Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia"

Transcripción

1 Sistemas lineales de ecuaciones diferenciales Juan-Miguel Gracia

2 Índice Sistemas lineales 2 Búsqueda de una solución especial 3 Aplicación a sistemas 4 Problema de condiciones iniciales 2 / 2

3 Sistemas de ecuaciones diferenciales lineales Si x (t), x 2(t), x 3(t) son tres funciones reales de la variable real t, la función vectorial x (t) x(t) := x 2(t) x 3(t). Por definición, x(t) es derivable en t si son derivables en t. x (t), x 2(t), x 3(t) x (t) := donde x (t) es la derivada de x en t. x (t) x 2(t) x 3(t), 3 / 2

4 Ejemplo Si x (t) = t 2,x 2(t) = cos t, x 3(t) = exp(t 2 ) entonces x(t) = t 2 cos t exp(t 2 ) es derivable y x (t) = 2 t sen t 2 t exp(t 2 ). 4 / 2

5 Sistema de ecuaciones lineales, en general x (t) = a x (t) + a 2x 2(t) + a 3x 3(t), x 2(t) = a 2x (t) + a 22x 2(t) + a 23x 3(t), x 3(t) = a 3x (t) + a 32x 2(t) + a 33x 3(t). () Aquí, a ij (i, j =, 2, 3) son números reales dados y x (t), x 2(t), x 3(t) son las funciones incógnitas. Denotando A := (a ij ), podemos escribir el sistema () así x (t) a a 2 a 3 x (t) x 2(t) = a 2 a 22 a 23 x 2(t). x 3(t) a 3 a 32 a 33 x 3(t) 5 / 2

6 Sistema de ecuaciones lineales, en general El sistema se escribe de forma resumida así: x (t) = Ax(t). (2) Este es un sistema de ecuaciones diferenciales lineales de primer orden homogéneo de coeficientes constantes. Si no hay dudas, en (2) podemos omitir la t: x = Ax. (3) 6 / 2

7 Búsqueda de una solución especial, Debe quedar claro que x depende de t, pero A no depende: A es constante. Resolveremos el sistema (2) bajo ciertas restricciones, muy generales. En primer lugar, (Euler) tratamos de ver si existen soluciones de la forma x(t) = e λ 0 t c donde λ 0 es un número y c un vector columna distinto de 0 = Suponemos que el vector c = c c 2 c 3 es constante. 7 / 2

8 Búsqueda de una solución especial, 2 Por la definición de derivada de una función vectorial se observa que x (t) = λ 0 e λ 0 t c (4) Por otro lado, Ax(t) = Ae λ 0 t c = e λ 0 t Ac (5) Como x (t) = Ax(t), de (4) y (5) se sigue que e λ 0 t λ 0 c = e λ 0 t Ac (6) Dividiendo ambos miembros de (6) por e λ 0 t, λ 0 c = Ac o bien Ac = λ 0 c (7) Así pues, (7) es una condición necesaria para que la función e λ 0 t c sea una solución de (). Es fácil ver que (7) es también una condición suficiente. 8 / 2

9 Búsqueda de una solución especial, 3 Resumiendo: Proposición La función vectorial e λ 0 t c es una solución del sistema diferencial lineal x = Ax si y sólo si el número λ 0 y el vector columna c satisfacen la ecuación algebraica Ac = λ 0 c. Nota.- La función nula x(t) es solución de (), pero esta solución no interesa. Por ello, al buscar una solución de la forma e λ 0 t c tratamos de encontrar un vector c 0. Valor y vector propio Para que e λ 0 t c sea una solución de x = Ax es necesario y suficiente que λ 0 sea un valor propio de A y que c sea un vector propio de A asociado a λ 0. El concepto de valor y vector propio de una matriz cuadrada fue visto en el Tema. 9 / 2

10 Ejemplo de búsqueda de una solución especial, Ejemplo 2 Hallar una solución de la forma e λ0t c del sistema diferencial lineal homogéneo x (t) 4 x (t) x 2(t) = 3 2 x 2(t). x 3(t) 2 x 3(t) Como fue estudiado en el Tema, un valor propio de la matriz 4 A := es λ 0 =, y un vector propio asociado es c = 4 0 / 2

11 Ejemplo de búsqueda de una solución especial, 2 Por lo tanto, x(t) = e t 4 = e t 4 e t e t es una solución del sistema diferencial lineal homogéneo x (t) 4 x (t) x 2(t) = 3 2 x 2(t) x 3(t) 2 x 3(t) Hemos terminado el ejemplo.. / 2

