2. Derivadas parciales y derivadas direccionales de un campo escalar.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. Derivadas parciales y derivadas direccionales de un campo escalar."

Transcripción

1 GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Derivadas parciales derivadas direccionales de un campo escalar. El cálculo de varias variables es básicamente el cálculo de una variable, aplicado a varias variables de una en una. En particular, cuando mantenemos constante todas las variables de una unción menos una de las variables independientes derivamos respecto de esa variable obtenemos una derivada parcial. En esta sección deiniremos las derivadas parciales las interpretaremos geométricamente. Además estudiaremos la orma de calcularlas mediante la aplicación de las reglas para la derivación de unciones de una variable. DEFINICIÓN. Sea :(, ) U (, ) una unción de dos variables consideremos un punto ( 0, interior al conjunto U. Sean > 0 k > 0 números suicientemente pequeños de orma que los puntos ( 0 +, ( 0, 0 + k) sean puntos de U. La derivada parcial de con respecto a en el punto ( 0, es, si eiste el siguiente límite, el número deinido por ( +, ) (, ) ( 0, : = lim. 0 La derivada parcial de con respecto a en el punto ( 0, es, si eiste el siguiente límite, el ( 0, 0 + k) ( 0, número deinido por ( 0, : = lim. k 0 k OBSERVACIÓN (INTERPRETACIÓN GEOMÉTRICA). Consideramos un punto P= ( 0, 0, z en la gráica de la unción, de manera que z 0 = ( 0, 0 ), cortamos dica supericie con el plano de ecuación = 0, obteniendo una curva en dico plano. Observemos el siguiente gráico donde mostramos el corte del plano = 0 con la gráica de la unción z = (, ).

2 GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. Un trozo pequeño de esta curva puede ser parametrizado por la unción Ct () = (, t 0, (, t ), don- t ( r, + r) tomando r > 0 suicientemente pequeño. Observemos que los puntos de esta de 0 0 curva están en el plano = 0 en la supericie z = (, ). El punto P= ( 0, 0, z se obtiene para el valor del parámetro t = 0. Si llamamos zt () = (, t, el vector tangente a esta curva en el punto P viene dado por C ( = (,0, z ( ), siendo entonces z ( 0 ) la pendiente de la recta tangente a esta curva en P. Calculemos el valor z ( 0 ). Por deinición z ( 0 + ) z ( ( 0 +, ( 0, z ( : = lim = lim = ( 0,. 0 0 Entonces la derivada parcial ( 0, es la pendiente de la recta tangente a esta curva en P el vector tangente a la curva C en el punto P= ( 0, 0, z es (, 0, ( 0, ). Análogamente, la derivada parcial ( 0, es la pendiente en el punto P de la recta tangente a la curva que resulta de cortar la gráica de con el plano de ecuación = 0. El vector tangente a esta otra curva en el punto P= ( 0, 0, z viene dado aora por (0,, ( 0, ). Observemos, para inalizar esta interpretación geométrica, que el vector producto vectorial de los { } vectores (,0, (, ) 0 0 ), ( 0,, (, ) 0 0 ), esto es, el vector ( ( 0,, ( 0,,) es un vector normal a los vectores tangentes a estas dos curvas en la supericie, por tanto, será un vector normal a la supericie en el punto P= ( 0, 0, z.

3 GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. OBSERVACIÓN (CÁLCULO DE DERIVADAS PARCIALES). Siguiendo un argumento similar al que emos usado en la interpretación geométrica de las derivadas parciales, ijado el punto ( 0,, podemos deinir una unción de una variable ϕ : ( 0 r, 0 + r) ϕ( ): = (,, siendo r > 0 suicientemente pequeño. Entonces la unción ϕ es derivable en 0 si, sólo si, eiste la derivada parcial de con respecto a en el punto ( 0,. Esto se debe a que ϕ ( 0 + ) ϕ( ( 0 +, ( 0, =. Además, en caso de eistir esta derivada, se veriica que ϕ ( = ( 0,. O sea, la derivada parcial de con respecto a en el punto ( 0, se calcula derivando la unción con respecto a su variable mientras mantenemos su variable constante e igual a 0. Esto permite trasladar las reglas de derivación en una variable a derivadas Si eisten las derivadas parciales de dos unciones g con respecto de en el punto ( 0,, entonces se veriica que ( + g) (, ) = (, ) + g (, ), ( g) (, ) = (, ) g(, ) + (, ) g (, ), ( 0, g( 0, ( 0, g( 0, ( 0, =, si g( 0, 0. g g( 0, Análogamente, la derivada parcial de con respecto a en el punto ( 0, se calcula derivando la unción con respecto a su variable mientras mantenemos su variable constante e igual a 0. La derivada parcial con respecto a tiene reglas de derivación análogas a las que emos descrito anteriormente para la derivación respecto de. EJEMPLO. ) Vamos aora a calcular las derivadas parciales de la unción (, ) = + en el punto (,). Derivando (, ) con respecto a obtenemos que (, ) = +. Por tanto, (, ) = 6. Derivando (, ) con respecto a obtenemos que (, ) =. Por tanto, (, ) =. ) Podemos calcular las derivadas parciales en un punto arbitrario. Consideremos la unción (, ) = sen( + )cos( ). Entonces, derivando la unción (, ) con respecto a obtenemos que (, ) = cos( + )cos( ) sen( + )sen( ). Derivando aora con respecto a obtenemos que (, ) = cos( + )cos( ) + sen( + )sen( ). NOTACIÓN. Ha otras notaciones mu etendidas para las derivadas Por ejemplo, si e- 3

