ordinarias. Bioing. Analía S. Cherniz Métodos numéricos Aproximación para la solución de ecuaciones diferenciales ordinarias Bioing. Analía S. Cherniz Modelización de Sistemas Biológicos por Computadora 03/08/2010 Organización 1 Introducción

Más detalles

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS ECUACIONES DIFERENCIALES ORDINARIAS Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Preliminares Las ecuaciones

Más detalles

Profesor Francisco R. Villatoro 29 de Mayo de 2000 NO SE PERMITEN APUNTES, FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS

Profesor Francisco R. Villatoro 29 de Mayo de 2000 NO SE PERMITEN APUNTES, FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS Examen Segundo Parcial Técnicas Numéricas (Técn. Comp.) Profesor Francisco R. Villatoro 9 de Mayo de 000 NO SE PERMITEN APUNTES FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS 1.

Más detalles

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación

Más detalles

Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8

Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8 No se puede mostrar la imagen en este momento. Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8 Ecuaciones Diferenciales Ordinarias (EDO) Una Ecuación Diferencial es aquella ecuación

Más detalles

Unidad VI: Solución de ecuaciones diferenciales 6.1 Métodos de un paso

Unidad VI: Solución de ecuaciones diferenciales 6.1 Métodos de un paso Unidad VI: Solución de ecuaciones diferenciales 6. Métodos de un paso Los métodos de Euler. MÉTODO NUMÉRICO UNIDAD 6 Una de las técnicas más simples para aproximar soluciones de ecuaciones diferenciales

Más detalles

75.12 ANÁLISIS NUMÉRICO I GUÍA DE PROBLEMAS 1. ERRORES

75.12 ANÁLISIS NUMÉRICO I GUÍA DE PROBLEMAS 1. ERRORES 75.12 ANÁLISIS NUMÉRICO I FACULTAD DE INGENIERÍA UNIVERSIDAD DE BUENOS AIRES GUÍA DE PROBLEMAS 1. ERRORES 1. Calcular las siguientes expresiones, incluyendo sus cotas de error absoluto, donde x = 2,00,

Más detalles

EJERCICIOS UNIDADES 1, 2 Y 3

EJERCICIOS UNIDADES 1, 2 Y 3 EJERCICIOS UNIDADES 1, Y 3 Nota: En adelante utilizaremos la abreviación ED para ecuación diferencial. TEMAS A EVALUAR Unidad 1 o Clasificación de las ecuaciones diferenciales o Problemas de valor inicial

Más detalles

Métodos numéricos para Ecuaciones Diferenciales Ordinarias. Laboratori de Càlcul Numèric (LaCàN) www-lacan.upc.es

Métodos numéricos para Ecuaciones Diferenciales Ordinarias. Laboratori de Càlcul Numèric (LaCàN) www-lacan.upc.es Métodos numéricos para Ecuaciones Diferenciales Ordinarias Laboratori de Càlcul Numèric (LaCàN) www-lacan.upc.es Ecuación Diferencial Ordinaria (EDO) n Gran cantidad de problemas de la física y la ingeniería

Más detalles

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal 9.1 Definición Se llama ecuación diferencial ordinaria

Más detalles

Sistema de ecuaciones algebraicas. Eliminación de Gauss.

Sistema de ecuaciones algebraicas. Eliminación de Gauss. Sistema de ecuaciones algebraicas. Eliminación de Gauss. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com

Más detalles

Integración de ODEs. Miguel Ángel Otaduy. Animación Avanzada 30 de Enero de 2014

Integración de ODEs. Miguel Ángel Otaduy. Animación Avanzada 30 de Enero de 2014 Integración de ODEs Miguel Ángel Otaduy Animación Avanzada 30 de Enero de 2014 Índice Integración de ODEs Problema estático vs. dinámico. Ecuaciones diferenciales ordinarias (ODEs). Desarrollo de Taylor.

Más detalles

2 Unidad II: Ecuaciones Diferenciales de Orden Superior

2 Unidad II: Ecuaciones Diferenciales de Orden Superior ITESM, Campus Monterrey Departamento de Matemáticas MA-41: Ecuaciones Diferenciales Lectura # Profesor: Victor Segura Flores Unidad II: Ecuaciones Diferenciales de Orden Superior.1 Ecuaciones Diferenciales

Más detalles

Ecuaciones diferenciales ordinarias

Ecuaciones diferenciales ordinarias Tema 9 Ecuaciones diferenciales ordinarias Versión: 13 de mayo de 29 9.1 Introducción El objetivo de este tema es exponer muy brevemente algunos de los conceptos básicos relacionados con las ecuaciones

Más detalles

Juan Ruiz Álvarez. Matemáticas (Grado en Biología)

Juan Ruiz Álvarez. Matemáticas (Grado en Biología) Método de las isóclinas. 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Contenidos Introducción 1 Introducción 2 3 4 Índice Introducción 1 Introducción 2 3 4 Introducción Desafortunadamente,

Más detalles

Método de los mínimos cuadrados

Método de los mínimos cuadrados Capítulo 7 Método de los mínimos cuadrados Este capítulo está dedicado a la resolución de problemas de aproximación de funciones y ajuste de datos a un polinomio por el método de los mínimos cuadrados

Más detalles

Funciones reales de varias variables.