12 Problema de condiciones iniciales Sea ahora un x 0 un vector columna dado de 3 componentes: x x 0 0 = x2 0. x3 0 Consideremos el problema de hallar la solución x(t) del sistema diferencial lineal x (t) = Ax(t) que satisface la condición inicial x(0) = x 0 : { x (t) = Ax(t) (P 0) x(0) = x 0 Atención! La solución de problema (P 0) no es necesariamente de la forma e λ 0 t c. 2 / 2

13 Hipótesis Suplementaria Hallaremos la solución del problema (P 0), suponiendo que se cumple la hipótesis del teorema siguiente. Teorema 3 Si los tres valores propios de la matriz de tercer orden, A, son distintos, entonces los vectores propios c, c 2, c 3 son linealmente independientes. Este Teorema 3 fue dado en el Tema. Expresemos x 0 como combinación lineal de los vectores propios c, c 2, c 3: x 0 = α c + α 2c 2 + α 3c 3. Tal combinación existe y es única pues {c, c 2, c 3} es una base del espacio formado por todos los vectores columna 3. Teorema 4 (Solución de (P 0)) La solución de (P 0) viene dada por la fórmula x(t) = α e λ t c + α 2e λ 2t c 2 + α 3e λ 3t c 3. 3 / 2

14 Solución del problema (P 0 ) Demostración: Derivando x(t) respecto de t, x (t) = α e λt λ c + α 2e λ2t λ 2c 2 + α 3e λ3t λ 3c 3; pero λ i c i = Ac i, para i =, 2, 3. Por consiguiente, x (t) = α e λt Ac + α 2e λ2t Ac 2 + α 3e λ3t Ac 3 ) = A (α e λt c + α 2e λ2t c 2 + α 3e λ3t c 3 = Ax(t). Además, x(0) = α e λ 0 c + α 2e λ 2 0 c 2 + α 3e λ 3 0 c 3 = α c + α 2c 2 + α 3c 3 = x 0. 4 / 2

15 Ejemplo de problema de condiciones iniciales Resolver el problema de condición inicial x (t) = Ax(t) x(0) = 0 con A := / 2

16 Solución, La matriz A es la de un ejemplo considerado en el Tema. Ya calculamos alĺı sus valores propios: λ =, λ 2 = 3, λ 3 = 2. Como son tres números distintos, estamos bajo las condiciones de la Hipótesis Suplementaria. Por lo tanto, podemos aplicar el método de resolución dado a este sistema diferencial lineal. También habíamos calculado alĺı unos vectores propios: c = 4, c 2 = 2, c 3 = asociados a cada uno de los valores propios λ, λ 2, λ 3, respectivamente.. 6 / 2

17 Solución, 2 Ahora busquemos la expresión del vector inicial x 0 como combinación lineal de c, c 2, c 3: x 0 = α c + α 2c 2 + α 3c 3. 0 = α 4 + α α 3 ; esto nos conduce a resolver el sistema de ecuaciones lineales α + α 2 α 3 =, 4α + 2α 2 + α 3 = 0, α + α 2 + α 3 =, cuya solución es (α, α 2, α 3) = (/3, 0, 4/3). 7 / 2

18 Solución, 3 En consecuencia, la solución del problema de condiciones iniciales es x (t) x(t) = x 2(t) = 3 et e 2t x 3(t) Fin del ejemplo. = et + 4 e 2t e t 4 e 2t 3 3 e t 4 e 2t 3 3 = e t + 4 e 2t 4(e t e 2t ). 3 e t 4 e 2t 8 / 2

19 Ejercicios Ejercicio.- Resolver el problema de condiciones iniciales ( ) 2 x (t) = x(t) 3 x(0) = ( 0 ). Solución.- x(t) = ( x(t) x 2(t) ) ( e 7t e 5t = (e 7t + e 5t )/2 ). 9 / 2

20 Ejercicios Ejercicio 2.- Hallar la solución del problema de condiciones iniciales ( ) ( ) ( ) x (t) 3 x(t) x 2(t) = 2 2 x 2(t) ( x(0) x 2(0) ) = ( 0 5 ). Solución.- ( x(t) x 2(t) ) ( 3e 4t + 3e t = 3e 4t + 2e t ). 20 / 2

