1.Restricciones de Desigualdad 2.Procedimiento algebraico

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1.Restricciones de Desigualdad 2.Procedimiento algebraico"

Transcripción

1 Universidad Nacional de Colombia Sede Medellín 1. Restricciones de Desigualdad Clase # 6 EL MÉTODO M SIMPLEX El método m simplex es un procedimiento algebraico: las soluciones se obtienen al resolver un sistema de ecuaciones lineales conformado a partir de las restricciones funcionales. 1.Restricciones de Desigualdad 2.Procedimiento algebraico Ejemplo Prototipo: La Wyndor Glass Co. 6-1 El sistema de ecuaciones lineales se obtiene al convertir cada desigualdad de la forma original, en una igualdad equivalente Restricciones del tipo <= En el ejemplo de la Wyndor. Variable de holgura: Primera restricción: X 1 4 Es una variable, no negativa, que se adiciona al lado izquierdo de una restricción n funcional de desigualdad del tipo,, para convertirla en una igualdad equivalente. Sea X 3 lo que le falta a X 1 para ser igual a 4 De ahí que X 1 4 es equivalente a: X 1 X 3 = 4 Donde X 3 0 Veamos un ejemplo Características de las Variables de Holgura 1.2 Forma Aumentada del modelo Coeficientes de costo iguales a cero. Forma original Forma aumentada Coeficientes Tecnológicos: 1 - En su restricción n correspondiente 0 - En todas las otras restricciones Max Z = 3X 1 5X 2 Sujeto a X 1 4 Max Z = 3X 1 5X 2 Sujeto a X 1 X 3 =4 Conforman una columna de la matriz Identidad Sirven para completar la base Tienen un significado real Pueden aparecer en la solución óptima 2X X 1 2X 2 18 X 1, X 2 0 2X 2 X 4 =12 3X 1 2X 2 X 5 =18 X 1, X 2, X 3, X 4, X

2 Solución aumentada: Es una solución n para las variables originales (variables de decisión), que se ha aumentado con los valores correspondientes de las variables de holgura Solución sistema original Ejemplo Solución sistema aumentado Solución básica: (en un vértice) Es una solución n aumentada localizada en un vértice. Ejemplo Solución en el vértice Sistema Original Sistema Aumentado (4,6) (4,6,0,0,-6) (3,2) (3,2,1,8,5) X 3 =0, la solución está sobre la restricción frontera R1 X 4 =0, la solución está sobre la restricción frontera R2 El punto está en la intersección entre las Restricciones X 3, X 4, X 5 frontera R1 y R Solución n Básica: B Un sistema que posea, por ejemplo, m = 3 ecuaciones con n = 5 variables (incluyendo las de decisión n y de holgura) tiene 2 grados de libertad: Por lo que se puede dar valores arbitrarios a 2 de las variables y luego resolver el sistema para las otras Si se asigna el valor de 0, arbitrariamente, a 2 de las variables y se resuelve el sistema para las otras 3, a estas 3 variables se les denominará variables básicas. Esto corresponde a una solución en un vértice, o una solución básica Clasificación de variables: Básicas y No básicas 1. Cada variable (de decisión n o de holgura) puede clasificarse en básica b o no básica. b 2. En un sistema con n variables y m restricciones, donde n > m, habrá: m: variables básicasb n - m: variables no básicas, b (iguales a cero, por definición) n) sigue Las variables básicas b obtienen su valor al solucionar el sistema de m ecuaciones. 4. Si los valores de las variables básicas b satisfacen la condición n de no negatividad se les denomina soluciones básicas b factibles. Ejemplo: Sistema Original Sistema Aumentado (4,3) (4,3,0,6,0) Solución Básica Factible veamos