Funciones reales de varias variables. Tema 4 Funciones reales de varias variables. 4.1. El espacio euclídeo R n. Definición 4.1.1. Se define el producto escalar entre vectores de R n como la aplicación: ( ) : R n R n R : x y = (x 1, x 2,...,

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina

Más detalles

Operador Diferencial y Ecuaciones Diferenciales

Operador Diferencial y Ecuaciones Diferenciales Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una

Más detalles

Ecuaciones Diferenciales Ordinarias (2)

Ecuaciones Diferenciales Ordinarias (2) MODELACION NUMERICA CON APLICACIONES EN INGENIERIA HIDRAULICA Y AMBIENTAL Ecuaciones Diferenciales Ordinarias (2) Yarko Niño C. y Paulo Herrera R. Departamento de Ingeniería Civil, Universidad de Chile

Más detalles

Observación: El método de Euler, es el método de Taylor de orden 1.

Observación: El método de Euler, es el método de Taylor de orden 1. METODO DE TAYLOR TEOREMA DE TAYLOR DE ORDEN N Sea y(t) una función tal que sea n veces continuamente diferenciable en el intervalo [a,b] y existe y (N+1) existe en [a, b] Para todo t k + [a, b] abrá un

Más detalles

METODOS DE RUNGE KUTTA

METODOS DE RUNGE KUTTA METODOS DE RUNGE KUTTA Los métodos de Runge-Kutta (RK logran una exactitud del procedimiento de una serie de Taylor, sin requerir el cálculo de derivadas superiores. Probablemente uno de los procedimientos

Más detalles

Instituto de Matemática. Agosto de ) Encuentre experimentalmente los siguientes valores de su calculadora:

Instituto de Matemática. Agosto de ) Encuentre experimentalmente los siguientes valores de su calculadora: Curso de Métodos Numéricos Instituto de Matemática Práctico 1: Errores Agosto de 2005 1) Encuentre experimentalmente los siguientes valores de su calculadora: (a) El valor ɛ mach definido como el minimo

Más detalles

Métodos Numéricos en Ecuaciones Diferenciales Ordinarias

Métodos Numéricos en Ecuaciones Diferenciales Ordinarias Tema 4 Métodos Numéricos en Ecuaciones Diferenciales Ordinarias 4.1 Introducción Estudiaremos en este Tema algunos métodos numéricos para resolver problemas de valor inicial en ecuaciones diferenciales

Más detalles

Cálculo. Licenciatura en CC. Químicas Tema n o 5 Resultados teóricos. Ecuaciones diferenciales ordinarias

Cálculo. Licenciatura en CC. Químicas Tema n o 5 Resultados teóricos. Ecuaciones diferenciales ordinarias Cálculo. Licenciatura en CC. Químicas Tema n o 5 Resultados teóricos Ecuaciones diferenciales ordinarias 1. Ecuaciones diferenciales lineales de orden n Considera un número n de funcines de una variable

Más detalles

Sistemas de ecuaciones no lineales

Sistemas de ecuaciones no lineales Práctica 6 Sistemas de ecuaciones no lineales En esta práctica revisaremos algunos métodos básicos para la resolución numérica de sistemas de ecuaciones no lineales 61 Método iterativo del punto fijo Partimos

Más detalles

Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica. Métodos de Rungo-Kutta

Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica. Métodos de Rungo-Kutta Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica Métodos de Rungo-Kutta Asignatura: Análisis Numérico Docente: M.C. Julio César Gallo Sanchez Alumno: José Armando Lara Ramos Equipo: 9 4

Más detalles

ECUACIONES DIFERENCIALES Julián de la Horra Departamento de Matemáticas U.A.M.