21 Ejercicios Ejercicio 3.- Hallar la solución del problema de condiciones iniciales x (t) = x (t) 3x 2(t) + 2x 3(t) x 2(t) = x 2(t) x 3(t) = x 2(t) 2x 3(t) x (0) = 2 x 2(0) = 0 x 3(0) = 3. 2 / 2

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 1. Determinante wronskiano 2 1.1. Wronskiano de f 1 (t), f 2 (t),..., f n (t)............... 3 1.2. Derivada

Más detalles

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales Álgebra Lineal. Tema 5 Dep. Matemática Aplicada. UMA Tasa relativa de crecimiento Si x(t representa alguna cantidad física como el volumen de una sustancia, la población de ciertas especies, o el número

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

Sistemas lineales homogéneos

Sistemas lineales homogéneos Lección 9 Sistemas de ecuaciones diferenciales lineales con coeficientes constantes 1 Sistemas lineales homogéneos Estudiaremos los sistemas de la forma x (t) = Ax(t) + b(t) Sistemas homogéneos: x = Ax

Más detalles

La regla de Cramer. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... a n1 x 1 + a n2 x

La regla de Cramer. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... a n1 x 1 + a n2 x Consideremos un sistema de n ecuaciones lineales con n incógnitas como el siguiente: a 11 x 1 + a 1 x +. + a 1n x n b 1 a 1 x 1 + a x +. + a n x n b... a n1 x 1 + a n x +. + a nn x n b n La matriz de los

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 12 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor, que vimos en el capítulo anterior, es el estudio de los extremos relativos de una función escalar. Aunque la analogía

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales Lección 8 Sistemas de ecuaciones diferenciales lineales 1 Sistemas de Ecuaciones Diferenciales Consideremos el sistema A + S X + S k 1 k 2 Inicialmente se añaden 2 moles de S y 1 mol de A d[a] dt = k 1

Más detalles

2 Espacios vectoriales

2 Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

Prácticas de Matemáticas II: Álgebra lineal

Prácticas de Matemáticas II: Álgebra lineal Prácticas de Matemáticas II: Álgebra lineal Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Prácticas de Matemáticas II: Álgebra lineal

Más detalles

Subespacios de espacios vectoriales

Subespacios de espacios vectoriales Subespacios de espacios vectoriales Objetivos. Estudiar la definición, el criterio y algunos ejemplos de subespacios vectoriales. Muchos espacios vectoriales importantes (por ejemplo, espacio de soluciones

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

RESUMEN DE LOS ALGORITMOS.

RESUMEN DE LOS ALGORITMOS. RESUMEN DE LOS ALGORITMOS. 1.- REDUCCIONES DE ÓRDENES. Caso (1): () = (,, ) DEPENDE DE SOLO VARIABLE INDEPENDIENTE. = () = (). Caso (): (, ) = (,, ) DEPENDE DE DERIVADA DE y Y VARIABLE INDEPENDIENTE. CAMBIO

Más detalles

6.4 Método de solución de las ecuaciones diferenciales parciales (directos, equiparables con las ordinarias, separación de variables)

6.4 Método de solución de las ecuaciones diferenciales parciales (directos, equiparables con las ordinarias, separación de variables) 6.4 Método de solución de las ecuaciones diferenciales parciales(directos, equiparables con las ordinarias, separación de variables) 439 6.4 Método de solución de las ecuaciones diferenciales parciales

Más detalles

Diagonalización de matrices

Diagonalización de matrices Capítulo 6 Diagonalización de matrices 6.. Introducción 6... Un ejemplo preliminar Antes de plantearlo de manera general, estudiaremos un ejemplo que servirá para situar el problema. Supongamos que, en

Más detalles

4. Espacios vectoriales

4. Espacios vectoriales Contents 4 Espacios vectoriales 2 4.1 Dependencia e independencia lineal.................................. 4 4.2 Subespacios vectoriales.............................................. 7 4.3 Bases y dimensión..................................................

Más detalles

CAPÍTULO 4. Sistemas de ecuaciones lineales de primer orden

CAPÍTULO 4. Sistemas de ecuaciones lineales de primer orden CAPÍTULO 4 Sistemas de ecuaciones lineales de primer orden Hasta ahora hemos considerado únicamente ecuaciones diferenciales aisladas Sin embargo, en muchas aplicaciones aparecen situaciones en las que

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales 81 Introducción Denominamos sistema de ecuaciones a toda ecuación de la forma x (t) F ( t, x(t) ), (S) donde F : (a, b) R n R n La expresión anterior es muy general en el

Más detalles

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN MATEMÁTICAS: EBAU 207 MODELO CASTILLA Y LEÓN Opción A Ejercicio A x y + z = Dado el sistema de ecuaciones lineales { 3x + λy =, se pide: 4x + λz = 2 a) Discutir el sistema (existencia y número de soluciones)

Más detalles

Ejemplo.- La desigualdad: 2x + 1 > x + 5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4.