3 Ejemplo Cuántas soluciones en un vértice v existen? sistema original Sistema aumentado 10 x (0,6) (0,6) R1 R3 (0,6,4,0,6) Variables no básicas Variables básicas R2 n m = (n)! m! (n m)! n: número de variables m: : número n de restricciones funcionales Ejemplo de la Wyndor: n = 5 y m = 3 existirán: 5! = 10 soluciones en el 2! 3! vértice x Teorema Dos soluciones básicas b factibles son adyacentes entre sí, s, si tienen todas las V.N.B menos 1 comunes. (0,0) (0,0,4,12,18) Ejemplo (0,6) (0,6,4,0,6) Comparten todas las variables no básicas menos una. EL MÉTODO M SIMPLEX 2. Procedimiento algebráico 1. Hallar una solución inicial. 2. Hacer una Prueba de optimalidad. 3. Realizar nueva iteración 3.1 Determinación de la dirección de movimiento: Variable que entra a la base: columna pivote 3.2 Determinación de donde detenerse. Variable que sale de la base: fila pivote 4. Calcular una nueva solución básica factible 4.1 Obtener 1 en la fila pivote 4.2 Obtener 0 en el resto de la columna pivote Hallar una solución inicial (básica factible) Seleccionar las variable básicas: las que conforman una matriz identidad, de orden m, en el sistema de ecuaciones (coeficientes tecnológicos) Asignar el valor de cero a las variables restantes: Variables no básicas = 0 Este sistema de ecuaciones está en la forma apropiada de la eliminación Gaussiana (3) las v.b están en azul. x 1 x 3 = 4 2x 2 x 4 = 12 3x 1 2x 2 x 5 = 18 En el ejemplo: Como x 1 = 0 y x 5 = 18 x 2 = 0, entonces x 3 = 4, x 4 = 12 y Variables básicas: x 3, x 4, x 5 Variables no básicas: x 1 = 0 y x 2 = 0. La solución B.F. Inicial es (0,0,4,12,18)

4 2. Prueba de optimalidad. La función objetivo es Z = 3X 1 5X 2 0X 3 0X 4 0X 5 - Existen tasas de mejoramiento positivas? - En la función objetivo hay coeficientes positivos? Esto es equivalente a que haya coeficientes negativos en el renglón (0): Z 3X 1 5X 2 = 0 3. Iteraciones 3.1 Variable que entra a la base Determinación n de la dirección n de movimiento Z = 3X 1 5X 2 Aumenta X 1? Tasa de mejoramiento en Z=3 Aumenta X 2? Tasa de mejoramiento en Z=5 5 > 3, se elige X 2 para aumentar su valor Sí hay forma de mejorar 6-19 En este momento X 2 es una v.n.b y se selecciona como la variable que entra a la base: X 2 (columna pivote) Para ello se deben ajustar los valores de las demás variables Variable que sale de la Base Determinar donde detenerse. Cuánto aumentar el valor de la v.b entrante X 2, antes de detenerse? Entonces X 2 puede crecer justo hasta 6,, punto en el que X 4 ha llegado a 0. Variable que sale de la base: X 4 El método m SIMPLEX realiza el anterior análisis mediante la Prueba del cociente mínimo: m Puedo aumentar X 2 siempre y cuando: Todas las variables permanezcan no negativas X 3 = 4 - X 1 0 No hay cota superior sobre X 2 X 4 = 12-2X 2 0 X 2 6 X 5 = 18-3X 1-2X 2 0 (3) X Dividir el lado derecho entre el coeficiente de la variable que entra (X 2 ) X 1 X 3 = 4 2X 2 X 4 = / 2 = 6 (3) 3X 1 2X 2 X 5 = / 2 = 9 MINIMO Calcular la nueva solución n B.F. El mínimo m valor que se obtiene al realizar esta prueba determina: Cuando aumenta X 2, la S.B.F inicial cambia., - La variable que sale de la base. En este caso sale X 4 - Fila pivote. En este caso el renglón n V.N.B: S.B.F inicial X 1 = 0 X 2 =0 Nueva S.B.F X 1 = 0 X 4 =0 V.B: X 3 =4 X 4 =12 X 5 =18 X 3 =? X 2 =6 X 5 =?

5 (0) Z - 3X 1-5X 2 = 0 (3) Sistema de ecuaciones lineales X 1 X 3 = 4 2X 2 X 4 = 12 3X 1 2X 2 X 5 = 18 El patrón de coeficientes de la variable que sale, X 4, es (0,0,1,0) La variable que entra a la base X 2 debe quedar con este patrón de coeficientes: (0,0,1,0) 6-25 Toda la ecuación del mínimo cociente (Fila Pivote), se divide por el coeficiente de la variable que entra. En este caso: 4.1 Obtener 1 en el renglón pivote 2X 2 X 4 = 12 2 (2 ) X 2 0.5X 4 =6 ( X 2 = 6-0.5X 4 ) Nuevo renglón pivote Obtener 0 en el resto de la columna pivote - En el renglón (0) coeficiente de la variable que entra en el renglón (0) y el resultado sumarlo con el renglón (0) 5X 2 2.5X 4 = 30 pivote (* 5) En este caso: (0) Z - 3X 1-5X 2 = 0 Z - 3X 1-5X 2 = 0 Z - 3X X 4 = 30 Coeficiente de la variable que entra El renglón n : Está listo: el coeficiente de X2 es 0 X1 X3 = 4 El renglón n : Es el pivote -El renglón (3): Multiplicar el nuevo renglón pivote, por menos el coeficiente de la variable que entra en el renglón (3) y el resultado sumarlo con el renglón (3) En este caso: (3) 3X 1 2X 2 X 5 = 18 Nuevo renglón pivote (* -2) -2X 2 - X 4 = -12 3X 1 2X 2 X 5 = 18 3X 1 -X 4 X 5 = 6 ( X 5 = 6-3X 1 X 4 ) Coeficiente de la variable que entra