ECUACIONES DIFERENCIALES Julián de la Horra Departamento de Matemáticas U.A.M. Introducción ECUACIONES DIFERENCIALES Julián de la Horra Departamento de Matemáticas U.A.M. En diferentes situaciones que aparecen con frecuencia en las Ciencias Experimentales, es complicado poder escribir

Más detalles

1 Unidad I: Ecuaciones Diferenciales de Primer Orden

1 Unidad I: Ecuaciones Diferenciales de Primer Orden ITESM, Campus Monterrey Departamento de Matemáticas MA-841: Ecuaciones Diferenciales Lectura #6 Profesor: Victor Segura 1 Unidad I: Ecuaciones Diferenciales de Primer Orden 1.3.4 Factores Integrantes Dentro

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

2.4 Ecuaciones diferenciales de Bernoulli

2.4 Ecuaciones diferenciales de Bernoulli .4 Ecuaciones diferenciales de Bernoulli 3 Ejercicios.3. Ecuaciones diferenciales lineales. Soluciones en la página 4 Resolver las siguientes ecuaciones diferenciales lineales.. y 0 C 00y D 0.. x 0 0x

Más detalles

Laboratorio Nº 1 La Descripción Gráfica de la Ecuación Diferencial Ordinaria

Laboratorio Nº 1 La Descripción Gráfica de la Ecuación Diferencial Ordinaria Universidad Diego Portales Segundo Semestre 007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 1 La Descripción Gráfica de la Ecuación Diferencial

Más detalles

MÉTODO DE APROXIMACIÓN DE EULER

MÉTODO DE APROXIMACIÓN DE EULER MÉTODO DE APROXIMACIÓN DE EULER Objetivo 1. Emplear el método de Euler para aproximar el valor de la solución de una ecuación diferencial dada una condición inicial y aplicarlo para resolver situaciones

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte I)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte I) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte I) Contenido Ecuaciones en derivadas parciales Ecuaciones en derivadas parciales elípticas Ecuación de Laplace Aproximación

Más detalles

7.3 Método de Euler mejorado

7.3 Método de Euler mejorado 43 Ecuaciones diferenciales Ejercicios 7..1 Euler. Soluciones en la página 477 Determine una aproximación lineal de la solución y.x/ de cada una de los siguientes PVI en el punto indicado utilizando el

Más detalles

ECUACIONES DIFERENCIALES EN MATLAB

ECUACIONES DIFERENCIALES EN MATLAB ECUACIONES DIFERENCIALES EN MATLAB Daniel Parcero Sánchez Rocío Salgueiro Fernández Ecuaciones Diferenciales en Matlab Matlab ofrece varios algoritmos numéricos para resolver una extensa variedad de ecuaciones

Más detalles

Métodos Multipaso lineales

Métodos Multipaso lineales Elementos de Cálculo Numérico - Cálculo Numérico Segundo Cuatrimestre de 2008 (FCEN - UBA) Métodos Multipaso lineales Consideramos el problema de valores iniciales (PVI) y = f(x, y) a x b y(a) = α Dado

Más detalles

1. Método de bisección

1. Método de bisección Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla 1 Tema 1: resolución de ecuaciones. Ejercicios y Problemas Nota: Abreviación usual en estos ejercicios: C.D.E.

Más detalles

Análisis Dinámico: Ecuaciones diferenciales no lineales de primer orden: la ecuación de Bernouilli

Análisis Dinámico: Ecuaciones diferenciales no lineales de primer orden: la ecuación de Bernouilli de aplicación económica Análisis Dinámico: Ecuaciones diferenciales no lineales de primer orden: la ecuación de Bernouilli Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo

Más detalles

Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial

Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial Sergio Blanes http://personales.upv.es/ serblaza Instituto de Matemtica Multidisciplinar Universidad Politécnica de Valencia Edificio 8-G, entrada

Más detalles

Fracciones parciales. Repaso general. Octave. Raíces con multiplicidad

Fracciones parciales. Repaso general. Octave. Raíces con multiplicidad Fracciones parciales Repaso general Representar una fracción de polinomios como una sumatoria de fracciones más simples con polinomios de menor grado: P (x) kx Q(x) = p i (x) q i (x). i=1 Típicamente buscamos

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 54 CONTENIDO Funciones

Más detalles

2. Obtener, por ensayo y error, una aproximación del entero más grande. Sugerencia: leer n y escribir n y n+1. (Puede ser muy largo el ensayo).