4 GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. presamos una tercera variable z como unción de e, digamos z = (, ), entonces podemos escribir las derivadas parciales de las siguientes maneras: z = = D = z =, análogamente, = = D = z =. z es discontinua en ( 0,0 ). Sin embargo, eisten las deri- 0, = 0, EJEMPLO. La unción (, ) =, 0 vadas parciales (0, = 0 (0, = 0. Derivada direccional. La derivada parcial con respecto a resulta de analizar el ritmo de variación de la unción cuando nos acercamos a ( 0, manteniendo la segunda coordenada constante; o sea, cuando nos acercamos a dico punto según la dirección marcada por el vector (,. Análogamente, la derivada parcial con respecto a nos da la tasa de cambio de al acercarnos al punto ( 0, según la dirección marcada por el vector (0,). Más generalmente, consideremos el punto ( 0, interior al conjunto U donde está deinida la unción un vector unitario u = ( u, u ), es decir, tal que u =. DEFINICIÓN. Sea :(, ) U (, ) una unción de dos variables consideremos un punto ( 0, interior al conjunto U. La derivada direccional de en la dirección u, es, si eiste el siguiente límite, el número deinido por D u = ( + u, + u ) (, ) ( 0, : lim. 0 OBSERVACIÓN (INTERPRETACIÓN GEOMÉTRICA). Consideramos un punto P= ( 0, 0, z en la gráica de la unción, de manera que z 0 = ( 0, 0 ), cortamos dica supericie z = (, ) con el 4

5 GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. plano π que pasa por el punto P= ( 0, 0, z paralelo al eje OZ con vector director ( u, u,, obteniendo una curva C en dico plano en la supericie. Un trozo pequeño de esta curva puede ser parametrizado por la unción C t r r C t = + tu + tu z t 3 : (, ) ( ) ( 0, 0, ( )), siendo r > 0 suicientemente pequeño zt () = ( 0 + tu, 0 + tu). Observemos que los puntos de la curva están en el plano π en la supericie z = (, ). El punto P se obtiene para t = 0. El vector tangente a esta curva en el punto P viene dado por C ( = ( u, u, z (), siendo entonces z ( la pendiente (medida en el plano π ) de la recta tangente a esta curva C en el punto P. Calculemos el valor z (. Por deinición tenemos que z ( : = lim puesto que este co- z ( ) z( 0 ( 0 + u, 0 + u) ( 0, ciente incremental es, tenemos que z ( = Du ( 0,. Esto quiere decir que la derivada direccional Du ( 0, representa la pendiente de la recta tangente a esta curva en el punto P. Derivadas parciales de orden superior. Cuando eisten las derivadas parciales de una unción en cada punto (, ) del dominio U (suponemos que el dominio es un conjunto abierto) se pueden deinir las unciones derivadas parciales de dadas por U :(, ) (, ) U :(, ) (, ). Las derivadas parciales de una unción se suelen llamar derivadas parciales de primer orden. Nos planteamos aora el proceso de derivación sucesiva, para lo que introduciremos los conceptos de derivadas parciales segundas, terceras, etc. 5

6 GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. DEFINICIÓN. Consideremos una unción :(, ) U (, ) para la que eisten sus unciones derivadas parciales primeras, esto es, :(, ) U (, ) también :(, ) U (, ). Las derivadas parciales de estas unciones se llaman, si eisten, derivadas parciales segundas de pueden ser cuatro, cuas notaciones abituales damos a continuación: a) derivada parcial segunda de respecto de dos veces: = = =. = D b) derivada parcial segunda (o cruzada) de primero respecto de luego de : = = = = D. c) derivada parcial segunda (o cruzada) de primero respecto de luego de : = = = = D. d) derivada parcial segunda de respecto de dos veces: = = =. = D Reiterando el proceso, a partir de las derivadas parciales segundas se deinen las derivadas parciales terceras de que son oco. Estas son las siguientes : =, : =, : =, : =, : =, : =, : =, : =. TEOREMA (IGUALDAD DE LAS DERIVADAS CRUZADAS). Consideremos una unción de dos variables :(, ) U (, ). Si las derivadas parciales de primer orden eisten son continuas la derivada parcial cruzada eiste es una unción continua en U, entonces eiste la otra derivada cruzada ambas coinciden. OBSERVACIÓN. También es cierto el resultado si intercambiamos los papeles de e, es decir, si las derivadas parciales de primer orden eisten son continuas la derivada parcial cruzada eiste es una unción continua en U, entonces eiste la otra derivada cruzada ambas coinciden. EJEMPLO. ) La unción = + tiene derivadas parciales son (, ) = + (, ) (, ) = Estas dos unciones son continuas, eiste la derivada cruzada (, ) = es una unción continua. El teorema de las derivadas cruzadas nos asegura que la otra derivada cruzada 6