Ejemplo.- La desigualdad: 2x + 1 > x + 5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES.- DEFINICION.- Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que solo se verifica para determinados valores de la incógnita o incógnitas.

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Ecuaciones lineales de orden superior

Ecuaciones lineales de orden superior ANEXO GUIA 5 Ecuaciones lineales de orden superior Las ideas presentadas para ecuaciones lineales de segundo orden se pueden generalizar a ecuaciones lineales de orden n d n x n + a n 1(t) dn 1 x n 1 +

Más detalles

Matriz asociada a una transformación lineal respecto a un par de bases

Matriz asociada a una transformación lineal respecto a un par de bases Matriz asociada a una transformación lineal respecto a un par de bases Ejercicios Objetivos Comprender cómo se describe una transformación lineal (que actúa en espacios vectoriales de dimensiones finitas)

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales.

Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales. Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales. Ejercicios 1.- Determinar el rango de la siguiente matriz: 0 1 3 4 1 3 5. Solución. 0 1 3 4 1 3 5 AT 1( 1) AT 1 ( 1)T 14 ( 1 )

Más detalles

Tema 4: Sistemas de ecuaciones lineales.

Tema 4: Sistemas de ecuaciones lineales. Tema 4: Sistemas de ecuaciones lineales 1 Rango de una matriz Definición Sea A Mat n m (K) Se llama rango de filas de A, y se denota por rg f (A) la dimensión del subespacio vectorial generado por las

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

2.5 Dependencia Lineal, Independencia Lineal, Wronskiano 74

2.5 Dependencia Lineal, Independencia Lineal, Wronskiano 74 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 74.5 Dependencia Lineal, Independencia Lineal, Wronskiano Dependencia Lineal Definición.5. Se dice que un conjunto de funciones f, f,... fn ( ) es

Más detalles

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES HOMOGÉNEAS DE PRIMER ORDEN

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES HOMOGÉNEAS DE PRIMER ORDEN SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES HOMOGÉNEAS DE PRIMER ORDEN Alejandro Lugon 26 de mayo de 2010 1. Ecuaciones planares: dos dimensiones El sistema homogéneo: ẋ a 11 x + a 12 y (1) ẏ a 21 x

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden GUIA 5 Ecuaciones lineales de segundo orden En esta guía estudiaremos algunos conceptos básicos relativos a las ecuaciones diferenciales lineales así como algunas técnicas que permiten el cálculo explícito

Más detalles

Tema 3.- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial.

Tema 3.- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial. Tema 3- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas Ingeniería Técnica Industrial Especialidad en Electrónica Industrial Índice General 1 Introducción 1 2 Sistemas lineales de primer orden

Más detalles

Subspacios Vectoriales

Subspacios Vectoriales Subspacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Subspacios Vectoriales 1 / 25 Objetivos Al finalizar este tema tendrás que: Saber si un subconjunto es

Más detalles

Algunos objetivos de la signatura 2. Sean x 1,x 2,...,x n números reales distintos y sean y 1,y 2,...,y n números reales.

Algunos objetivos de la signatura 2. Sean x 1,x 2,...,x n números reales distintos y sean y 1,y 2,...,y n números reales. Algunos objetivos de la signatura 2 Ajustes por mínimos cuadrados Sean x 1,x 2,...,x n números reales distintos y sean y 1,y 2,...,y n números reales. Algunos objetivos de la signatura 2 Ajustes por mínimos

Más detalles

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases... Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u

Más detalles

Distancia entre dos rectas que se cruzan Perpendicular común

Distancia entre dos rectas que se cruzan Perpendicular común Perpendicular común En un espacio de tres dimensiones dos rectas se cruzan cuando no tienen ningún punto en común y no están contenidas en el mismo plano. Si no tienen ningún punto en común pero sí que

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior OBJETIVOS PARTICULARES Describir los conceptos de combinación lineal, dependencia e independencia lineal, conjunto fundamental de soluciones y solución