2. Obtener, por ensayo y error, una aproximación del entero más grande. Sugerencia: leer n y escribir n y n+1. (Puede ser muy largo el ensayo). En los ejercicios, cuando se hable de un entero (un número entero), se trata de un entero del lenguaje C. Por ejemplo, 10 20 es un número entero en el sentido matemático, pero muy posiblemente este entero

Más detalles

Introducción al plano de fase

Introducción al plano de fase Universidad Nacional de Colombia Departamento de Matemáticas 1000007 Ecuaciones diferenciales - Grupos 12 y 18 Introducción al plano de fase Existen ecuaciones diferenciales que no pueden ser resueltas

Más detalles

PRÁCTICA FUNCIONES CURSO Práctica 5 (4- XI-2015)

PRÁCTICA FUNCIONES CURSO Práctica 5 (4- XI-2015) PRÁCTICA FUNCIONES CURSO 015-016 Prácticas Matlab Práctica 5 (- XI-015) Objetivos Representar gráficas de funciones con el comando ezplot. Obtener la derivada en un punto de una curva definida en forma

Más detalles

Álgebra Lineal Ma843

Álgebra Lineal Ma843 Álgebra Lineal Ma843 Valores y vectores propios: Departamento de Matemáticas ITESM Valores y vectores propios: Álgebra Lineal - p. 1/9 ducción Uno de los temas fundamentales en Ingeniería es el tema de

Más detalles

Variables separables

Variables separables Definición: Variables separables Si el segundo miembro de una ecuación expresada de la forma: puede expresar como una función que depende solamente de x, multiplicada por una función que depende solamente

Más detalles

Clase No. 20: Integrales impropias MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 14

Clase No. 20: Integrales impropias MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 14 Clase No. 2: Integrales impropias MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 26.11.211 1 / 14 Integrandos con singularidades (I) Cuando el integrando o alguna de sus derivadas de bajo orden

Más detalles

ERRORES DE REDONDEO Y ARITMÉTICA DE PRECISIÓN FINITA

ERRORES DE REDONDEO Y ARITMÉTICA DE PRECISIÓN FINITA TEMA 1. ERRORES DE REDONDEO Y ARITMÉTICA DE PRECISIÓN FINITA 1. Introducción 2. Nomenclatura 3. Representación de un número en un ordenador 4. Truncamiento y redondeo 5. Error de truncamiento y de redondeo

Más detalles

sin(x) p1 p2 p3 p4

sin(x) p1 p2 p3 p4 Universidad de Puerto Rico Departamento de Matematicas Humacao, Puerto Rico 79 MATE 46 Analisis Numerico Prof. Pablo Negron Laboratorio I: Polinomios y Gracas Un polinomio como p(x) =x 4 +2x 3 ;3x 2 +4x+5

Más detalles

Comparación de Métodos Numéricos para la Solución Ecuación Diferencial de 1 er Orden

Comparación de Métodos Numéricos para la Solución Ecuación Diferencial de 1 er Orden Comparación de Métodos Numéricos para la Solución Ecuación Diferencial de er Orden Francisco M. Gonzalez-Longatt Resumen Este documento presenta un comparación de los resultados obtenidos por tres métodos

Más detalles

Lista de ejercicios # 4

Lista de ejercicios # 4 UNIVERSIDAD DE COSTA RICA MA-5 FACULTAD DE CIENCIAS Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Primer Ciclo del 5 Lista de ejercicios # 4 Sistemas de ecuaciones diferenciales. EPII-II-

Más detalles

Ecuaciones Diferenciales y Series Taylor y el comienzo

Ecuaciones Diferenciales y Series Taylor y el comienzo 1. Otra vez Algebra de Series Ecuaciones Diferenciales y Series Taylor y el comienzo Las series se suman a n (x x 0 ) n + b n (x x 0 ) n = (a n + b n ) (x x 0 ) n Las series se multiplican [ ] [ ] a n

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Ecuaciones Diferenciales Manuel Valenzuela Rendón Centro de Sistemas Inteligentes Tecnológico de Monterrey, Campus Monterrey Octubre 2007 M. Valenzuela (Centro de Sistemas Inteligentes) Ecuaciones Diferenciales

Más detalles

PRÁCTICA 6. Uso de gráficos loglog para determinar el orden de la reacción.

PRÁCTICA 6. Uso de gráficos loglog para determinar el orden de la reacción. 1 PRÁCTICA 6 Uso de gráficos loglog para determinar el orden de la reacción. OBJETIVO GENERAL: Aplicar gráficos loglog, semilog y plot de Matlab a datos obtenidos experimentalmente. OBJETIVOS ESPECIFICOS:

Más detalles

Tema 2: Movimiento unidimensional

Tema 2: Movimiento unidimensional Tema 2: Movimiento unidimensional FISICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Vector de posición

Más detalles

Solución numérica de ED Métodos de Runge-Kutta. Juan Manuel Rodríguez Prieto

Solución numérica de ED Métodos de Runge-Kutta. Juan Manuel Rodríguez Prieto Solución numérica de ED Métodos de Runge-Kutta Juan Manuel Rodríguez Prieto Método de Heun Para mejorar la estimación de la pendiente emplea la determinación de dos derivadas en el intervalo (una al inicio