6 El nuevo sistema de ecuaciones es: 2. Prueba de optimalidad. (0) (3) Z - 3X 1 5/2X 4 = 30 X 1 X 3 = 4 X 2 1/2X 4 = 6 3X 1 -X 4 X 5 = 6 La función objetivo es Z =30 3X 1-5/2X 4 En la función objetivo hay coeficientes positivos: Variables básicas? X 2, X 3, X 5 Variables no básicas? X 1 = 0 y X 4 = 0 Nueva solución B.F? (0,6,4,0,6) Sí hay forma de mejorar Valor de la F.O.? Z= Iteraciones 3.1 Variable que entra a la base Determinar la dirección de movimiento Z = 30 3X 1-5/2X Variable que sale de la base Determinar donde detenerse. Cuánto aumentar el valor de la v.b entrante X 1, antes de detenerse? Si Aumenta X 1? Tasa de mejoramiento en Z=3 Si Aumenta X 4? Tasa de mejoramiento en Z=-5/2 Se elige X 1 para aumentar el valor Z pues con X 4 disminuye En la solución actual, X 1 es una v.n.b y se selecciona como la variable que entra a la base: X 1 (columna pivote) Se deben ajustar los valores de las variables Puede aumentar X 1 siempre y cuando las variables permanezcan no negativas X 3 = 4 - X 1 0 X 2 = 6-1/2X 4 0 X 1 4 No hay cota superior sobre X 1 X 5 = 6-3X 1 X 4 0 (3) X Con la prueba del cociente mínimo: m Se divide el lado derecho por el coeficiente de la variable que entra X 1 X 3 = 4 4/1 = 4 4. Calcular la nueva solución B.F. 4.1 Obtener 1 en el renglón pivote - Renglón (3) Toda la ecuación del mínimo cociente (fila pivote) se divide por el coeficiente de la variable que entra. X 2 1/2X 4 = 6 3X 1 -X 4 X 5 = 6 (3) 6 / 3 = 2 Variable que sale de la base? X 5 Variables básicas? X 1, X 2, X 3 mínimo 6-35 En este caso (3) 3X 1 -X 4 X 5 = (3 ) X 1-1/3 X 4 1/3 X 5 = 2 pivote

7 4.2 Obtener ceros en el resto de la columna pivote Renglón (0): pivote (* 3) coeficiente de la variable que entra en el renglón (0) y el resultado sumarlo con el renglón (0) En este caso (0) Z - 3X 1-5/2X 4 = 30 Coeficiente de la variable que entra sigue 3X X 4 X 5 = 6 Z - 3X 1 5/2 X 4 = 30 Z 3/2 X 4 X 5 = 36 Se hace lo mismo para cada renglón del resto del problema Renglón : coeficiente de la variable que entra en el renglón y el resultado sumarlo con el renglón Renglón : coeficiente de la variable que entra en el renglón y el resultado lo sumo con el renglón -X 1 1/3 X 4-1/3 X 5 = -2 pivote (* 1) En este caso 0 pivote (* 0) X 1 X 3 = 4 X 2 1/2 X 4 = 6 X 3 1/3 X 4-1/3 X 5 = 2 X 2 1/2 X 4 = El nuevo sistema de ecuaciones es: (0) Z 3/2 X 4 X 5 = 36 X 3 1/3 X 4-1/3X 5 = 2 X 2 1/2 X 4 = 6 (3) X 1-1/3 X 4 1/3 X 5 = 2 2. Prueba de optimalidad Z 3/2 X 4 X 5 = 36 En el renglón (0) no hay coeficientes negativos Variables básicas? X 1, X 2, X 3 Variable no básicas X 4 = 0 y X 5 = 0 Nueva solución B.F ( 2,6,2,0,0 ) Conclusión: Esta es la solución óptima Z =

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

METODO SIMPLEX: SOLUCION DE PROBLEMAS DE PROGRAMACION LINEAL.