Más detalles

MÉTODO DE VARIACIÓN DE PARÁMETROS

MÉTODO DE VARIACIÓN DE PARÁMETROS MÉTODO DE VARIACIÓN DE PARÁMETROS El método de variación de parámetros es aplicado en la solución de ecuaciones diferenciales no homogéneas de orden superior de las cuales sabemos que la solución de la

Más detalles

Matrices simétricas y antisimétricas

Matrices simétricas y antisimétricas Matrices simétricas y antisimétricas Ejercicios Objetivos Definir matrices simétricas y antisimétricas estudiar sus propiedades básicas Requisitos Matriz transpuesta propiedades de la matriz transpuesta

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

GF = I V. G(v ) = v 1

GF = I V. G(v ) = v 1 7- Inversas a Izquierda y Derecha Sea F : V V una transformación lineal. G : V V lineal se denomina inversa a izquierda de F si GF = I V donde I V : V V denota el operador identidad en V. En tal caso F

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES

SISTEMAS DE ECUACIONES LINEALES Y MATRICES y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015

Más detalles

Relación de problemas. Álgebra lineal.

Relación de problemas. Álgebra lineal. Relación de problemas Álgebra lineal Tema 1 Sección 1 Matrices Determinantes Sistemas lineales Matrices Ejercicio 11 Consideremos las siguientes matrices: ( 1 2 A = 1 1 ) ( 1 1 B = 0 1 ) C = 1 0 0 0 1

Más detalles

El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos

El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos c Jana Rodriguez Hertz p. 1/1 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo

Más detalles

Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales

Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales Grado en Ingeniería agrícola y del medio rural Tema 2 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative Commons 4.0 Internacional J.

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales.

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales. Capítulo V Valores y vectores propios. Diagonalización de operadores lineales. Hemos visto que la aplicaciones lineales de en están definidas a través de una expresión de la forma ; pero esta fórmula puede

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales de primer orden 21 de noviembre de 2016 de primer orden Introducción Introducción a las ecuaciones diferenciales Las primeras ecuaciones diferenciales surgen al tratar de resolver ciertos problemas de

Más detalles

Diagonalización de matrices

Diagonalización de matrices 7 Diagonalización de matrices 7.1. Matrices diagonalizables Existen diversos procesos en los que el estado en cada uno de sus pasos se puede representar por un determinado vector y en los que, además,

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 26 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A 5 a a) Discutir para qué valores de a R la matriz M = ( ) tiene inversa. Calcular M a para a =. ( 5 puntos) Para que exista inversa de una

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Definición. Un conjunto de ecuaciones diferenciales con varias funciones incógnitas, se llama sistema de ecuaciones diferenciales.

Definición. Un conjunto de ecuaciones diferenciales con varias funciones incógnitas, se llama sistema de ecuaciones diferenciales. Unidad 4. Sistemas de Ecuaciones Diferenciales Las ecuaciones diferenciales tienen una gran utilidad en ingeniería así como en la ciencia, pero la mayoría de los problemas no dependen de una ecuación,

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ INVERSA DE UNA MATRIZ Profesores Omar Darío Saldarriaga Ortíz Ivan Darío Gómez Hernán Giraldo 2009 Definición Sean x = x 1 x n y y = y 1 y n vectores de n componentes, definimos el producto interno o producto

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1 Bases y dimensión Problemas teóricos Bases de un espacio vectorial En todos los problemas se supone que V es un espacio vectorial sobre un campo F. Definición de base. Sean b 1,..., b n V. Se dice que

Más detalles

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Apuntes Tema 11 Sistemas de ecuaciones 11.1 Definiciones Def.: Se llama sistema de ecuaciones lineales a un conjunto de igualdades dadas de la siguiente forma: a 11 x 1 + a 12 x 2 + a 1n x n = b 1 a 21

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Sistemas de ecuaciones lineales dependientes de un parámetro

Sistemas de ecuaciones lineales dependientes de un parámetro Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que

Más detalles

Resolución de los ejercicios

Resolución de los ejercicios Capítulo 4 Resolución de los ejercicios 4.. Soluciones e indicaciones a los problemas del Capítulo I. a) F F +F 4 4 F +F 4 F +F F +F F +F 4 4 F F 4 F +F 4 b) y finalmente se divide por,por ypor4 las filas

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Un espacio vectorial sobre K es una conjunto V que cumple: 1) Existe una regla que asocia a dos elementos u, v V su suma que se denota por u + v, que es también elemento de V y que