Más detalles

Ecuaciones en Derivadas Parciales y Análisis Numérico. Prácticas

Ecuaciones en Derivadas Parciales y Análisis Numérico. Prácticas Ecuaciones en Derivadas Parciales y Análisis Numérico Prácticas Capítulo 2. Ecuaciones diferenciales ordinarias (EDOs). 2.1 Resolución de una ecuación diferencial ordinaria. Vamos a resolver numéricamente

Más detalles

LECCIÓN 8: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN EXACTAS

LECCIÓN 8: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN EXACTAS 195 LECCIÓN 8: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN EXACTAS JUSTIFICACIÓN En esta lección, basados en la teoría de diferenciales de funciones de dos variables, la cual involucra las derivadas

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I MÉTODOS NUMÉRICOS

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I MÉTODOS NUMÉRICOS UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I MÉTODOS NUMÉRICOS NIVEL : LICENCIATURA CRÉDITOS : 8 CLAVE : ICAC23002818 HORAS TEORÍA : 3 SEMESTRE : TERCERO HORAS PRÁCTICA : 2 REQUISITOS

Más detalles

ECUACIONES DIFERENCIALES PRÁCTICA

ECUACIONES DIFERENCIALES PRÁCTICA ECUACIONES DIFERENCIALES PRÁCTICA ECUACIONES DIFERENCIALES Contenido - EJEMPLOS DE ED Y SOLUCIONES. - EL COMANDO dsolve. RESOLUCIÓN DE PROBLEMAS DE CONDICIÓN INICIAL. - CAMPOS DE DIRECCIONES. - TRAYECTORIAS

Más detalles

Ecuaciones no resueltas respecto a la derivada

Ecuaciones no resueltas respecto a la derivada 1. Introducción Ecuaciones no resueltas respecto a la derivada Podemos preguntarnos sobre los casos donde no es posible despejar y de la ecuación diferencial ordinaria de primer orden: F[, y), y )] = 0.

Más detalles

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE PRIMER ORDEN ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013

Más detalles

4. Sucesiones y funciones

4. Sucesiones y funciones 1 4. Sucesiones y funciones Mathematica dispone de herramientas para hacer sumas de series numéricas, derivadas de funciones de una y varias variables, cálculo de primitivas de funciones de una variable,

Más detalles

ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA

ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA Definición de ecuación diferencial Una ecuación que relaciona una función desconocida y una o más de sus derivadas se llama ecuación diferencial. Instituto de

Más detalles

Sistemas de coordenadas

Sistemas de coordenadas Sistemas de coordenadas. Introducción En un sistema de coordenadas un punto se representa como la intersección de tres superficies ortogonales llamadas superficies coordenadas del sistema: u u u = cte

Más detalles

INGENIERÍA ELÉCTRICA PROGRAMA DE ASIGNATURA

INGENIERÍA ELÉCTRICA PROGRAMA DE ASIGNATURA INGENIERÍA ELÉCTRICA PROGRAMA DE ASIGNATURA ACTIVIDAD CURRICULAR: CALCULO NUMERICO Código: 950598 Año Académico: 2016 Área: MATEMATICA Bloque: CIENCIAS BASICAS Nivel: 2. Tipo: Obligatoria Modalidad: Anual

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

Facultad de Física. Métodos Numéricos

Facultad de Física. Métodos Numéricos Facultad de Física Métodos Numéricos Dr. Antonio Marín Hernández Centro de Investigación en Inteligencia Artificial Universidad Veracruzana Sebastían Camacho # 5 Xalapa, Veracruz lineales 1. Método de

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 13

Análisis Numérico para Ingeniería. Clase Nro. 13 Análisis Numérico para Ingeniería Clase Nro. 13 Aproximación de Funciones Temas a tratar: Métodos de Newton-Cotes. Método de los Trapecios. Método de 1/3 de Simpson. Método de 3/8 de Simpson. Método de

Más detalles

Terceras Jornadas Investigaciones en la Facultad de Ciencias Económicas y Estadística, octubre de 1998

Terceras Jornadas Investigaciones en la Facultad de Ciencias Económicas y Estadística, octubre de 1998 ECUACIONES DIFERENCIALES DE 1ER. ORDEN. APLICACIÓN DE DERIVE A LA RESOLUCIÓN DE UN PROBLEMA MICROECONÓMICO QUE RELACIONA EL VOLUMEN DE VENTAS DE UN BIEN Y EL PRECIO. Furno, Graciela Koegel, Liliana Sagristá,

Más detalles