7 GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. (, ) eiste coincide con (, ), como se comprueba con un simple cálculo. ) En la maoría de los casos, con las unciones que nosotros trabajaremos, se veriican las ipótesis del teorema de las derivadas cruzadas, en consecuencia, las derivadas cruzadas coincidirán. Sin embargo, esto no es cierto en general. Por ejemplo, para la unción deinida por 3 3,si(, ) (0, (, ) = + 0, si (, ) = (0, tenemos que no coinciden las derivadas parciales cruzadas en el origen, es decir, se veriica que (0, (0,. Este eco se comprueba calculando estas derivadas con la deinición, pero es un proceso complicado no lo detallaremos aquí. EJERCICIO. Calcula las derivadas parciales de las siguientes unciones () (, ) ( ) =, () (, ) = +, (3) (, ) =, + + (4) (, ) =, (5) (, ) = arctan, (6) (, ) = e sen( + ), (7) (, ) e log, (, ) cos 3 =, (9) (, ) =. = (8) ( ) EJERCICIO. Escribe la deinición de derivada parcial para una unción de tres variables. EJERCICIO 3. Calcula las derivadas parciales de las siguientes unciones () ( z,, ) = + z + z, () ( z,, ) = log( + z z), (3) (,, z) =, (4) ( z,, ) = arcsen( z), + + z ( ) (5) (,, ) z z e + +, ( z,, ) = tan z. = (6) ( ) EJERCICIO 4. Escribe la deinición de derivada direccional para una unción de tres variables. EJERCICIO 5. Calcula la derivada direccional de las siguientes unciones en los puntos según las direcciones que se indican (, ) = 3, P= 5,5, = 4,3, (,, z) = 3e cos( z), P= 0,0,0, u =,,, ) ( ) u ( ) 3) ( ) ( ) ) z (, ) = +, P= (, ), u = ( 3, 4 ), 4) z = e + z P= = ( ) (,, ) log( ),,0,,,,. u EJERCICIO 6. Escribe las deinición de derivada parcial de segundo orden para una unción de tres variables (,, ), z cuántas a?, cuáles son iguales? 7

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.3. CONCEPTO DE DERIVADA. CÁLCULO DE DERIVADAS

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.3. CONCEPTO DE DERIVADA. CÁLCULO DE DERIVADAS TEMA. FUNCIONES REALES DE VARIABLE REAL.. CONCEPTO DE DERIVADA. CÁLCULO DE DERIVADAS . FUNCIONES REALES DE VARIABLE REAL.. CONCEPTO DE DERIVAD. CÁLCULO DE DERIVADAS... Derivada de una unción en un punto...

Más detalles

3.1 INTERPRETACION GEOMETRICA 3.2 DEFINICIÓN

3.1 INTERPRETACION GEOMETRICA 3.2 DEFINICIÓN Cap. La derivada. INTERPRETACION GEOMETRICA. DEFINICIÓN. NOTACIÓN. FORMA ALTERNATIVA.5 DIFERENCIABILIDAD.6 DERIVACIÓN.6. FORMULAS DE DERIVACIÓN..6. REGLAS DE DERIVACIÓN.6. DERIVADAS DE ORDEN SUPERIOR.6.

Más detalles

Unidad 3. Funciones.Derivabilidad 3 FUNCIONES TEMA ERIVABILIDAD. José L. Lorente Aragón

Unidad 3. Funciones.Derivabilidad 3 FUNCIONES TEMA ERIVABILIDAD. José L. Lorente Aragón Unidad. Funciones.Derivabilidad TEMA FUNCIONES UNCIONES.DERIVABILIDAD ERIVABILIDAD.. Tasa de variación media. Derivada en un punto. Interpretación.. Tasa de variación media.. Deinición de derivada en un

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

UNIDAD 9 DERIVADAS Y APLICACIONES. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b]

UNIDAD 9 DERIVADAS Y APLICACIONES. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] IES Padre Poveda (Guadi UNIDAD 9 DERIVADAS Y APLICACIONES. TASA DE VARIACIÓN MEDIA. Se deine la tasa de variación media de una unción y en un intervalo [ b] T. V. M. [ a, b] a, como: ( ( a b a ( a, a,

Más detalles

Extremos de funciones de dos variables 1.- Sea z = f(x, y) una función cuyas derivadas parciales son continuas en afirmarse que:

Extremos de funciones de dos variables 1.- Sea z = f(x, y) una función cuyas derivadas parciales son continuas en afirmarse que: Etremos de unciones de dos variables 1.- Sea z = (, ) una unción cuas derivadas parciales son continuas en airmarse que: a) alcanza sus valores máimo mínimo absolutos en R. b) es dierenciable en todo punto

Más detalles

R. Puede. a) f alcanza sus valores máximo y mínimo absolutos en R. X b) f es diferenciable en todo punto de R. ' ' , para algún punto

R. Puede. a) f alcanza sus valores máximo y mínimo absolutos en R. X b) f es diferenciable en todo punto de R. ' ' , para algún punto Etremos de unciones de dos variables Etremos de unciones de dos variables 1.- Sea z = (, ) una unción cuas derivadas parciales son continuas en airmarse que: a) alcanza sus valores máimo mínimo absolutos

Más detalles

DERIVADAS. Dada una función y =f(x), llamamos derivada de la función f en el punto x = a, f (a), al límite f '( y es un número real.

DERIVADAS. Dada una función y =f(x), llamamos derivada de la función f en el punto x = a, f (a), al límite f '( y es un número real. .-Deinición DERIVADAS Dada una unción y (), llamamos derivada de la unción en el punto a, (, ( a + ) al límite '( y es un número real. 0 Cuando eiste este límite, decimos que la unción es derivable en

Más detalles

DERIVADAS. TVM (a, b) = = h. La tasa de variación media se puede interpretar como la pendiente de la recta AB de la figura siguiente:

DERIVADAS. TVM (a, b) = = h. La tasa de variación media se puede interpretar como la pendiente de la recta AB de la figura siguiente: Tasa de variación media DERIVADAS La tasa de variación media TVM de una unción ( en un intervalo (x, x se deine como: TVM (a, b ( x ( x x x Si consideramos x x + h, podemos expresar la TVM como: Interpretación

Más detalles

DERIVADAS PARCIALES. Derivadas parciales de una función de dos variables. Definición. Dada una función de dos variables f: D R 2 R definida en

DERIVADAS PARCIALES. Derivadas parciales de una función de dos variables. Definición. Dada una función de dos variables f: D R 2 R definida en DERIVADAS PARCIALES Derivadas parciales de una unción de dos variables Deinición. Dada una unción de dos variables : D R 2 R deinida en el conjunto abierto D R 2, se deine la derivada parcial de con respecto

Más detalles

Teoría y ejercicios de Matemáticas II. Análisis

Teoría y ejercicios de Matemáticas II. Análisis 9.DERIVADAS 9.. VARIACIÓN DE UNA VARIABLE Las propiedades estudiadas en los temas anteriores, límites, continuidad, etc., nos aportan inormación puntual sobre las unciones; pero no nos dicen nada sobre

Más detalles

Antes de comenzar. Qué entendemos por secante y por tangente de una recta a una curva?

Antes de comenzar. Qué entendemos por secante y por tangente de una recta a una curva? Indice. 1. Interpretación geométrica de la derivada. 2. Tasas de variación. 3. Derivabilidad de una unción en punto. 4. Funciones no derivables. 5. Función derivada. 6. Ecuación de la recta tangente. 7.

Más detalles

Como todo máximo o mínimo absoluto es también local (relativo), siempre que hablemos de máximos o mínimos, consideraremos que son locales.

Como todo máximo o mínimo absoluto es también local (relativo), siempre que hablemos de máximos o mínimos, consideraremos que son locales. TEOREMAS BÁSICOS DEL CÁLCULO DIFERENCIAL. Cuando una función es continua en un intervalo cerrado [ a, b ] alcanza su máimo y su mínimo absolutos en puntos c y c, respectivamente, de dico intervalo. Esto

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población:

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población: DERIVADAS INTRODUCCIÓN Una recta es tangente a una curva en un punto si solo tiene en común con la curva dicho punto. y 5 4 Recta tangente en (,) La pendiente de una recta es la tangente del ángulo que

Más detalles

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables UNIVERSIDAD NACIONAL DE INGENIERIA Facultad de Ingeniería Mecánica Curso: Cálculo Vectorial Funciones Reales de Varias Variables Pro: Hermes Pantoja C. NOTA HISTORICA. Mar Faira Somerville (1780-187).

Más detalles

Cálculo de Derivadas. 2º Bachillerato. Materiales (Editorial SM)

Cálculo de Derivadas. 2º Bachillerato. Materiales (Editorial SM) Cálculo de Derivadas. 2º Bacillerato Materiales Editorial SM Esquema Tasa de variación media en un intervalo Para una unción se deine la tasa de variación media de en un intervalo [a, b], contenido en

Más detalles

3. Campos escalares diferenciables: gradiente.

3. Campos escalares diferenciables: gradiente. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. 3. Campos escalares diferenciables: gradiente. Plano tangente diferenciabilidad. Consideremos na fnción f :(, ) U f(, ) de dos variables n pnto (, interior al conjnto

Más detalles

Máximos y mínimos de una función real de dos variables reales

Máximos y mínimos de una función real de dos variables reales Máimos mínimos de una unción real Deinición Sea D una región del plano Sea :D R Se dice que alcanza su valor máimo absoluto M en un punto P (, ) D cuando M (, ) (,) (,) D Se dice que tiene un máimo relativo

Más detalles

FUNCIONES VECTORIALES DE VARIABLE ESCALAR

FUNCIONES VECTORIALES DE VARIABLE ESCALAR CAPITULO II CALCULO II 2.1 CONCEPTOS BÁSICOS FUNCIONES VECTORIALES DE VARIABLE ESCALAR Una función vectorial (o a valores vectoriales) de una variable real (escalar), es una función del en la cual, a cada

Más detalles

Tema 6: Derivada de una función

Tema 6: Derivada de una función Tema 6: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles

Derivadas. 1. Tasa de variación media La tasa de variación media de una función f(t) en un intervalo [a, b] se define como:

Derivadas. 1. Tasa de variación media La tasa de variación media de una función f(t) en un intervalo [a, b] se define como: Derivadas Antes de dar la definición de derivada de una función en un punto, vamos a introducir el concepto de tasa de variación media y dos ejemplos o motivaciones iniciales que nos van a dar la medida

Más detalles

Derivación de funciones de varias variables.

Derivación de funciones de varias variables. Derivación de funciones de varias variables. En este apartado se presentan los conceptos básicos que aparecen en la derivación de funciones de varias variables. La idea es establecer un método para estudiar

Más detalles

Derivabilidad. Cálculo de Derivadas. 1 o Bach. Ciencias Dpto Matemáticas. 6. Derivar

Derivabilidad. Cálculo de Derivadas. 1 o Bach. Ciencias Dpto Matemáticas. 6. Derivar Derivabilidad Sea f una función y a Dom(f). Definimos derivada de f en = a al siguiente límite cuando eiste y es finito f (a) = lím h 0 f(a+h) f(a) h Cálculo de Derivadas 1. Derivar una potencia 2. Derivar

Más detalles

Derivada. lim 5x. Derivada por definición. Sea y = f (x) una función que depende de x. Se define la derivada de dicha función como otra función: lim h

Derivada. lim 5x. Derivada por definición. Sea y = f (x) una función que depende de x. Se define la derivada de dicha función como otra función: lim h S_A._LECV Derivada Derivada por deinición. Sea y = una unción que depende de. Se deine la derivada de dica unción como otra unción: La simbología de la derivada es y y Analíticamente la derivada es un

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables 1. Conceptos elementales Funciones IR n IR m. Definición Una función f (también f o f): A IR n IR m es una aplicación que a cada x (también x o x) A IR n le hace corresponder

Más detalles

Lección 11: Derivadas parciales y direccionales. Gradiente. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 11: Derivadas parciales y direccionales. Gradiente. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 11: Derivadas parciales y direccionales. Gradiente Introducción al Cálculo Infinitesimal I.T.I. Gestión Recordar: - Cálculo de ĺımites - Reglas de derivación Derivadas parciales f : R 2 R función

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

f y h lim (, ) Derivadas parciales de una función de dos variables INTERPRETACIóN GEOMéTRICA DE LAS DERIVADAS PARCIALES f(x,y)= f x = = D x

f y h lim (, ) Derivadas parciales de una función de dos variables INTERPRETACIóN GEOMéTRICA DE LAS DERIVADAS PARCIALES f(x,y)= f x = = D x DERIVADAS PARCIALES En las aplicaciones de las funciones de varias variables surge una pregunta: Cómo será afectada la función por una variación de una de las variables independientes?. Podemos responder

Más detalles

Se define la derivada de una función f(x) en un punto "a" como el resultado, del siguiente límite:

Se define la derivada de una función f(x) en un punto a como el resultado, del siguiente límite: TEMA: DERIVADAS. Derivada de una función en un punto Se define la derivada de una función f() en un punto "a" como el resultado, del siguiente límite: f ( a + ) f ( a) f '( a) lim Si el límite eiste es

Más detalles

Tema 12. Derivabilidad de funciones.

Tema 12. Derivabilidad de funciones. Tema. Derivabilidad de funciones.. Tasa de Variación media. Derivada en un punto. Interpretación.... Tasa de variación Media.... Definición de derivada de una función en un punto.... Interpretación geométrica

Más detalles

Derivada de una función MATEMÁTICAS II 1

Derivada de una función MATEMÁTICAS II 1 Derivada de una función MATEMÁTICAS II TASA DE VARIACIÓN MEDIA La tasa de variación media de una función nos da una idea de la rapidez con que crece o decrece en un intervalo. Sea y = f() una función que

Más detalles

DERIVADAS DE FUNCIONES DE UNA VARIABLE

DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE [4.] Estudiar la derivabilidad de la función los puntos en los que esté definida. 3 f( ) y obtener f ( ) en En primer lugar

Más detalles

4. Resolución de indeterminaciones: la regla de L Hôpital.

4. Resolución de indeterminaciones: la regla de L Hôpital. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Funciones y derivada. 4. Resolución de indeterminaciones: la regla de L Hôpital. Sean f y g dos funciones derivables en un intervalo abierto I R y sea

Más detalles

UNIDAD 2: DERIVADAS Y APLICACIONES. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b]

UNIDAD 2: DERIVADAS Y APLICACIONES. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] IES Padre Poveda (Guadi UNIDAD : DERIVADAS Y APLICACIONES TASA DE VARIACIÓN MEDIA Se deine la tasa de variación media de una unción ( y en un intervalo [ b] T V M [ a, b] a, como: ( ( a b a ( a, a, B (

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Definición de derivada Observación: Algunos de los enunciados de estos problemas se han obtenido de Selectividad.

Definición de derivada Observación: Algunos de los enunciados de estos problemas se han obtenido de Selectividad. Definición de derivada Observación: Algunos de los enunciados de estos problemas se an obtenido de Selectividad Halla, utilizando la definición, la derivada de la función f ( ) en el punto = Comprueba

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

Repartido 5. Profesor Fernando Díaz Matemática A 3ro E.M.T. Iscab DERIVADA DE UNA FUNCIÓN EN UN PUNTO. INTERPRETACIÓN GEOMÉTRICA.

Repartido 5. Profesor Fernando Díaz Matemática A 3ro E.M.T. Iscab DERIVADA DE UNA FUNCIÓN EN UN PUNTO. INTERPRETACIÓN GEOMÉTRICA. Repartido 5 Proesor Fernando Díaz Matemática A ro E.M.T. Iscab 6.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO. INTERPRETACIÓN GEOMÉTRICA. Deinición: Se llama derivada de una unción en un punto =a, y se representa

Más detalles

f p) 2 3x f q) f r) 4 x f s) x 6 f t) f u) x 3x f v) x 7x x x 9x

f p) 2 3x f q) f r) 4 x f s) x 6 f t) f u) x 3x f v) x 7x x x 9x .- Halla el dominio de deinición de las siguientes unciones polinómicas y racionales: a) b) 8 j) 9 4 d) 9 l) 7 ( ) 5 ( ) ( ) 4 p) q) r) 7 9 ( ) 8 7 9 ( ) 4 ( ) 4 ( ) ( ) s) 5 m) t) h) ( ) 7 ( ) 4 u) v)

Más detalles

Función derivada. lim

Función derivada. lim Pro. Enrique Mateus Nieves Función derivada TASA DE VARIACIÓN: Muchas leyes de la Física, la Química, la Bioloía o la Economía, son unciones que relacionan una variable dependiente y con otra variable

Más detalles

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos

Más detalles

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN. Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en

Más detalles

Tema 7: Derivada de una función

Tema 7: Derivada de una función Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL 6.1. TASAS DE VARIACIÓN MEDIA E INSTANTÁNEA 6.1.1. Tasa de variación media La tasa de variación media de una unción en un intervalo a, b es el cociente: b a TVM,

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

Derivabilidad de funciones de una

Derivabilidad de funciones de una Tema 3 Derivabilidad de funciones de una variable El objetivo del presente tema es la derivación de funciones reales de variable real, así como sus diversas aplicaciones entre las que destacamos la representación

Más detalles

5. DIFERENCIACION DE FUNCIONES DE VARIAS VARIABLES

5. DIFERENCIACION DE FUNCIONES DE VARIAS VARIABLES 8 Obseraciones: Si alguno de los límites anteriores es distinto de los otros o no eiste, podemos airmar que no eiste (, (, ( a, a ) La eistencia e igualdad de todos los límites anteriores no nos permite

Más detalles

Idea de Derivada. Tasa de variación media e instantánea

Idea de Derivada. Tasa de variación media e instantánea Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años) 0 6 9 8 Altura (cm.) 8 6 74 78 80 a) Representar

Más detalles

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0.

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0. Razonar si son ciertas o falsas las siguientes igualdades: ) a + b) = a + b ) ) a + b = a + b e = e 4) a + ab b + a = a 5) 8 + = 6) a ) = a 5 7) 8) a = a 4 = 4 9) 9 = 0) ) e ) = e + = ) e ln = ) ln 0 =

Más detalles

Tema 9 Derivadas. Técnicas de derivación

Tema 9 Derivadas. Técnicas de derivación Tema 9 Derivadas. Técnicas de derivación. Deinición de unción derivada. Halla la unción derivada de utilizando la deinición. Función derivada: ; ;. Indeterminación. Multiplicamos numerador y denominador

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL Estudiar la continuidad y derivabilidad de las siguientes funciones y escribir su función derivada: si < ( ) f 7 si < 7 si b) f c) f La función f(

Más detalles

5 Continuidad y derivabilidad de funciones reales de varias variables reales.

5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El

Más detalles

Lección 4. Integrales múltiples. 4. Superficies parametrizadas.