METODO SIMPLEX: SOLUCION DE PROBLEMAS DE PROGRAMACION LINEAL. METODO SIMPLEX: SOLUCION DE PROBLEMAS DE PROGRAMACION LINEAL. El método Simplex es un procedimiento general para resolver problemas de programación lineal. Desarrollado por George Dantzig en 1947, esta

Más detalles

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo: Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones

Más detalles

MATE Método Simplex maximización estándar

MATE Método Simplex maximización estándar MATE 3012 Método Simplex maximización estándar Problema de maximización estándar Un problema de maximización de programación lineal está en la forma estándar, si la función objetiva w = c 1 x 1 + c 2 x

Más detalles

Universidad Nacional de Ingeniería UNI-RUACS 01/09/11

Universidad Nacional de Ingeniería UNI-RUACS 01/09/11 Universidad Nacional de Ingeniería UNI-RUACS 01/09/11 Elaborado por: Deall Daniel Irías Estelí, Nicaragua El método Simplex es un procedimiento iterativo que permite ir mejorando la solución a cada paso.

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

RESOLVER PROBLEMA DE PROGRAMACIÓN LINEAL POR METODO SIMPLEX

RESOLVER PROBLEMA DE PROGRAMACIÓN LINEAL POR METODO SIMPLEX RESOLVER PROBLEMA DE PROGRAMACIÓN LINEAL POR METODO SIMPLEX Prof. MSc. Julio Rito Vargas ================================================================================ Resolver por el método Simplex,

Más detalles

Forma estándar de un programa lineal

Forma estándar de un programa lineal Forma estándar de un programa lineal Sin pérdida de generalidad, todo programa lineal se puede escribir como: min cx s.t Ax = b x 0 Objetivo: minimizar Todas las desigualdades como ecuaciones Todas las

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Sesión 4 Objetivos: Aplicar el método simplex a la solución de problemas reales. Contenido: Introducción al método Simplex Requerimiento del método Simplex

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles

El Método Simplex. H. R. Alvarez A., Ph. D. 1

El Método Simplex. H. R. Alvarez A., Ph. D. 1 El Método Simplex H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución esquina

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio Formato para prácticas de laboratorio CARRERA INGENIERIA INDUSTRIAL PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE 2007-1 9013 NOMBRE DE LA UNIDAD DE APRENDIZAJE METODOLOGIA PARA LA RESOLUCION DE PROBLEMAS

Más detalles

METODO SIMPLEX. Paso 1 Se convierte el modelo matemático de Programación Lineal (PL) a su forma estándar.

METODO SIMPLEX. Paso 1 Se convierte el modelo matemático de Programación Lineal (PL) a su forma estándar. METODO SIMPLEX El algoritmo Simplex comprende los siguientes pasos: Paso 1 Se convierte el modelo matemático de Programación Lineal (PL) a su forma estándar. Al elaborar el modelo matemático que representa

Más detalles

maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa.

maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa. UNIDAD 5 MÉTODO SÍMPLEX maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa. minimización (con restricciones de la forma mayor que). tenga

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

UNIDAD 3 MÉTODO SIMPLEX. Fundamentos del método simplex

UNIDAD 3 MÉTODO SIMPLEX. Fundamentos del método simplex UNIDAD 3 MÉTODO SIMPLEX Fundamentos del método simplex Teoría Este método busca la solución, en cada paso, de forma mejorada hasta que no pueda seguir mejorando dicha solución. Al comienzo el vértice principal

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Método Simplex: Minimización 3 de enero de Método Simplex: Minimización () Optimización y Programación Lineal 3 de enero de / 4 Minimización Minimización En la definición

Más detalles

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/ CO-3411 (S08 30/03/2008 98 Degeneración y ciclaje En el caso de problemas generales, una solución será degenerada cuando alguna de las variables básicas se encuentra en una de sus cotas (comparar con el

Más detalles

Forma estándar de un PPL con m restricciones y n variables. (b 0)

Forma estándar de un PPL con m restricciones y n variables. (b 0) Forma estándar de un PPL con m restricciones y n variables Maximizar (minimizar) Z = c 1 x 1 + c 2 x 2 +... + c n x n a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 +a 22 x 2 +... + a 2n x n = b 2...

Más detalles

2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION

2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 1. METODO GRAFICO 2. METODO SIMPLEX - ALGEBRAICO 3. METODO SIMPLEX - TABULAR 4. METODO SIMPLEX - MATRICIAL 1 2.2.1 METODO GRAFICO (modelos con 2 variables)

Más detalles

El Problema de Transporte

El Problema de Transporte El Problema de Transporte INVESTIGACIÓN DE OPERACIONES I Maestro Ing. Julio Rito Vargas Avilés Julio 202 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para el cual

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad III Metodologías para la Solución

Más detalles

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Soluciones básicas factibles y vértices Introducción al método símplex Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema PLs en formato estándar Vértices y soluciones

Más detalles

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2 INTRODUCCION AL METODO GRAFICO Antes de entrarnos por completo en los métodos analíticos de la investigación de operaciones es muy conveniente ver un poco acerca de las desigualdades de una ecuación lineal.

Más detalles

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria. Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación

Más detalles

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba

Más detalles

Capítulo 4 Método Algebraico

Capítulo 4 Método Algebraico Capítulo 4 Método Algebraico Introducción En la necesidad de desarrollar un método para resolver problemas de programación lineal de más de dos variables, los matemáticos implementaron el método algebraico,

Más detalles

Figura 1: Esquema de las tablas simplex de inicio y general.

Figura 1: Esquema de las tablas simplex de inicio y general. RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar

Más detalles

0. En la solución inicial estos ratios son 30; 155

0. En la solución inicial estos ratios son 30; 155 PASO 7. Regla de entrada. Se introduce en la base la variable con mayor coste reducido, en este caso, la variable. PASO 8. Regla de salida. A continuación debemos determinar qué variable sale de la base.

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

Enero Febrero Marzo Abril. D: uds D: uds D: uds D: uds

Enero Febrero Marzo Abril. D: uds D: uds D: uds D: uds PROBLEMA Una empresa dedicada a la fabricación de diferentes artículos, ante la inminente llegada de la estación invernal se plantea establecer su política de fabricación almacenae de estufas de gas para

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI Estelí, 13 de Agosto del 2012 EL METODO SIMPLEX El método simplex es el más generalizado para resolver problemas de programación lineal. Se puede utilizar para cualquier número razonable de productos y

Más detalles

Dirección de Operaciones

Dirección de Operaciones Dirección de Operaciones 1 Sesión No.5 Nombre: El método simplex. Segunda parte. Objetivo Al finalizar la sesión, el alumno será capaz de identificar las herramientas que permiten resolver problemas de

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George

Más detalles

Pasos en el Método Simplex

Pasos en el Método Simplex Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías Modelos sin solución Degeneración. óptima Soluciones múltiples o alternativas () No acotado: Ocurre cuando el objetivo puede crecer infinitamente

Más detalles

Tema 3. El metodo del Simplex.

Tema 3. El metodo del Simplex. Tema 3. El metodo del Simplex. M a Luisa Carpente Rodrguez Departamento de Matematicas.L. Carpente (Departamento de Matematicas) El metodo del Simplex 2008 1 / 28 Objetivos 1 Conocer el funcionamiento

Más detalles

Universidad Nacional de Ingeniería Sede: UNI-Norte Investigación de Operaciones I

Universidad Nacional de Ingeniería Sede: UNI-Norte Investigación de Operaciones I Universidad acional de Ingeniería Sede: UI-orte Investigación de Operaciones I Método Simple Revisado Ejemplo. Resolver el siguiente problema de P.L. s. a: Ma, z 6 Para resolver por el método simple revisado,

Más detalles

El Problema de Transporte

El Problema de Transporte El Problema de Transporte INVESTIGACIÓN DE OPERACIONES I Maestro Ing. Julio Rito Vargas Avilés Octubre 2008 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para el

Más detalles

(2.b) PROPIEDADES DE LOS MODELOS LINEALES

(2.b) PROPIEDADES DE LOS MODELOS LINEALES (2.b) PROPIEDADES DE LOS MODELOS LINEALES ESTUDIO GRÁFICO DE UN P.P.L. EN R 2. Caracterización de la región factible. Resolución gráfica del problema. Óptimos alternativos. Problemas no factibles y no

Más detalles

euresti@itesm.mx Matemáticas

euresti@itesm.mx Matemáticas al Método al Método Matemáticas al Método En esta lectura daremos una introducción al método desarrollado por George Bernard Dantzig (8 de noviembre de 1914-13 de mayo de 2005) en 1947. Este método se

Más detalles

x 1, x 2 0 Maximizar 3x 1 + x 2 s.a 2x 1 + x 2 4 2x 1 + 3x 2 4 x 1 + 3x 2 3

x 1, x 2 0 Maximizar 3x 1 + x 2 s.a 2x 1 + x 2 4 2x 1 + 3x 2 4 x 1 + 3x 2 3 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja. Dado el PL: Maximizar x + x x s.a x + x + x x x x x, x, x Calcula la solución del problema aplicando el algoritmo del Simplex. Existe más de una solución óptima?

Más detalles

Tema 3 Optimización lineal. Algoritmo del simplex

Tema 3 Optimización lineal. Algoritmo del simplex Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo

Más detalles

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés CONSTRUCCION DE LA TABLA INICIAL DEL MÉTODO SIMPLEX Una vez que el alumno ha adquirido la

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN)

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN) UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I Prof.: MSc. Ing. Julio Rito Vargas Avilés (SOLUCIÓN) I. Representar gráficamente la región determinada

Más detalles

Para poder elaborar el problema dual a partir del primal, este se debe presentar en su forma canónica de la siguiente forma:

Para poder elaborar el problema dual a partir del primal, este se debe presentar en su forma canónica de la siguiente forma: TEORIA DE LA DUALIDAD. Cada problema de programación lineal tiene un segundo problema asociado con él. Uno se denomina primal y el otro dual. Los 2 poseen propiedades muy relacionadas, de tal manera que

Más detalles

Dualidad y postoptimización

Dualidad y postoptimización Dualidad y postoptimización José María Ferrer Caja Universidad Pontificia Comillas Definición A cada problema de optimización lineal le corresponde otro que se denomina problema dual En forma canónica

Más detalles

Unidad I: Programación Lineal

Unidad I: Programación Lineal Unidad I: Programación Lineal 1.1 Definición, desarrollo y tipos de modelos de investigación de operaciones Actualmente la administración está funcionando en un ambiente de negocios que está sometido a

Más detalles

RESOLUCIÓN INTERACTIVA DEL SIMPLEX

RESOLUCIÓN INTERACTIVA DEL SIMPLEX RESOLUCIÓN INTERACTIVA DEL SIMPLEX Estos materiales interactivos presentan la resolución interactiva de ejemplos concretos de un problema de P.L. mediante el método Simplex. Se presentan tres situaciones:

Más detalles

Problemas de Programación Lineal: Método Simplex

Problemas de Programación Lineal: Método Simplex Problemas de Programación Lineal: Método Simplex Ej. (3.1) (C) Los siguientes Tableaux fueron obtenidos en el transcurso de la resolución de PL en los cuales había que maximizar una Función Objetivo con

Más detalles

Unidad de aprendizaje: TEORÍA DE DECISIONES

Unidad de aprendizaje: TEORÍA DE DECISIONES UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE ECONOMÍA Relaciones Económicas Internacionales Unidad de aprendizaje: TEORÍA DE DECISIONES Título del material: Toma de decisiones en condiciones de

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES Dos ecuaciones lineales con dos

SISTEMAS DE ECUACIONES LINEALES Y MATRICES Dos ecuaciones lineales con dos de SISTEMAS DE ECUACIONES ES Y MATRICES Dos m con n Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com de SISTEMAS DE ECUACIONES ES Y MATRICES Dos m con n Sergio Stive

Más detalles

MÉTODO SIMPLEX. PROFESORA: LILIANA DELGADO HIDALGO

MÉTODO SIMPLEX. PROFESORA: LILIANA DELGADO HIDALGO MÉTODO SIMPLEX PROFESORA: LILIANA DELGADO HIDALGO Liliana.delgado@correounivalle.edu.co 2. Relación Entre Método Gráfico y Enumeración De Método Gráfico Sujeto a: x 1 = 4 2x 2 = 12 3x 1 + 2x 2 = 18 Restricciones

Más detalles

RESOLUCIÓN INTERACTIVA DEL SIMPLEX DUAL

RESOLUCIÓN INTERACTIVA DEL SIMPLEX DUAL RESOLUCIÓN INTERACTIVA DEL SIMPLEX DUAL Este material interactivo presenta la resolución interactiva de un ejemplo concreto de un problema de P.L. mediante el método Simplex Dual. Así, partiendo de la

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Programación Lineal María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Qué es la Programación Lineal? Introducción La Programación

Más detalles

MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL

MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL Algoritmo del método simplex que mejora la eficiencia de los cálculos, se realizan los mismos pasos del método simplex visto, sólo se diferencia en la manera de

Más detalles

EJERCICIO 1. Max Z = 6 x x 2 s.r. (1) 4 x x 2 12 (2) 2 x x 2 16 (3) 2 x 1 6 x 1, x 2 0

EJERCICIO 1. Max Z = 6 x x 2 s.r. (1) 4 x x 2 12 (2) 2 x x 2 16 (3) 2 x 1 6 x 1, x 2 0 Considere el Programa Lineal siguiente: EJERCICIO Max Z 6 x + 9 x 2 s.r. () 4 x + 6 x 2 2 (2) 2 x + 8 x 2 6 (3) 2 x 6 x, x 2 0 (.a) 3 2 0 2 3 4 5 6 7 8 El Problema tiene una Región Factible delimitada

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN El método símplex El método gráfico del capítulo 2 indica que la solución óptima de un programa lineal siempre está asociada con un punto esquina del espacio de soluciones. Este resultado es la clave del

Más detalles

ANÁLISIS DE SENSIBILIDAD.

ANÁLISIS DE SENSIBILIDAD. ANÁLISIS DE SENSIBILIDAD. En la mayoría de las aplicaciones practicas, algunos datos del problema no son conocidos con exactitud y por esto son estimados tan bien como sea posible. Es importante poder

Más detalles

Examen de Investigación Operativa (Plan 96) Febrero de er Parcial

Examen de Investigación Operativa (Plan 96) Febrero de er Parcial Examen de Investigación Operativa (Plan 96) Febrero de 2010 1 er Parcial Solución del Ejercicio 1. Definimos las variables de decisión ½ 1, si se coloca una cámara en el punto de localización i x i = 0,

Más detalles

La lección de hoy de febrero de Notación. Solución factible básica

La lección de hoy de febrero de Notación. Solución factible básica 1.3 1 de febrero de La lección de hoy Método simplex (continuación) Entregas: material de clase Nota: el diseño de esta presentación incluye animaciones que permiten verla en forma de diapositivas. Repaso

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Repaso del algoritmo SIMPLEX

Repaso del algoritmo SIMPLEX Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN70K: Clase Auxiliar Repaso del algoritmo SIMPLEX Marcel Goic F. 1 1 Esta es una versión bastante

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

Dirección de Operaciones

Dirección de Operaciones Dirección de Operaciones 1 Sesión No. 9 Nombre: Problemas de transporte y asignación. Primera parte. Objetivo Al finalizar la sesión, el alumno será capaz de Contextualización Cuál es el valor de estudiar

Más detalles

Problemas del transporte

Problemas del transporte Taller 5 PROBLEA 8.- Problemas del transte Es necesario planear el sistema de energía de un nuevo edificio. Las tres fuentes posibles de energía son electricidad, gas natural, y una unidad de celdas solares.

Más detalles

2. Cual es el contexto histórico y evolución de la investigación de operaciones?

2. Cual es el contexto histórico y evolución de la investigación de operaciones? 1. Que es la Investigación de operaciones? Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística y algoritmos con objeto de realizar un proceso de toma de decisiones.

Más detalles

INVESTIGACION DE OPERACIONES:

INVESTIGACION DE OPERACIONES: METODO SIMPLEX El algoritmo símplex fue descubierto por el matemático norteamericano George Bernard Dantzig en 1947, es una técnica para dar soluciones numéricas a problema de programación lineal Un problema

Más detalles

La Geometría de la Programación Lineal

La Geometría de la Programación Lineal La Geometría de la Programación Lineal Basado en Bertsimas Tsitsiklis Introduction to Linear Optimization Chap. IN7 Modelamiento y Optimización Nelson Devia C. Introducción Se dice que un conjunto S en

Más detalles

INTRODUCCIÓN AL MÉTODO SIMPLEX: FORMA TABULAR PASO A PASO

INTRODUCCIÓN AL MÉTODO SIMPLEX: FORMA TABULAR PASO A PASO UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO CENTRO UNIVERSITARIO VALLE DE CHALCO INTRODUCCIÓN AL MÉTODO SIMPLEX: FORMA TABULAR PASO A PASO (CONTABILIDAD) CREDITOS: 7 DRA. EN C. KARINA VALENCIA SANDOVAL Septiembre,

Más detalles

Optimización de la fertilización agrícola mediante simulación de procesos.

Optimización de la fertilización agrícola mediante simulación de procesos. . PROGRAMACION LINEAL. Aspectos Generales 7. Modelo de programación lineal......9. Métodos de programación lineal..... 6 .. ASPECTOS GENERALES La programación lineal es una técnica de la investigación

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Generalidades Definición [Sistema de ecuaciones lineales] Un sistema de m ecuaciones lineales con n incógnitas, es un conjunto de m igualdades

Más detalles

La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados.

La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. Programación lineal La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. El nombre de programación no se refiere a la

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

3.1 Por inspección del tablero óptimo genere las respuestas a los numerales dados. X 1 = Cantidad de tarjetas de invitación a producir semanalmente en Kimberly Colpapel y X 2 = Cantidad de tarjetas de

Más detalles

INVESTIGACIÓN OPERATIVA

INVESTIGACIÓN OPERATIVA FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Mg Jessica Pérez Rivera PROBLEMAS DE TRANSPORTE Y ASIGNACIÓN Las aplicaciones de la programación

Más detalles

Método de las dos fases

Método de las dos fases Método de las dos fases Max X 0 = 3x 1 + 5x 2 Sujeta a 4 x 1 + x 2 4 - x 1 + 2x 2 2 x 2 3 x 1, x 2 0 1. Se obtiene el problema aumentado con variables artificiales. Max X 0 = 3x 1 + 5x 2 + 0x 3 + 0x 4

Más detalles

Problema de Programación Lineal

Problema de Programación Lineal Problema de Programación Lineal Introducción La optimización es un enfoque que busca la mejor solución a un problema. Propósito: Maximizar o minimizar una función objetivo que mide la calidad de la solución,

Más detalles

3.1. Motivación gráfica del método Simplex

3.1. Motivación gráfica del método Simplex l método Simplex. Algoritmo de las dos fases.. Motivación gráfica del método Simplex l método gráfico de resolución nos garantiza que si la región de soluciones posibles es acotada, como ocurre en los

Más detalles

PASO 1: Poner el problema en forma estandar.

PASO 1: Poner el problema en forma estandar. MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad

Más detalles

UNIDAD 6: SISTEMAS DE ECUACIONES

UNIDAD 6: SISTEMAS DE ECUACIONES UNIDAD 6: SISTEMAS DE ECUACIONES Continuamos con el estudio de la asignatura; ya hemos abordado cinco capítulos del programa de estudio: Los números reales, ecuaciones, desigualdades y algunas de las funciones

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia

Más detalles

Sistema de Ecuaciones Lineales Matrices y Determinantes (3ª Parte)

Sistema de Ecuaciones Lineales Matrices y Determinantes (3ª Parte) Sistema de Ecuaciones Lineales Matrices y Determinantes (ª Parte) Definición: Sistemas Equivalentes Dos sistemas de ecuaciones son equivalentes si y solo si tienen el mismo conjunto solución Teorema fundamental

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ. Max Z= 12X 1 + 15X 2

METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ. Max Z= 12X 1 + 15X 2 METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ Max Z= 12X 1 + 15X 2 Sujeto a: 2X 1 + X 2

Más detalles

MODELOS DETERMINISTAS. Programación Lineal ESPERANZA AYUGA TÉLLEZ

MODELOS DETERMINISTAS. Programación Lineal ESPERANZA AYUGA TÉLLEZ MODELOS DETERMINISTAS Programación Lineal ESPERANZA AYUGA TÉLLEZ OBJETIVOS: Programación Lineal Comprender la idea de la programación lineal y sus posibilidades de aplicación a problemas prácticos. Conocer

Más detalles

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue: Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CSI/ITESM 20 de agosto de 2008 Índice 121 Introducción 1 122 Transpuesta 1 123 Propiedades de la transpuesta 2 124 Matrices

Más detalles

PROGRAMACIÓN MATEMÁTICA

PROGRAMACIÓN MATEMÁTICA PROGRAMACIÓN MATEMÁTICA TEMA 1. INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA. CONJUNTOS CONVEXOS. CONVEXIDAD DE UNA FUNCIÓN. PLANTEAMIENTO FORMAL DEL PROBLEMA DE PROGRAMACION MATEMATICA. - Función Objetivo:

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

APUNTES SOBRE EL MÉTODO SÍMPLEX DE PROGRAMACIÓN LINEAL. Adriel R. Collazo Pedraja

APUNTES SOBRE EL MÉTODO SÍMPLEX DE PROGRAMACIÓN LINEAL. Adriel R. Collazo Pedraja APUNTES SOBRE EL MÉTODO SÍMPLEX DE PROGRAMACIÓN LINEAL Adriel R. Collazo Pedraja 2 INTRODUCCIÓN Este trabajo tiene como propósito proveer ayuda al estudiante para que pueda comprender y manejar más efectivamente

Más detalles