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

2.1 Descripción en espacio de estado de sistemas dinámicos

2.1 Descripción en espacio de estado de sistemas dinámicos 2 Análisis de sistemas lineales 2.1 Descripción en espacio de estado de sistemas dinámicos El objetivo de este capítulo es formular una teoría general de describir los sistemas dinámicos en funcion de

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

2. El Teorema del Valor Medio

2. El Teorema del Valor Medio 2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una

Más detalles

Tema 3: MATRICES. Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada

Tema 3: MATRICES. Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Tema 3: MATRICES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura: Matemáticas

Más detalles

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula:

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: PROBLEMAS MÉTRICOS ÁNGULOS ÁNGULO QUE FORMAN DOS RECTAS Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: cos α = ÁNGULO QUE

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Intersección y suma de subespacios

Intersección y suma de subespacios Intersección y suma de subespacios Objetivos Demostrar que la intersección y la suma de dos subespacios de un espacio vectorial también son sus subespaicios Requisitos Espacio vectorial, subespacio vectorial

Más detalles

Derivación de funciones de varias variables.

Derivación de funciones de varias variables. Derivación de funciones de varias variables. En este apartado se presentan los conceptos básicos que aparecen en la derivación de funciones de varias variables. La idea es establecer un método para estudiar

Más detalles

Sistemas Lineales y Matrices

Sistemas Lineales y Matrices Profesores Hernán Giraldo y Omar Saldarriaga Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Ejemplo Solución de sistemas de ecuaciones lineales, usaremos este

Más detalles

Cambio de base. Objetivos. Estudiar la relación entre las coordenadas de un vector en dos bases.

Cambio de base. Objetivos. Estudiar la relación entre las coordenadas de un vector en dos bases. Cambio de base Objetivos Estudiar la relación entre las coordenadas de un vector en dos bases Requisitos Definición de una base, multiplicación de una matriz por un vector, delta de Kronecker Definición

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.1 Conceptos básicos En este capítulo trataremos sobre el procedimiento que debemos llevar a cabo para obtener la solución general de la ED lineal

Más detalles

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. 102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 7 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor es el estudio de los extremos relativos de una función escalar. Aunque la analogía con el caso de una variable es total,

Más detalles

Álgebra Lineal. Tema 8. Valores y vectores propios. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 8. Valores y vectores propios. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema 8. Valores y vectores propios Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4.

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4. 1 Tema 2. Sección 1. Espacio vectorial de Minkowski. Manuel Gutiérrez. Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. 29071-Málaga. Spain. Abril de 2010. En este capítulo se recordará

Más detalles

Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que

Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que MATRICES INVERTIBLES Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que AB = BA = I siendo I la matriz identidad. Denominamos a la matriz B la inversa de A

Más detalles

1. Espacio vectorial. Subespacios vectoriales

1. Espacio vectorial. Subespacios vectoriales Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Sea k un cuerpo. 1. Espacio vectorial. Subespacios vectoriales Definición 1.1. Un k-espacio vectorial o espacio vectorial

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Capítulo 2. Determinantes Introducción. Definiciones

Capítulo 2. Determinantes Introducción. Definiciones Capítulo 2 Determinantes 2.1. Introducción. Definiciones Si nos centramos en la resolución de un sistema A x = b con A una matriz n n, podemos calcular A 1 y la resolución es inmendiata. El problema es

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

ACTIVIDADES SELECTIVIDAD MATRICES

ACTIVIDADES SELECTIVIDAD MATRICES ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden

Más detalles

4.2 Producto escalar.

4.2 Producto escalar. Producto escalar. 147 Este resultado tiene su recíproco, es decir, cualquier matriz cuadrada A define la forma bilineal b(x, y) =x T Ay Si b es simétrica, la matriz A es simétrica. Si b es definida positiva,

Más detalles

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES Ignacio López Torres. Reservados todos los derechos. Prohibida la reproducción total o parcial de esta obra, por cualquier medio electrónico

Más detalles

GUÍA DE LA UNIDAD MATRICES Y DETERMINANTES

GUÍA DE LA UNIDAD MATRICES Y DETERMINANTES Matrices Determ. Inversa Sistemas C ontenidos Idea de matriz. Elementos de una matriz. Diferentes tipos de matrices: matriz unidad, matriz nula, matriz traspuesta, matriz inversa. Operaciones con matrices.

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles