ALGEBRA. Escuela Politécnica Superior de Málaga

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ALGEBRA. Escuela Politécnica Superior de Málaga"

Transcripción

1 ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes. Sistemas de ecuaciones lineales. Teorema de Rouché-Frôbenius. Interpretación geométrica. Método de Gauss. Subespacio vectorial. Intersección y suma de subespacios. Suma directa. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Aplicación lineal. Matrices asociadas. Núcleo e imagen de una aplicación lineal. Valores y vectores propios. Subespacios invariantes. Criterios de diagonalización de un endomorfismo. Formas Canónicas. Tema 3. Espacio afín y Euclídeo. Movimientos. Espacio afín. Espacio Euclídeo. Producto vectorial. Problemas afines y métricos en el plano y en el espacio. Diagonalización ortogonal. Transformaciones ortogonales. Clasificación. Transformaciones afines. Movimientos. Clasificación y elementos geométricos. Formas cuadráticas. Cónicas y cuádricas. Clasificación. Tema 4. Álgebra lineal numérica. Normas matriciales. Métodos de Jacobi. Estimación de errores. Cálculo de autovalores y autovectores. Tema 5. Ecuaciones Diferenciales Lineales. Matriz exponencial. Sistemas lineales de ecuaciones diferenciales y ecuaciones diferenciales lineales de orden n. Tema 6 Uso de paquetes informáticos. Formación básica y resolución de problemas mediante programación CAS (Computer Algebra Systems) 1

2 EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = { x R 3 x = (λ, 2λ, λ) R 3 } (b) T = {(x, y) R 2 x 2 + y = 0} (c) R = {x, y, z) R 3 x = 0, y = 2t λ, z = t + λ} (d) P = {(x 1, x 2, x 3 ) R 3 x 1 = 2x 2 + x 3 } (e) Q = {(x 1, x 2 ) R 2 x 1 x 2 = 1} 2. Calcula la dimensión del subespacio U generado por los vectores (1, a, 1), (1, 1, 1) y (0, 0, a) según los valores de a. Calcula las ecuaciones paramétricas y cartesianas de U para los valores de a para los que la dimensión de U es igual a Prueba que los vectores (2, 5, 3), (0, 1, 1) engendran el mismo subespacio que los vectores (4, 9, 5), (2, 7, 5). Expresa tres bases distintas de este subespacio. 4. Halla las inversas de las siguientes matrices mediante transformaciones elementales. ( ) Dado el sistema x 1 2x 2 + 2x 3 + x 4 = 0 x 1 + 2x 2 + 2x 3 + 3x 4 = 4 2x 1 x 2 = 2 3x 1 + 3x 2 2x 3 + x 4 = 2 (a) Resuelvelo mediante escalonamiento Gauss-Jordan. Halla una base del subespacio de sus soluciones. (b) Expresa, si es posible, la cuarta ecuación v 4, como combinación lineal de las otras tres, v 1, v 2, v Analiza para qué valores reales de a el siguiente sistema tiene solución y resuélvelos usando el método de eliminación de Gauss. x 1 + x 2 + x 3 = 1 2x 1 + 2x 2 + (1 a 2 )x 3 = 2a x 1 + x 2 + a 2 x 3 = 1 2

3 7. Estudia la compatibilidad del sistema según los valores que toman a y b: x 1 4x 2 + 3x 3 = a x 1 + 2x 2 + 7x 3 = b 2x 1 2x x 3 = 0 8. Dados los subespacios vectoriales U y V de R 3 U x 1 2x 2 + x 3 = 0, x 1 = 2t V x 2 = t x 3 = 3λ Calcula las ecuaciones paramétricas y cartesianas, una base y la dimensión de los subespacios U + V y U V. 9. Dados los subespacios U y V de R 4 U = {< (1, 0, 1, 1), (1, 1, 1, 0), (0, 1, 2, 1) >} V = {x 1, x 2, x 3, x 4 ) R 4 x 1 x 3 x 4 = 0, x 2 + x 3 = 0} Da unas bases y calcula las ecuaciones cartesianas y paramétricas de U, V, U +V y U V. 3

4 2. Aplicaciones lineales. Diagonalización de endomorfismos. 1. Determina si las siguientes aplicaciones son o no lineales. (a) f(x 1, x 2, x 3 ) = (x 1 + x 2 + x 3, 2x 1 x 2 ) (b) f(x 1, x 2, x 3 ) = (x 2 1 x 2 2, 2x 3, 0) (c) f(x 1, x 2 ) = (x 1, x 2 + 2, x 1 + x 2 ) (d) f(x 1, x 2 ) = (x 1 + 2x 2, 0, x 1 x 2 ) 2. Dada la aplicación lineal f(x 1, x 2, x 3 ) = (x 1 + 2x 2 4x 3, 2x 1 + 3x 2 + x 3 ) (a) Calcula la matriz A de f respecto a las bases canónicas. (b) Calcula las ecuaciones cartesianas si las hubiera y paramétricas del núcleo y de la imagen de f. Indicar si f es entonces inyectiva, sobreyectiva o biyectiva. (c) Buscar la relación entre la matriz A y aquella otra B de f que está expresada respecto a las bases {1, 1, 0), ( 2, 0, 1), (0, 0, 2)}, {( 1, 0), ( 2, 1)} 3. La matriz de la transformación ( ) lineal en R 2 expresada respecto a las bases {(3, 1), (1, 1)} 2 0 y {(0, 2), ( 1, 1)} es, Determina matricialmente cual sería la matriz respecto 0 1 a las bases canónicas. 4. Dada la aplicación lineal f(x 1, x 2, x 3 ) = (x 1 + x 2 + x 3, x 1 + x 2, x 3 ) (a) Halla las ecuaciones paramétricas y cartesianas del Núcleo y de la Imagen de f y clasifícala. (b) Halla una base de f(v ) siendo V el subespacio cuya ecuación cartesiana es x 3 = 0 (c) Halla las coordenadas de f(2, 3, 0) en la base de f(v ) obtenida anteriormente. (d) determina f 1 (3, 2, 1) 5. Sabiendo que la aplicación lineal f tiene a ( 2, 0) como autovector asociado al autovalor λ = 2 y que el vector (0, 5) pertenece a Kerf. Calcula la fórmula de f. ( ) Diagonalizar la matriz A =, dando la matriz de paso, la base de vectores propios 3 2 y la relación entre la matriz dada y la diagonal. Calcular A Estudiar para qué valores del parámetro a es diagonalizable el siguiente endomorfismo f : R 3 R 3, donde f(x, y, z) = (x, ax + y, x + y + 2z) 4

5 8. Se considera la matriz A = a a 0 2 b 2, siendo a y b números reales. (a) Calcula el polinomio característico de A, así como sus autovalores. (b) Para qué valores de a y b la matriz A es diagonalizable? 9. Consideremos el endomorfismo f : R 3 R 3 cuya matriz asociada respecto de la base canónica es A = (a) Determina los valores y vectores propios de f (b) Calcula las dimensiones y determinar una base de los subespacios propios asociados a los valores propios. (c) Es posible caracterizar el endomorfismo f mediante una matriz diagonal? 10. Sea f un endomorfismo en R 3 cuya matriz asociada respecto de la base canónica es 1 2 a A = (a) Determina para que valor de a es A diagonalizable. (b) En el caso en que sea posible, halla una base de autovectores B. (c) Da una matriz diagonal D que represente a f respecto de la base B. (d) Qué relación existe entre las matrices A y D? (e) Usa la relación anterior para calcular A La sucesión a n satisface la relación a n = a n 1 + 2a n 2 que matricialmente es expresada como: ( ) ( ) ( ) an 1 2 an 1 = a n a n 2 Si a 0 = 1 y a 1 = 1, calcula a 200. Calcula el término general de la sucesión. 12. Consideremos la base canónica de R 3 y A la matriz del endomorfismo referida a dicha base. En dicho endomorfismo, los subespacios V 1 = {(x, y, z) R 3 x + y + z = 0} V 2 = {(x, y, z) R 3 x y = 0, x z = 0} están asociados respectivamentes a los autovalores λ 1 = 1 y λ 2 = 1 2 5

6 (a) Diagonaliza el endomorfismo. (b) Determina una base de vectores propios. (c) Calcula la matriz A. 6

7 3. Espacio afín y euclídeo. Movimientos. 1. Dada la recta { x + y z = 2 x y + z = 0 y sobre ella el punto A(1, 1, 0), halla los puntos que están situados sobre la recta y que están a una distancia de 3 2 unidades de A. 2. Calcular el plano que pasa por los puntos P = (3, 2, 1) y Q = (3, 1, 5) y es perpendicular al plano 6x + 7y + 2z = Resuelve vectorialmente el ángulo entre una de las diagonales de un cubo, y una de sus caras. 4. Sean los puntos A(1, 0, 1) y B(2, 1, 3). (a) Calcula la distancia del origen de coordenadas a la recta que pasa por A y B. (b) Calcula el área del paralelogramo de vértices consecutivos ABCD sabiendo que la recta determinada por los vértices C y D pasa por el origen de coordenadas. 5. Halla el volumen del prisma cuya base es el paralelogramo de vértices (1, 0, 1), (3, 1, 4), (0, 2, 9) y ( 2, 1, 6), y cuya altura es Dadas las rectas { x1 x r 1 2 2x 3 = 2 3x 1 x 2 = 1 y r 2 x 1 = t, x 2 = 1 + 2t, x 3 = 0 (a) Halla la recta que pasa por (1, 0, 1) y por r 1 y r 2. (b) Halla la recta que pasa por (1, 0, 1) y es perpendicular a r 1 y r 2. (c) Halla la distancia entre r 1 y r Diagonalizar las matrices simétricas siguientes, calculando una matriz de paso ortogonal: A = B = Dada la matriz A =

8 (a) Estudiar si existe una matriz diagonal, D, que sea semejante a A. (b) Encontrar una matriz P tal que P 1 AP = D. (c) Existe una matriz de paso ortogonal? Si es así, calcúlala. Calcula, si es posible, A 1 y A En el espacio vectorial euclídeo R 3 se pide: (a) Determinar un vector unitario que sea ortogonal a los vectores (1, 2, 1), (0, 1, 1). (b) Obtener una base de vectores ortonormales para el subespacio: V =< (1, 2, 1), (0, 1, 1) > (c) Definir en R 3 un producto escalar que no sea el usual y encontrar una base ortonormal respecto de dicho producto escalar. 10. Se define para f, g P 1 (R) el siguiente producto escalar : f, g = 1 0 f(t)g(t) dt Calcular: (a) La matriz del producto escalar referida a la base {1, t} (b) El coseno del ángulo que forman p(t) = t + 3; q(t) = 2t + 4 (c) Una base ortonormal a partir de la base {1, t} 11. (Proyección Ortogonal.) Halla la matriz de la transformación lineal que transforma un punto del espacio en su proyección sobre el subespacio (plano) que generan los vectores (1, 0, 1), (2, 1, 0). Halla la proyección de la recta r 2 sobre ese plano. 12. En R 3 con el producto escalar usual, se considera el subespacio U generado por los vectores u 1 = (1, 1, 1), u 2 = (1, 2, 1). (a) Calcula una base ortonormal {e 1, e 2 } para U. (b) Amplia la base anterior para obtener una base ortonormal {e 1, e 2, e 3 } de R 3. (c) Calcula U el complemento ortogonal de U. (d) Calcula la proyección ortogonal del vector (1, 0, 4) sobre U y sobre U. 13. (Giro alrededor de un eje) Calcula la matriz A respecto a la base canónica de la isometría que realiza un giro de ángulo π alrededor del vector (1, 2, 2) (Semejanza en R 2 ) Con respecto a la base canńica, halla las ecuaciones de la transformación afín que transforma los vértices A(1, 1), B(1, 2), C(2, 2) de un triángulo en otro triángulo de vértices respectivos A (1, 1), B (2, 0), C (3 1). Determina si tiene puntos fijos. Qué relación hay entre las áreas de los triángulos? 8

9 15. justifica que la transformación afín, ( ) ( y1 1/2 3/2 = 3/2 1/2 y 2 ) ( x1 x 2 ) + ( 2 4 ) es un giro. Halla el punto alrededor del cual gira. 16. En el espacio afín R 3 se considera la transformación afín Θ cuyas ecuaciones son: y 1 = 1 + x 2 y 2 = 3 5 x x 3 y 3 = x x 3 siendo (x 1, x 2, x 3 ) las coordenadas de un punto de R 3 y (y 1, y 2, y 3 ) las de su transformado. Es Θ un movimiento? Cúal es el transformado del (0, 0, 0)? 17. Una afinidad transforma P 1 = (0, 0, 0), P 2 = (1, 0, 0), P 3 = (1, 1, 0), P 4 = (1, 1, 1) en los puntos (1, 1, 1), (1, 2, 3), (1, 2, 4), (0, 0, 0), respectivamente. Hallar las ecuaciones de dicha transformación respecto a la canónica. Si es un movimiento, describe cuál. 18. Halla las ecuaciones de los movimientos en R 2 : (a) La que a cada punto le corresponde su giro de ángulo π/3 respecto al centro (3, 5). (b) La que al realizar un giro de ángulo π lleva el punto (2, 2) al punto (0, 2). Calcular 2 también el centro de giro. (c) La que a cada punto le hace corresponder su simétrico respecto a la recta x 1 +2x 2 = (Simetría en R 3.) Con respecto a la base canónica, halla la ecuación de la transformación afín que en R 3 transforma un punto en su simétrico (reflexión) respecto al plano x+y z = 1. Halla sus puntos fijos si los hubiera. 20. Dada la cónica 2x 1 x x 1 = 1 (a) Expresa la cónica matricialmente como X t AX + BX = 1. (b) Diagonaliza A ortogonalmente, A = QDQ t con Q matriz de paso ortogonal y mediante la sustitución X = QT en la anterior expresión halla la ecuación reducida de la cnica en posición estandar con los nuevos ejes T. Clasifícala. (c) Calcula el centro con respecto a las variables T. original con respecto a sus variables X. Calcula el centro de la cónica (d) Halla la ecuación de la transformación afín que transforma la cónica original a su forma reducida estándar y centrada en (0, 0) 9

10 21. Procede como en el ejercicio anterior para cada cónica o cuádrica: (a) 2x x 2 2 4x x 2 x 3 5x 1 + 3x 2 = 2 (b) x 2 2xy + y x = 4 (c) x 2 8xy + 16x 3z = 8 (d) 2xy + 2xz = 1 (e) 4x 2 + 4y 2 + 4z 2 + 4xy + 4xz + 4yz 3 = 0 (f) xy 2x y z + 2 = 0 10

11 5. Ecuaciones Diferenciales Lineales. 1. El volumen de cierta sustancia tiene un crecimiento relativo constante de un 20% cada año. Si ahora el volumen es 2, calcula la función de crecimiento en cualquier tiempo t. 2. Cálculo de la matriz exponencial. Calcula la matriz exponencial e A para cada una de las matrices, ( ) ( ) 1 0 a 1 A=, A= a 3. Resolución de sistemas. Para cada sistema que sigue, halla la matriz de paso P con los vectores propios por columnas. Calcula la solución general x = e At c = P( e Dt P 1 c, ) x1 (0) con c vector constante. Calcula la solución particular para los valores de c = x 2 (0) indicados. (a) Aparecen raíces distintas reales. { x 1 (t) = 3x 1 (t) x 2 (t) x c = 2(t) = 2x 1 (t) + 2x 2 (t) (b) Raíces complejas. { x 1 (t) = x 1 (t) + x 2 (t) x 2(t) = x 1 (t) + x 2 (t) (c) Raíces dobles. { x 1 (t) = 2x 1 (t) x 2 (t) x 2(t) = x 1 (t) + 4x 2 (t) c = c = ( ( ( ) Indicación: Aquí la matriz no es diagonalizable y sólo puede obtenerse un vector propio, el teorema siguiente proporciona una forma de calcular la exponencial. TEOREMA: Si A matriz 2 2 no diagonalizable, con valor propio λ, y único vector propio independiente v 1, C( es la matriz ) ( v 1, v 2 ), donde v 2 es el vector que satisface (A λi) v 2 = v 1, entonces A = CJC 1 con λ 1 J =. 0 λ 4. Una leve modificación del problema anterior para que las raíces sean distintas reales. ( ) ( ) ( ) ( ) x 1 (t) 2 1 x1 (t) 500 x =, c =. Compara la solución con la del 2(t) x 2 (t) 100 problema anterior. ) ) 5. Sistema 3 3. x 1(t) = x 1 (t) x 2 (t) + 4x 3 (t) x 2(t) = 3x 1 (t) + 2x 2 (t) x 3 (t) x 3(t) = 2x 1 (t) + x 2 (t) x 3 (t) c =

12 6. Resuelve el sistema de ecuaciones diferenciales lineales: { x 1 (t) = 1 2 x 1(t)+ x 2 (t) x 2(t) = 1 4 x 1(t)+ 1 2 x 2(t) que corresponde con un modelo de especies en cooperación. 7. Sea A = Sabiendo que (λ 6)(λ + 1)(λ + 3) es su polinomio característico, calcular e A. 8. Problema de mezcla de fluidos. En un tanque 1, hay 1000 litros de agua salada con 100 kilos de sal en ella disuelta. En un segundo tanque 2, hay 1000 litros de agua pura. Se hace fluir agua pura hacia el tanque 1 a razón constante de 20 litros por minuto al mismo tiempo que la mezcla fluye del tanque 1 al 2 a razón de 30 litros por minuto. El tanque 2 a su vez, vuelve a mandar al tanque 1, 10 litros por minuto (se retroalimenta) y otros 20 por minuto hacia afuera del tanque. Halla la cantidad de sal que hay en cada instante t en cada tanque. Indicación: Considera que x 1 (t), x 2 (t) representan la cantidad de sal en los respectivos tanques en un tiempo t, siendo x 1 (0) = 100, x 2 (0) = Una placa rectangular 4 metros de ancha por 2 de alta centrada en (0, 0) con sus lados paralelos a los ejes (el lado más largo es paralelo al eje 0X) se dilata por minuto en la dirección del eje OX un 20% y en la dirección del eje OY un 50%. Calcula las medidas del rectángulo en el minuto t. Determina dónde de encuentra el punto (1, 1) de la placa al cabo de 6 minutos. Nota: Considerar x 1 (t), x 2 (t) las longitudes de la placa en el tiempo t en las direcciones OX y OY respectivamente. 10. Resuelve las siguientes ecuaciones diferenciales: (a) x + 5x + 6x = 0; x(0) = 1, x (0) = 0; (b) x + 6x + 9x = 0; x(0) = 1, x (0) = 2; (c) x + 4x = 0; x(0) = 0, x (0) = 1; (d) x 3x 10x = 0; x(0) = 3, x (0) = 2. 12

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS ESPACIOS EUCLÍDEOS ) a) Decir cuál de las siguientes aplicaciones de x de no definir un producto escalar comprobar el axioma que falla: a ) x' x,y,

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

Problemas de exámenes de Geometría

Problemas de exámenes de Geometría 1 Problemas de exámenes de Geometría 1. Consideramos los planos π 1 : X = P+λ 1 u 1 +λ 2 u 2 y π 2 : X = Q+µ 1 v 1 +µ 2 v 2. Cuál de las siguientes afirmaciones es incorrecta? a) Si π 1 π 2 Ø, entonces

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS . ESPACIO EUCLÍDEO. ISOMETRÍAS. En el espacio euclídeo usual R 4 se consideran los subespacios vectoriales y W = {(x, y, z, t R 4 : x y =, z + t = } Hallar: W 2 = L{(,, 2, 2, (,,, } a Las ecuaciones de

Más detalles

Espacios vectoriales. Vectores del espacio.

Espacios vectoriales. Vectores del espacio. Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A

Más detalles

2.5 Ejercicios... 59

2.5 Ejercicios... 59 Índice General 1 Espacios vectoriales 1 1.1 Espacios vectoriales y subespacios......................... 1 1.1.1 Preliminares................................. 1 1.1.2 Espacios vectoriales.............................

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2013 2014) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:...

UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... UTN FRBA Final de Álgebra y Geometría Analítica 1/05/01 Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... La condición para aprobar esta evaluación es tener bien resueltos como mínimo tres ejercicios.

Más detalles

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO ESPACIO AFIN 1.Hallar la ecuación del plano que contenga al punto P(1, 1, 1) y sea paralelo a las rectas: r x 2y = 0 ; y 2z + 4 = 0; s

Más detalles

GUÍA DE APRENDIZAJE ALGEBRA LINEAL Y GEOMETRIA

GUÍA DE APRENDIZAJE ALGEBRA LINEAL Y GEOMETRIA GUÍA DE APRENDIZAJE ALGEBRA LINEAL Y GEOMETRIA Datos Descriptivos TITULACIÓN: CENTROS IMPLICADOS: E.T.S. DE INGENIEROS NAVALES CICLO: MÓDULO: MATERIA: ASIGNATURA: CURSO: 1 º SEMESTRE: DEPARTAMENTO RESPONSABLE:

Más detalles

7 Aplicaciones ortogonales

7 Aplicaciones ortogonales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 7 Aplicaciones ortogonales 7.1 Aplicación ortogonal Se llama aplicación ortogonal a un endomorfismo f : V V sobre un espacio vectorial

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

1 Isometrías vectoriales.

1 Isometrías vectoriales. Eugenia Rosado ETSM Curso 9-. Isometrías vectoriales. Sea E un espacio vectorial euclídeo. De nición Una aplicación f : E! E se dice transformación ortogonal o isometría vectorial si conserva el producto

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

= λ + 1 y el punto A(0, 7, 5)

= λ + 1 y el punto A(0, 7, 5) 94 GEOMETRÍA ANALÍTICA DEL ESPACIO en las PAU de Asturias Dados los puntos A(1, 0, 1), B(l, 1, 1) y C(l, 6, a), se pide: a) hallar para qué valores del parámetro a están alineados b) hallar si existen

Más detalles

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v EJERCICIOS BLOQUE III: GEOMETRÍA (04-M;Jun-A-4) Considera la recta r que pasa por los puntos A (,0, ) y (,,0 ) a) ( punto) Halla la ecuación de la recta s paralela a r que pasa por C (,,) b) (5 puntos)

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (05-M4;Jun-B-4) Sea el plano π x + y z + 8 a) (5 puntos) Calcula el punto, P simétrico del punto (,,5 ) b) ( punto) Calcula la recta r, simétrica de la recta plano π P

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso )

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso ) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso 00-003) MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES:

Más detalles

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática. Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..

Más detalles

Problemas de Geometría Proyectiva

Problemas de Geometría Proyectiva Problemas de Geometría Proyectiva José M. Sánchez Abril José M. Rodríguez-Sanjurjo, Jesús M. Ruiz 1995 * I. VARIEDADES PROYECTIVAS Número 1. Se consideran en el plano proyectivo P 2 los cuatro puntos a

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Examen-Modelo para el curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y

Más detalles

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE E.T.S. DE INGENIERÍA INFORMÁTICA BOLETÍN DE PROBLEMAS DE ÁLGEBRA LINEAL para las titulaciones de INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN 1. Matrices y determinantes Ejercicio 1.1 Demostrar

Más detalles

Geometría. 2 (el " " representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

Geometría. 2 (el   representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. Geometría 1 (Junio-96 Dados los vectores a,b y c tales que a, b 1 y c 4 y a b c, calcular la siguiente suma de productos escalares: a b b c a c (Sol: -1 (Junio-96 Señalar si las siguientes afirmaciones

Más detalles

GEOMETRÍA ANALÍTICA - Ejercicios de Selectividad

GEOMETRÍA ANALÍTICA - Ejercicios de Selectividad GEOMETRÍA ANALÍTICA - Ejercicios de Selectividad 1 Se sabe que los puntos A (1,0,-1), B (3,, 1) y C (-7, 1, 5) son los vértices consecutivos de un paralelogramo ABCD. (a) Calcula las coordenadas del punto

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP.