Lección 4. Integrales múltiples. 4. Superficies parametrizadas. GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 MATEMÁTICAS III DPTO DE MATEMÁTICA APLICADA II Lección 4 Integrales múltiples 4 Superficies parametrizadas Representación paramétrica de una superficie La primera

Más detalles

Pendiente en forma polar

Pendiente en forma polar Cálculo vectorial Unidad I.5.. Pendiente de una recta tangente en forma polar M.C. Ángel León Unidad I - Curvas en R ecuaciones paramétricas.5.. Pendiente de una recta tangente en forma polar Para encontrar

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos:

DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos: DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos: Definición: 2.- TASA DE VARIACIÓN INSTANTÁNEA. DEFINICIÓN DE DERIVADA DE UNA FUNCIÓN EN UN PUNTO.

Más detalles

Límites y Derivadas 2d. Matemáticas para Ingeniería I Otono 2016 Lilia Meza Montes IFUAP

Límites y Derivadas 2d. Matemáticas para Ingeniería I Otono 2016 Lilia Meza Montes IFUAP Límites y Derivadas d Matemáticas para Ingeniería I Otono 016 Lilia Meza Montes IFUAP Función de una variable Función : regla que asocia un único valor a cada elemento de un conjunto. R y() R 0 Dominio:

Más detalles

Máximos y mínimos de una función real de dos variables reales

Máximos y mínimos de una función real de dos variables reales Máimos mínimos de una unción real Deinición Sea D una región del plano Sea :D R Se dice que alcanza su valor máimo absoluto M en un punto P =, ) D cuando M =, ),),) D Se dice que tiene un máimo relativo

Más detalles

UNIDAD 2 DERIVADAS Y APLICACIONES. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b]

UNIDAD 2 DERIVADAS Y APLICACIONES. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] IES Padre Poveda (Guadi UNIDAD DERIVADAS Y APLICACIONES.. TASA DE VARIACIÓN MEDIA. Se deine la tasa de variación media de una unción ( y en un intervalo [ b] T. V. M. [ a, b] a, como: ( ( a b a ( a, a,

Más detalles

TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN 9.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO

TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN 9.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN MATEMÁTICAS II º Bach TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN 9. DERIVADA DE UNA FUNCIÓN EN UN PUNTO TASA DE VARIACIÓN MEDIA Definición Se llama tasa de variación

Más detalles

Ayudantía Regla de la Cadena. Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemática

Ayudantía Regla de la Cadena. Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemática / 010 Ayudantía 4 1. Regla de la Cadena Proposición 1 Regla de la Cadena - 1. Sea f : U R n R diferenciable y γ : I R R n una curva diferenciable contenida en U. Entonces, la función gt = f γt es derivable

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

CAPITULO 4: FUNCIONES DE VARIAS VARIABLES DERIVADAS PARCIALES

CAPITULO 4: FUNCIONES DE VARIAS VARIABLES DERIVADAS PARCIALES CAPITULO : FUNCIONES DE VARIAS VARIABLES FUNCIONES DE VARIAS VARIABLE En muchas situaciones prácticas el valor de una cantidad depende de otras dos o más. Por ejemplo el volumen de agua en la represa de

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

Tema 1. Funciones: Límites y Continuidad. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 1

Tema 1. Funciones: Límites y Continuidad. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 1 Tema Funciones: Límites y Continuidad.- Introducción.- Deinición de Función..- Funciones elementales..- Operaciones con unciones...- Composición de unciones...- Función inversa o recíproca.- Transormaciones

Más detalles

FUNCIONES DE VARIAS VARIABLES

FUNCIONES DE VARIAS VARIABLES FUNCIONES DE VARIAS VARIABLES Deinición: Si D es un conjunto de n-uplas de números reales... n una unción de valores reales sobre es una regla que asigna un número real w... n a cada elemento de D donde

Más detalles

ECUACIONES DE RECTAS Y PLANOS

ECUACIONES DE RECTAS Y PLANOS ECUACIONES DE RECTAS Y PLANOS Una recta en el plano está determinada cuando se dan dos puntos cualesquiera de la recta, o un punto de la recta y su dirección (su pendiente o ángulo de inclinación). La

Más detalles

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO Alonso Fernández Galián Tema 6: Geometría analítica en el plano TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO La geometría analítica es el estudio de objetos geométricos (rectas, circunferencias, ) por medio

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Tasa de variación. Tasa de variación media

Tasa de variación. Tasa de variación media Tasa de variación Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento de x (Δx). Se llama

Más detalles

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo. UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4

Más detalles

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x) TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 5 Derivación de funciones de una y varias variables José Barrios García Departamento de Análisis Matemático Universidad de La

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS TEMA 7 7.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO 7.2 FUNCIÓN DERIVADA 7.3 REGLAS DE DERIVACIÓN 7.4 ESTUDIO DE LA DERIVABILIDAD DE UNA FUNCIÓN DEFINIDA D A TROZOS APLICACIONES DE LAS DERIVADAS 7.5 RECTA TANGENTE

Más detalles

DERIVADAS Y APLICACIONES MANUEL BALLESTEROS HONRADO

DERIVADAS Y APLICACIONES MANUEL BALLESTEROS HONRADO DERIVADAS Y APLICACIONES MANUEL BALLESTEROS HONRADO . TASA DE VARIACIÓN MEDIA. Imaginemos la siguiente tabla que relaciona los kilómetros recorridos por un ciclista en las siete horas que dura una etapa

Más detalles

6º S.E. Ficha 1 Matemática I. , decimos que b es el correspondiente o la imagen de a por f (anotamos b = f(a))es decir, b es. f g.

6º S.E. Ficha 1 Matemática I. , decimos que b es el correspondiente o la imagen de a por f (anotamos b = f(a))es decir, b es. f g. Deinición: (Función) Una relación entre elementos de un conjunto A y elementos de un conjunto B (no vacíos) es una unción de A en B si y sólo si se cumplen las dos condiciones siguientes: ) a A, b B /(

Más detalles

f p) 2 3x f q) f r) 4 x f s) x 6 f t) f u) x 3x f v) x 7x x x 9x

f p) 2 3x f q) f r) 4 x f s) x 6 f t) f u) x 3x f v) x 7x x x 9x .- Halla el dominio de deinición de las siguientes unciones polinómicas y racionales: a) ( ) b) ( ) 8 j) ( ) 9 4 d) ( ) 6 9 l) 7 ( ) 5 ( ) ( ) 4 p) q) r) 7 9 ( ) 8 ( ) 7 9 ( ) 4 6 ( ) 4 ( ) ( ) s) 5 (

Más detalles

FUNCIONES DE DOS VARIABLES

FUNCIONES DE DOS VARIABLES FUNCIONES DE DOS VARIABLES - Funciones de dos variables reales - Límites 3- Continuidad de funciones de dos variables 4- Derivabilidad de funciones de dos variables 5- Diferenciabilidad de funciones de

Más detalles

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales Derivadas parciales y direccionales 1 Derivadas parciales 2 Derivadas direccionales 3 Derivadas parciales de orden superior Derivadas parciales (de campos escalares de dos variables) Sea A = [a 1, b 1

Más detalles

CONTINUIDAD Y DERIVADA CONCEPTO DE DERIVADA DE UNA FUNCIÓN. REGLAS DE DERIVACIÓN

CONTINUIDAD Y DERIVADA CONCEPTO DE DERIVADA DE UNA FUNCIÓN. REGLAS DE DERIVACIÓN Índice Presentación... 3 Concepto de derivada de una función en un punto... 4 La derivada como un límite... 5 Derivada y continuidad. Funciones no derivables... 6 Función derivada. Reglas para derivar...

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009 0 Ejercicios de Selectividad Continuidad y derivabilidad de unciones Ejercicios propuestos en 009 1- [009-1-A-] a) [1 5] Halle las unciones derivadas de las unciones deinidas por las siguientes ln epresiones:

Más detalles

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1 1. Calcula la derivada de las funciones: y = Ln3 4 3 ) 5 y = Ln [ 1) )]. Calcula la derivada de las funciones: y = sen y = sen 3 y = sen 3 y = sen 3 3 y = sen 3 ) y = sen 4 3 4 5) 3 3. Calcula la derivada

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN DERIVADA DE UNA FUNCIÓN 3URI/XLV~xH] Se estudia aquí uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. Además de la definición y su interpretación, se allarán las

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Curso Propedéutico de Cálculo Sesión 3: Derivadas

Curso Propedéutico de Cálculo Sesión 3: Derivadas Curso Propedéutico de Cálculo Sesión 3: Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema 1 2 3 4 5 6 7 Esquema 1 2 3 4 5 6 7 Introducción La derivada

Más detalles

Profesor: Fco. Javier del Rey Pulido

Profesor: Fco. Javier del Rey Pulido FUNCIONES.- DEFINICIÓN DE FUNCIÓN.- Una función es una relación entre dos magnitudes e y (variables), de forma que a cada valor de le corresponde un único valor de y. y Ejemplo: y 5 y 5 4 5. Doy valores

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

La Derivada y las Reglas Básicas de Diferenciación

La Derivada y las Reglas Básicas de Diferenciación La Derivada y las Reglas Básicas de Dierenciación MATE 0 Cálculo 8/0/06 Pro. José G. Rodríguez Aumada de 6 Cálculo - MATE 0 Actividades. Reerencia: Sección. Derivación, Ver ejemplos al ; Ejercicios de

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

Propiedades de las funciones en un intervalo

Propiedades de las funciones en un intervalo Propiedades de las funciones en un intervalo Teorema de Rolle: si una función es continua y derivable en un intervalo y toma valores iguales en sus etremos, eiste un punto donde la derivada primera se

Más detalles

Superficies Parametrizadas y Áreas

Superficies Parametrizadas y Áreas Superficies Parametrizadas y Áreas 1 Superficies Parametrizadas y Áreas Hasta ahora hemos estudiado (tema de matemáticas 5) superficies definidas como gráficas de funciones de la forma z = f (x, y). El

Más detalles