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP. Wilson Herrera 1 Vectores 1. Dados los puntos P (1, 2), Q( 2, 2) y R(1, 6): a) Representarlos en el plano XOY. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo

Más detalles

Álgebra II C PLANIFICACIONES Actualización: 2ºC/2017. Planificaciones Álgebra II C. Docente responsable: CAMMILLERI ADA LEONOR.

Álgebra II C PLANIFICACIONES Actualización: 2ºC/2017. Planificaciones Álgebra II C. Docente responsable: CAMMILLERI ADA LEONOR. Planificaciones 6122 - Álgebra II C Docente responsable: CAMMILLERI ADA LEONOR 1 de 9 OBJETIVOS Los objetivos centrales de la asignatura son que el alumno logre: - Conocimientos básicos sobre temas de

Más detalles

SERIE ÁLGEBRA VECTORIAL

SERIE ÁLGEBRA VECTORIAL SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA PROGRAMA ANALITICO

ALGEBRA Y GEOMETRIA ANALITICA PROGRAMA ANALITICO ALGEBRA Y GEOMETRIA ANALITICA PROGRAMA ANALITICO AÑO 2008 Unidad I: Números Complejos Comprenda la necesidad de ampliar los conjuntos numéricos con los que habitualmente trabaja, a fin de resolver problemas

Más detalles

Parte II - Prácticas 8 a 9. Álgebra A 62 ÁLGEBRA A 62 (INGENIERÍA)

Parte II - Prácticas 8 a 9. Álgebra A 62 ÁLGEBRA A 62 (INGENIERÍA) Parte II - Prácticas 8 a 9 Álgebra A 62 Ingeniería 2015 CICLO BÁSICO COMÚN UBA ÁLGEBRA A 62 (INGENIERÍA) Práctica 8 Introducción a las transformaciones lineales Definiciones y propiedades Transformaciones

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero Curso 13-14 1.-Los puntos A(1,3,1) y B(2,1,3) son vértices consecutivos de un cuadrado. Los otros dos vértices pertenecen a una recta r que pasa por el punto P(2,7,0). a) (3p) Hallar la ecuación de la

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES EJERCICIOS DE TEMA APLICACIONES LINEALES APLICACIONES LINEALES ) Estudiar cuáles de las siguientes aplicaciones son lineales entre los espacios vectoriales dados: x y a) f: f(x, y) = x y x b) f: x f(x)

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos

MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos Geometría del espacio: Vectores; producto escalar, vectorial y mixto Aplicaciones MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos Vectores Para a = (,, ) y b = (,, 4), halla: a) a + b

Más detalles

TEMA 4. Vectores en el espacio Problemas Resueltos

TEMA 4. Vectores en el espacio Problemas Resueltos Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 4 5 Vectores TEMA 4 Vectores en el espacio Problemas Resueltos Para a = (,, ) y b = (,, 4), halla: a) a + b b) a b

Más detalles

Tema 2: Diagonalización

Tema 2: Diagonalización TEORÍA DE ÁLGEBRA II: Tema 2. DIPLOMATURA DE ESTADÍSTICA 1 Tema 2: Diagonalización 1 Introducción Sea f : R n R n lineal. Dada una base B de R n podemos asociar a f la matriz A 1 = [f, B] M n. Si C es

Más detalles

INSTRUCTIVO GENERAL Semestre

INSTRUCTIVO GENERAL Semestre UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA ASIGNATURA: ALGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) INSTRUCTIVO GENERAL Semestre 2016-3 Propósito Este curso

Más detalles

MAT022 : CRONOGRAMA SEMESTRE

MAT022 : CRONOGRAMA SEMESTRE MAT022 : CRONOGRAMA SEMESTRE 2015-2 Semana Cálculo Complementos Semana 1 Repaso de derivadas: regla de la cadena, derivación Matrices. Álgebra Básica de Matrices. Clase 1 paramétrica, regla de L'Hopital.

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA

ALGEBRA Y GEOMETRIA ANALITICA Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 009 Profesora Mariana Suarez PRACTICA N 8: RECTA EN EL ESPACIO PLANO ALGEBRA Y GEOMETRIA ANALITICA - Segundo cuatrimestre

Más detalles

TEMA 4. Vectores en el espacio Problemas Resueltos

TEMA 4. Vectores en el espacio Problemas Resueltos Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 4 5 Vectores TEMA 4 Vectores en el espacio Problemas Resueltos Para a = (,, ) y b = (,, 4), halla: a) a b b) a b c)

Más detalles

Tema 3: Espacios eucĺıdeos

Tema 3: Espacios eucĺıdeos Marisa Serrano, Zulima Fernández Universidad de Oviedo 25 de noviembre de 2009 email: mlserrano@uniovi.es Índice 1 2 3.1 V, R espacio vectorial, la aplicación : V V R ( v, u) v u a) v 1, v 2, u V α, β

Más detalles

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante Ministerio de Cultura y Educación Universidad Nacional de San Juan Fac. de Ciencias Exactas Físicas y Naturales Ciclo Lectivo 2016 PROGRAMA DE EXAMEN Cátedra: ALGEBRA LINEAL Carrera: Licenciatura en Geofísica

Más detalles

7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta.

7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta. 1. [014] [EXT-A] a) Determine el valor o valores de m, si existen, para que la recta r: mx+y = x+ mz = : x-y-z+6 = 0. b) Determine la distancia del punto P= (,1,1) a la recta r cuando m =. sea paralela

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

02. Resolver sistemas de ecuaciones lineales por el método de Gauss.

02. Resolver sistemas de ecuaciones lineales por el método de Gauss. 3.6 Criterios específicos de evaluación. 01. Conocer lo que significa que un sistema sea incompatible o compatible, determinado o indeterminado, y aplicar este conocimiento para formar un sistema de un

Más detalles

MATERIA: MATEMÁTICAS II

MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es:

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es: Álgebra lineal y Geometría II Gloria Serrano Sotelo Departamento de MATEMÁTICAS ÁLGEBRA LINEAL Y GEOMETRÍA. 0 FÍSICAS Métricas y formas cuadráticas.. La matriz de la métrica T ((x, y, z), (x, y, z )) =

Más detalles

2 OBJETIVOS TERMINALES. Al finalizar el curso el estudiante estará en capacidad de:

2 OBJETIVOS TERMINALES. Al finalizar el curso el estudiante estará en capacidad de: MATERIA: ÁLGEBRA LINEAL CÓDIGO: 08091 REQUISITOS: Algebra y Funciones (08272), Lógica y Argumentación (08273) PROGRAMAS: Ingenierías, Química. PERÍODO ACADÉMICO: 2017-2 INTENSIDAD HORARIA: 4 Horas por

Más detalles

Geometría del plano y el espacio

Geometría del plano y el espacio Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer

Más detalles

5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta.

5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta. . Expresar en forma paramétrica y reducida la recta x+ 3 = y- 5 = z -. Hallar el valor de m para que los puntos A(3,m,), B(,,-) y C(-,0,-4) pertenezcan a la misma recta. 3. Probar que todos los planos

Más detalles

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO Ecuación vectorial de la recta Ecuaciones paramétricas de la recta Ecuación continua de la recta Pendiente Ecuación punto-pendiente de la recta Ecuación general de la recta Ecuación explícita de la recta

Más detalles

PROGRAMA DE CURSO. Resultados de Aprendizaje

PROGRAMA DE CURSO. Resultados de Aprendizaje PROGRAMA DE CURSO Código Nombre MA1102 Algebra Lineal Nombre en Inglés Linear Algebra SCT es Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal 6 10 3,0 2,0 5,0 Requisitos MA1101

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

1 CÓNICAS Cónicas. Estudio particular. 1 x y. 1 x y. a 00 a 01 a 02 a 10 a 11 a 12 a 20 a 21 a 22

1 CÓNICAS Cónicas. Estudio particular. 1 x y. 1 x y. a 00 a 01 a 02 a 10 a 11 a 12 a 20 a 21 a 22 CÓNICAS. CÓNICAS.. Cónicas. Estudio particular. Una cónica se dene como el lugar geométrico de los puntos del plano euclídeo que, respecto de una referencia cartesiana rectangular, satisfacen una ecuación

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Ejercicios Selectividad Temas 6 y 7 Geometría en el espacio Mate II 2º Bach. 1 TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO EJERCICIO 1 : Julio 11-12. Optativa (3 ptos) Para los puntos A(1,0,2) y B(-1,2,4) y la

Más detalles

1. DIAGONALIZACIÓN. FORMAS CANÓNICAS

1. DIAGONALIZACIÓN. FORMAS CANÓNICAS 1 1. DIAGONALIZACIÓN. FORMAS CANÓNICAS 1. Se considera la matriz: A = ( 2 3 4 13 con coeficientes en R. Hallar los valores propios, los vectores propios y una matriz P que permita la diagonalización de

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

BLOQUE II : GEOMETRIA EN EL ESPACIO.

BLOQUE II : GEOMETRIA EN EL ESPACIO. MATEMÁTICAS : 2º Curso PROBLEMAS : Bloque II 1 BLOQUE II : GEOMETRIA EN EL ESPACIO. 1.- Sea ABCDA'B'C'D' un cubo.: a) Hállense las coordenadas del centro de la cara CDD'C' en el sistema de referencia R=

Más detalles

MATEMATICAS. BC2 TEMA 6: Rectas y Planos en R 3

MATEMATICAS. BC2 TEMA 6: Rectas y Planos en R 3 MATEMATICAS. BC2 TEMA 6: Rectas y Planos en R 3 1. Las coordenadas de los vértices consecutivos de un paralelogramo son A (1, 0, 0) y B(0, 1, 0). Las coordenadas del centro M son M(0, 0, 1). Hallar las

Más detalles

CLASIFICACIÓN AFÍN DE CÓNICAS

CLASIFICACIÓN AFÍN DE CÓNICAS Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS CLASIFICACIÓN AFÍN DE CÓNICAS Sea E un R-espacio vectorial de dimensión. Sean E = e 1, e un plano vectorial de E y e 0 un

Más detalles

Guía docente de la asignatura Asignatura Materia Álgebra Lineal y Geometría Matemáticas Módulo Titulación Grado de Ingeniería Informática de Servicios y Aplicaciones Plan 413 Código 40801 Periodo de impartición

Más detalles

1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(2,3,5) y B(-1,0,2).

1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(2,3,5) y B(-1,0,2). 1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(,3,5) y B(-1,0,).. Dados los puntos A(,3,-1) y B(-4,1,-), hallar las coordenadas de un punto C perteneciente

Más detalles

Geometría 3. Ejercicio 2. Dados los puntos = ( 1, 0, 0 ),

Geometría 3. Ejercicio 2. Dados los puntos = ( 1, 0, 0 ), Geometría 3 Ejercicio. Sean los puntos P (,, ), Q (,, 3) R (,3,). ) Calcula el punto P que es la proección del punto P sobre la recta que determinan Q R ) Halla la ecuación del lugar geométrico de los

Más detalles

PROGRAMA ANALÍTICO. I. Objetivos El alumno deberá: II. Contenidos del Programa Analítico. Año 2017

PROGRAMA ANALÍTICO. I. Objetivos El alumno deberá: II. Contenidos del Programa Analítico. Año 2017 Año 2017 PROGRAMA ANALÍTICO Asignatura: ÁLGEBRA Y GEOMETRÍA ANALÍTICA Departamento: Matérias Básicas Unidad Docente Básica: Matemática Bloque: Ciencias Básicas Especialidad: COMÚN A TODAS LAS ESPECIALIDADES

Más detalles

x = 1-2t 3. [2014] [EXT-B] Dados el plano y la recta r siguentes: 2x-y+2z+3 = 0, r z = 1+t

x = 1-2t 3. [2014] [EXT-B] Dados el plano y la recta r siguentes: 2x-y+2z+3 = 0, r z = 1+t . [04] [EXT-A] Dados los puntos A(,0,-), B(,-4,-), C(5,4,-) y D(0,,4) a) Calcular el área del triángulo de vértices A, B y C. b) Calcular el volumen del tetraedro ABCD.. [04] [EXT-A] Dados los planos x-z-

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

GEOMETRIA EUCLIDEA. 3.-Determinar m para que el producto escalar de u=(m,5) y v=(2,-3) sea la unidad.

GEOMETRIA EUCLIDEA. 3.-Determinar m para que el producto escalar de u=(m,5) y v=(2,-3) sea la unidad. PRODUCTO ESCALAR GEOMETRIA EUCLIDEA 1.-Dados los vectores u,v y w tales que u*v=7 y u*w=8, calcular: u*(v+w); u*(2v+w); u*(v+2w) 2.-Sea {a,b} una base de vectores unitarios que forman un ángulo de 60.

Más detalles

Álgebra Lineal. Tema 12. Geometría de las transformaciones lineales en R

Álgebra Lineal. Tema 12. Geometría de las transformaciones lineales en R Álgebra Lineal Tema 12. Geometría de las transformaciones lineales en R Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio 3, Opción B Reserva 2,

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

190. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R = ( O, OA, OB, OC ).

190. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R = ( O, OA, OB, OC ). Hoja de Problemas Geometría VIII 90. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R O, Sean: OA, OB, OC ). OG la recta determinada por los puntos

Más detalles

x-y+2 = 0 z = [2014] [JUN-A] Sea el plano que pasa por los puntos A(1,-1,1), B(2,3,2), C(3,1,0) y r la recta dada por r x-7 2 = y+6

x-y+2 = 0 z = [2014] [JUN-A] Sea el plano que pasa por los puntos A(1,-1,1), B(2,3,2), C(3,1,0) y r la recta dada por r x-7 2 = y+6 1. [014] [EXT-A] Sea el punto A(1,1,) y la recta de ecuación r a) Calcular el plano perpendicular a la recta r que pase por A. b) Calcular la distancia del punto A a la recta r. x-y+ = 0 z =.. [014] [EXT-B]

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Grado en Ingeniería agrícola y del medio rural Tema 3 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative Commons 4.0 Internacional J.

Más detalles

205 - ESEIAAT - Escuela Superior de Ingenierías Industriales, Aeroespacial y Audiovisual de Terrassa MAT - Departamento de Matemáticas

205 - ESEIAAT - Escuela Superior de Ingenierías Industriales, Aeroespacial y Audiovisual de Terrassa MAT - Departamento de Matemáticas Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2016 205 - ESEIAAT - Escuela Superior de Ingenierías Industriales, Aeroespacial y Audiovisual de Terrassa 749 - MAT - Departamento

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1: 6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles