La lección de hoy de febrero de Notación. Solución factible básica

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La lección de hoy de febrero de Notación. Solución factible básica"

Transcripción

1 1.3 1 de febrero de La lección de hoy Método simplex (continuación) Entregas: material de clase Nota: el diseño de esta presentación incluye animaciones que permiten verla en forma de diapositivas. Repaso del algoritmo simplex Formalización del algoritmo simplex Degeneración y soluciones óptimas alternativas Es finito el algoritmo simplex? (Sí lo es, pero sólo si se pone cuidado) 1 PL en forma canónica PL en forma estándar + forma canónica de Jordan Variables básicas Variables no básicas x x r x m x m+1 x s x n CV x 1 c m+1 c s c n - z z no es una variable de decisión 1 1 a 1,m+1 a,m+1 a 1,s a,s a 1,n a,n b1 b a r,m+1 a r,s a r,n b r Las variables básicas son y. Las variables no básicas son y x. La solución factible básica es, x,, 3 1 a m,m+1 a m,s a m,n b m m restricciones, n variables 4 Notación Solución factible básica n número de variables m número de restricciones s índice de la variable entrante r índice de la fila pivote nota: la variable básica r ésimo deja la base Datos originales: c j, a ij, b i Una vez seleccionados los pivotes, los coeficientes revisados se expresan como c j, a ij, b i Todos los valores actuales son no negativos. Es un requisito exigido por la forma canónica Cada restricción va asociada a una variable básica. En este caso, dicha variable básica es x i. Existe un número n-m de variables no básicas. En este caso, las variables no básicas son x m+1, x n. La sfb es la siguiente: b 1,, x m b m. El valor de las demás variables es.

2 Condiciones de optimalidad (maximización) Esta solución factible básica es óptima. Cuáles son las condiciones de optimalidad, expresadas a partir de c? 7 Pivotaje: regla de la tasa mínima Pivotaje en la variable x s, donde c s >. cuando /3 cuando / x z está fijado en el min (/3, /) min ( b 1 / a 1s, b / a s ). r es la restricción en la que se ha cambiado una variable básica, donde r argmin ( b 1 / a 1s, b / a s ). Regla de tasa mínima. Exprese dicha regla mediante coeficientes generales 8 Pivotaje para obtener una solución mejor Óptimos alternativos (maximización) / / 1 1 x 1 3 z Seleccionar como pivote la variable x s, donde c s >. Seleccionar como pivote la variable básica para la restricción r conforme a la regla de la tasa mínima Esta solución factible básica es óptima. Existe alguna otra solución óptima? Puede haber óptimos alternativos si c j para todo j y c j para la parte de j en la que x j es no básica Supongamos que ha entrado a la base. Qué variable deberá dejarla? 1 Óptimos alternativos (maximización) Supongamos que entra en la base, y que la variable básica de la restricción 1 abandona ésta. Nota: aunque la solución es distinta, No acotación x z + el valor objetivo sigue siendo el mismo , - 1, La variable entrante es. Exprese la no acotación en términos de notación algebraica Definimos y. Si los coeficientes de la columna entrante son, la solución será no acotada superiormente

3 Notación: repaso Una solución básica factible es óptima cuando c j para todos los valores de j. Suponemos que la variable entrante es x s (y que, por tanto, c s > ) Seleccionar como pivote la variable básica de la fila r, donde r argmin i { b i / a is : a is > }, y por tanto b r / a rs min { b i / a is : a is > }. Si a is para todo i, la solución es no acotada. Método simplex (Max Form) Paso previo. Problema en forma canónica en el que b. Paso 1. Si c no es preciso seguir, la solución es óptima. Si continuamos es porque existe algún c j >. Paso. Elegir cualquier variable no básica para aplicar en c s >, p. ej., c s max j { c j c j > }. Si a is para todo i, no es preciso seguir: el PL es no acotado. Si continuamos es porque existe algún a is >. Paso 3. Seleccionar como pivote la variable básica de la fila r, donde r se elige por la regla de tasa mínima, es decir r argmin i ( b i / a is : a is > ). Paso 4. Sustituir la variable básica de la fila r por la variable x s y restablecer la forma canónica (es decir, el pivotaje sobre el coeficiente a rs. ) Paso. Volver al paso Resumen del resto de la materia Degeneración y mejora de soluciones Prueba del carácter finito y de la optimalidad en ausencia de degeneración Tratamiento de la degeneración Obtención de una forma canónica inicial 1 Degeneración x z + Una sfb es degenerada cuando b j para parte de j. En el caso contrario, es no d e g e ne rada. Supongamos que la variable x va a entrar en la base. Degenerada la solución puede no variar z permanece invariable 1 Elemento pivote en una solución degenerada Las soluciones no degeneradas conducen a mejoras estrictas / / 1 x z x z + La variable entrante es x. La variable saliente es la de la restricción. En este caso la solución no ha variado, aunque sí lo ha hecho la tabla. 17 Si la sfb es no degenerada, la variable entrante puede incrementarse de forma estricta, y el valor objetivo mejorará también de forma estricta. 18

4 Teorema: cuando cada solución factible básica es no degenerada, el método simplex es finito 1. El número de soluciones factibles básicas es, como máximo, n! / (n-m)! m!, que es el número de métodos para seleccionar m variables básicas. Cada solución factible básica es diferente El coste de cada una de ellas es mejor que el de la anterior, siempre que sean no degeneradas Tratamiento de la degeneración Se altera el valor del lado derecho, pero sólo mínimamente y en la forma adecuada No hay bases degeneradas Cada una de las sfb al problema alterado es también una sfb para el problema original Del mismo modo, la base óptima para el problema alterado lo es para el original Por consiguiente, el método simplex es finito 19 Ejemplo de sfb alterada Cuestiones sobre degeneración y óptimos alternativos ,13,41 En la solución factible básica original,,. Si la alteración es lo suficientemente pequeña, cada sfb para el problema alterado será también una sfb para el original. Cuando la alteración se elige correctamente, el método simplex es no degenerado y, por lo tanto, finito. 1 A primera vista, la degeneración parece algo raro: cómo se puede esperar que el valor del lado derecho de una variable tenga que ser igual a? En realidad, la degeneración ocurre con muchísima frecuencia Para que el método simplex sea finito, es necesario tener cuidado con la regla de pivotaje. En la práctica, no importa demasiado, porque el método simplex no sólo es finito, sino también increíblemente eficiente Con frecuencia se plantea la cuestión de los óptimos alternativos, de gran importancia práctica Cómo se obtiene una sfb inicial? Reducción a un problema resuelto anteriormente Hallar una solución factible para: DATO: obtener una sfb inicial presenta (en teoría) las mismas dificultades que una sfb óptima. Problema de Juan Problema de María x x x j para j 1,, 3, 4 Minimizar + sujeto a: x x IDEA: obtenerla aplicando el algoritmo simplex. 3 x j para j 1,, 3, 4,, 4

5 Son el problema de Juan y el de María equivalentes? Si existe una solución factible al problema de Juan, servirá también para resolver el problema de María. p.ej., (1 3 ) es factible para Juan (1 3 ) es óptima para María Si la mejor solución al problema de María tiene objetivo, resolverá también el de Juan. El problema de María en forma de tabla En cuanto a maximización, el problema de Maria es maximizar w El problema no está aún en forma canónica, pero casi. Qué transformación tenemos que introducir? El problema de María en forma canónica Base óptima para el problema de María / 1 1/ 1/3 1-1/ / 1 11/ 3 /3-1/ 1 3 A continuación, aplicar el algoritmo simplex al problema de María. Obtendremos una solución factible (en caso de que exista) Finalmente, podremos obtener una sfb para el problema original eliminando y. para el problema de Juan, terminando con una sfb. 7 8 Recuperación de una sfb para el problema original Recuperación de una sfb para el problema original / / / 1 1/ 1/3 1-1/ / 1 1/ 1/3 1-1/ / 1 11/ 3 /3-1/ / 1 11/ 3 /3-1/ 1 3 Al terminar, elimine las "variables ficticias" y. Reintroduzca el objetivo original Al terminar, elimine las "variables ficticias" y. Reintroduzca el objetivo original 9 Por último, aplique la forma canónica 3

6 Resumen El problema de María se conoce como "de fase 1, y las variables adicionales como "variables ficticias. Es posible crear el problema de fase 1 directamente, sin necesidad de interpretación. La solución del problema de fase 1 puede: 1. mostrar que no existe solución factible al problema original, o bien. dar como resultado una sfb para dicho problema 31 Creación de un problema de fase Eliminar, por el momento, la función objetiva Añadir las variables ficticias Minimizar la suma de las ficticias Aplicar la forma canónica Creación de un problema de fase 1 Creación de una sfb desde el problema de fase / / / 1 1/ 1/3 1-1/ / 1 11/ 3 /3-1/ 1 3 Eliminar, por el momento, la función objetiva Añadir las variables ficticias Minimizar la suma de las ficticias Aplicar la forma canónica 33 Al terminar, si w >, indique que no hay solución factible. Si w, elimine las variables ficticias (o mantenga las columnas pero sin permitir que las variables pivoten sobre ellas). Reintroduzca el objetivo original Por último, aplique la forma canónica 34 Posibles dificultades Resumen Si el problema original es degenerado, es posible que haya una variable ficticia en la base al final de la fase 1. Solución: eliminar como pivote la variable ficticia Si en el problema original hay una restricción redundante, es posible que haya una variable ficticia en la base al final de la fase 1 que no se pueda eliminar como pivote. Solución: eliminar (o despreciar) la restricción redundante Repaso del algoritmo simplex Degeneración y soluciones óptimas alternativas Es finito el algoritmo simplex? (Sí lo es, pero sólo si se pone cuidado) Cómo podemos obtener una sfb inicial? Problema de fase 1 3 3

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria. Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

Forma estándar de un PPL con m restricciones y n variables. (b 0)

Forma estándar de un PPL con m restricciones y n variables. (b 0) Forma estándar de un PPL con m restricciones y n variables Maximizar (minimizar) Z = c 1 x 1 + c 2 x 2 +... + c n x n a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 +a 22 x 2 +... + a 2n x n = b 2...

Más detalles

Tema 3 Optimización lineal. Algoritmo del simplex

Tema 3 Optimización lineal. Algoritmo del simplex Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo

Más detalles

Resumen parcial de la última lección Jueves, 28 de febrero. Los precios sombra se pueden hallar examinando las tablas iniciales y finales

Resumen parcial de la última lección Jueves, 28 de febrero. Los precios sombra se pueden hallar examinando las tablas iniciales y finales 5.53 Jueves, 8 de ferero Análisis de sensiilidad () Otros aspectos del pricing out Efectos sore talas finales Entregas: material de clase Resumen parcial de la última lección El precio somra es la variación

Más detalles

x 1, x 2 0 Maximizar 3x 1 + x 2 s.a 2x 1 + x 2 4 2x 1 + 3x 2 4 x 1 + 3x 2 3

x 1, x 2 0 Maximizar 3x 1 + x 2 s.a 2x 1 + x 2 4 2x 1 + 3x 2 4 x 1 + 3x 2 3 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja. Dado el PL: Maximizar x + x x s.a x + x + x x x x x, x, x Calcula la solución del problema aplicando el algoritmo del Simplex. Existe más de una solución óptima?

Más detalles

Forma estándar de un programa lineal

Forma estándar de un programa lineal Forma estándar de un programa lineal Sin pérdida de generalidad, todo programa lineal se puede escribir como: min cx s.t Ax = b x 0 Objetivo: minimizar Todas las desigualdades como ecuaciones Todas las

Más detalles

Parcial. Martes 12 de marzo de (sin textos)

Parcial. Martes 12 de marzo de (sin textos) 5.53 Parcial Martes 2 de marzo de 2 (sin textos). Responda a todas las preguntas en los cuadernillos de examen. 2. Controle el tiempo. Si un problema (o uno de sus apartados) le lleva mucho tiempo, le

Más detalles

RESOLUCIÓN INTERACTIVA DEL SIMPLEX

RESOLUCIÓN INTERACTIVA DEL SIMPLEX RESOLUCIÓN INTERACTIVA DEL SIMPLEX Estos materiales interactivos presentan la resolución interactiva de ejemplos concretos de un problema de P.L. mediante el método Simplex. Se presentan tres situaciones:

Más detalles

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Sesión 4 Objetivos: Aplicar el método simplex a la solución de problemas reales. Contenido: Introducción al método Simplex Requerimiento del método Simplex

Más detalles

Coeficiente objetivo de la variable artificial = +M, para minimización

Coeficiente objetivo de la variable artificial = +M, para minimización 3.4 SOLUCIÓN ARTIFICIAL DE INICIO Como se demostró en el ejemplo 3.3-1, los programas lineales en los que todas las restricciones son ( ) con lados derechos no negativos ofrecen una cómoda solución factible

Más detalles

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/ CO-3411 (S08 30/03/2008 98 Degeneración y ciclaje En el caso de problemas generales, una solución será degenerada cuando alguna de las variables básicas se encuentra en una de sus cotas (comparar con el

Más detalles

METODO SIMPLEX. Paso 1 Se convierte el modelo matemático de Programación Lineal (PL) a su forma estándar.

METODO SIMPLEX. Paso 1 Se convierte el modelo matemático de Programación Lineal (PL) a su forma estándar. METODO SIMPLEX El algoritmo Simplex comprende los siguientes pasos: Paso 1 Se convierte el modelo matemático de Programación Lineal (PL) a su forma estándar. Al elaborar el modelo matemático que representa

Más detalles

Optimización lineal. José María Ferrer Caja Universidad Pontificia Comillas ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INDUSTRIAL

Optimización lineal. José María Ferrer Caja Universidad Pontificia Comillas ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INDUSTRIAL Optimización lineal José María Ferrer Caja Universidad Pontificia Comillas Introducción Herramienta más importante de la optimización y de la investigación operativa Multitud de aplicaciones en campos

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

ANÁLISIS DE SENSIBILIDAD.

ANÁLISIS DE SENSIBILIDAD. ANÁLISIS DE SENSIBILIDAD. En la mayoría de las aplicaciones practicas, algunos datos del problema no son conocidos con exactitud y por esto son estimados tan bien como sea posible. Es importante poder

Más detalles

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY 25 de Junio de 2012 RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

1.Restricciones de Desigualdad 2.Procedimiento algebraico

1.Restricciones de Desigualdad 2.Procedimiento algebraico Universidad Nacional de Colombia Sede Medellín 1. Restricciones de Desigualdad Clase # 6 EL MÉTODO M SIMPLEX El método m simplex es un procedimiento algebraico: las soluciones se obtienen al resolver un

Más detalles

Repaso del algoritmo SIMPLEX

Repaso del algoritmo SIMPLEX Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN70K: Clase Auxiliar Repaso del algoritmo SIMPLEX Marcel Goic F. 1 1 Esta es una versión bastante

Más detalles

MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL

MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL Algoritmo del método simplex que mejora la eficiencia de los cálculos, se realizan los mismos pasos del método simplex visto, sólo se diferencia en la manera de

Más detalles

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30 1.- Dado el siguiente problema mín Z = 8x 1 + 9x + 7x 3 s. a: x 1 + x + x 3 40 x 1 + 3x + x 3 10 x 1 + x x 3 30 x 1 0, x 0, x 3 0 A) Plantear el problema dual y escribir las condiciones de la holgura complementaria

Más detalles

UNIDAD 3 MÉTODO SIMPLEX. Fundamentos del método simplex

UNIDAD 3 MÉTODO SIMPLEX. Fundamentos del método simplex UNIDAD 3 MÉTODO SIMPLEX Fundamentos del método simplex Teoría Este método busca la solución, en cada paso, de forma mejorada hasta que no pueda seguir mejorando dicha solución. Al comienzo el vértice principal

Más detalles

RESOLUCIÓN INTERACTIVA DEL SIMPLEX DUAL

RESOLUCIÓN INTERACTIVA DEL SIMPLEX DUAL RESOLUCIÓN INTERACTIVA DEL SIMPLEX DUAL Este material interactivo presenta la resolución interactiva de un ejemplo concreto de un problema de P.L. mediante el método Simplex Dual. Así, partiendo de la

Más detalles

Optimización de Problemas de Producción

Optimización de Problemas de Producción Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile Colaboran: Héctor Cancela - Antonio Mauttone - Carlos Testuri Depto. Investigación Operativa. Instituto de Computación. Facultad de

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio Formato para prácticas de laboratorio CARRERA INGENIERIA INDUSTRIAL PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE 2007-1 9013 NOMBRE DE LA UNIDAD DE APRENDIZAJE METODOLOGIA PARA LA RESOLUCION DE PROBLEMAS

Más detalles

INVESTIGACION DE OPERACIONES:

INVESTIGACION DE OPERACIONES: METODO SIMPLEX El algoritmo símplex fue descubierto por el matemático norteamericano George Bernard Dantzig en 1947, es una técnica para dar soluciones numéricas a problema de programación lineal Un problema

Más detalles

Dualidad y postoptimización

Dualidad y postoptimización Dualidad y postoptimización José María Ferrer Caja Universidad Pontificia Comillas Definición A cada problema de optimización lineal le corresponde otro que se denomina problema dual En forma canónica

Más detalles

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES.

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. Una de las hipótesis básicas de los problemas lineales es la constancia de los coeficientes que aparecen en el problema. Esta hipótesis solamente

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Método Simplex: Minimización 3 de enero de Método Simplex: Minimización () Optimización y Programación Lineal 3 de enero de / 4 Minimización Minimización En la definición

Más detalles

Tema 5: Análisis de Sensibilidad y Paramétrico

Tema 5: Análisis de Sensibilidad y Paramétrico Tema 5: Análisis de Sensibilidad y Paramétrico 5.1 Introducción 5.2 Cambios en los coeficientes de la función objetivo 5.3 Cambios en el rhs 5.4 Análisis de Sensibilidad y Dualidad 5.4.1 Cambios en el

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

Método simplex para redes (representaciones gráficas) Cálculo del flujo de un árbol de expansión

Método simplex para redes (representaciones gráficas) Cálculo del flujo de un árbol de expansión . 7 Árbol con ofertas y demandas. (Suponemos que el flujo de los demás arcos es igual a ) Método simplex para redes (representaciones gráficas) 6 - flujo en el arco (,)? Método simplex para redes (representaciones

Más detalles

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Programación Lineal María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Qué es la Programación Lineal? Introducción La Programación

Más detalles

El Método Simplex. H. R. Alvarez A., Ph. D. 1

El Método Simplex. H. R. Alvarez A., Ph. D. 1 El Método Simplex H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución esquina

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad III Metodologías para la Solución

Más detalles

TRANSPORTE Y TRANSBORDO

TRANSPORTE Y TRANSBORDO TRANSPORTE Y TRANSBORDO En ésta semana estudiaremos un modelo particular de problema de programación lineal, uno en el cual su resolución a través del método simplex es dispendioso, pero que debido a sus

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

Método de las dos fases

Método de las dos fases Método de las dos fases Max X 0 = 3x 1 + 5x 2 Sujeta a 4 x 1 + x 2 4 - x 1 + 2x 2 2 x 2 3 x 1, x 2 0 1. Se obtiene el problema aumentado con variables artificiales. Max X 0 = 3x 1 + 5x 2 + 0x 3 + 0x 4

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba

Más detalles

Tema 3. El metodo del Simplex.

Tema 3. El metodo del Simplex. Tema 3. El metodo del Simplex. M a Luisa Carpente Rodrguez Departamento de Matematicas.L. Carpente (Departamento de Matematicas) El metodo del Simplex 2008 1 / 28 Objetivos 1 Conocer el funcionamiento

Más detalles

Examen de Investigación Operativa (Plan 96) Febrero de er Parcial

Examen de Investigación Operativa (Plan 96) Febrero de er Parcial Examen de Investigación Operativa (Plan 96) Febrero de 2010 1 er Parcial Solución del Ejercicio 1. Definimos las variables de decisión ½ 1, si se coloca una cámara en el punto de localización i x i = 0,

Más detalles

Capítulo 4 Método Algebraico

Capítulo 4 Método Algebraico Capítulo 4 Método Algebraico Introducción En la necesidad de desarrollar un método para resolver problemas de programación lineal de más de dos variables, los matemáticos implementaron el método algebraico,

Más detalles

Universidad Nacional de Ingeniería UNI-RUACS 01/09/11

Universidad Nacional de Ingeniería UNI-RUACS 01/09/11 Universidad Nacional de Ingeniería UNI-RUACS 01/09/11 Elaborado por: Deall Daniel Irías Estelí, Nicaragua El método Simplex es un procedimiento iterativo que permite ir mejorando la solución a cada paso.

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

Universidad Autónoma de Sinaloa

Universidad Autónoma de Sinaloa Universidad Autónoma de Sinaloa Facultad de Ciencias Sociales Licenciatura en Economía Programa de estudios Asignatura: Investigación de operaciones. Clave: Eje de formación: Básica EFBCII Área de Conocimiento:

Más detalles

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue: Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra

Más detalles

PLs no acotados El método símplex en dos fases PLs no factibles. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

PLs no acotados El método símplex en dos fases PLs no factibles. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 PLs no acotados El método símplex en dos fases PLs no factibles Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema PLs no acotados Necesidad de obtener un vértice

Más detalles

WinQSB. Módulo de Programación Lineal y Entera. Al ejecutar el módulo Linear and Integer Programming, la ventana de inicio es la siguiente

WinQSB. Módulo de Programación Lineal y Entera. Al ejecutar el módulo Linear and Integer Programming, la ventana de inicio es la siguiente WinQSB Módulo de Programación Lineal y Entera Al ejecutar el módulo Linear and Integer Programming, la ventana de inicio es la siguiente desde la cual, a partir del menú File New Problem puedes introducir

Más detalles

Introducción.- Problema dual.-

Introducción.- Problema dual.- 30 Unidad 3 Análisis de dualidad y sensibilidad Competencia-el estudiante debe convertir un modelo estático en dinámico a través del análisis de sensibilidad basado en dos situaciones cambios en la función

Más detalles

METODO SIMPLEX: SOLUCION DE PROBLEMAS DE PROGRAMACION LINEAL.

METODO SIMPLEX: SOLUCION DE PROBLEMAS DE PROGRAMACION LINEAL. METODO SIMPLEX: SOLUCION DE PROBLEMAS DE PROGRAMACION LINEAL. El método Simplex es un procedimiento general para resolver problemas de programación lineal. Desarrollado por George Dantzig en 1947, esta

Más detalles

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Soluciones básicas factibles y vértices Introducción al método símplex Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema PLs en formato estándar Vértices y soluciones

Más detalles

maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa.

maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa. UNIDAD 5 MÉTODO SÍMPLEX maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa. minimización (con restricciones de la forma mayor que). tenga

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles

Enero Febrero Marzo Abril. D: uds D: uds D: uds D: uds

Enero Febrero Marzo Abril. D: uds D: uds D: uds D: uds PROBLEMA Una empresa dedicada a la fabricación de diferentes artículos, ante la inminente llegada de la estación invernal se plantea establecer su política de fabricación almacenae de estufas de gas para

Más detalles

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías Modelos sin solución Degeneración. óptima Soluciones múltiples o alternativas () No acotado: Ocurre cuando el objetivo puede crecer infinitamente

Más detalles

BASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3)

BASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3) 4 de Julio de 26 ASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3) Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela 4 de Julio de 26 MÉTODO SIMPLEX REVISADO

Más detalles

X m,j. X m,n C m,n C m,j. X m, C m,1. X i,n. C i,n MODELO DE TRANSPORTE. Matemáticamente:

X m,j. X m,n C m,n C m,j. X m, C m,1. X i,n. C i,n MODELO DE TRANSPORTE. Matemáticamente: MODELO DE TRANSPORTE El modelo de transporte se define como una técnica que determina un programa de transporte de productos o mercancías desde unas fuentes hasta los diferentes destinos al menor costo

Más detalles

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización Contenidos Motivación y Representación de Poliedros IN3701, Optimización 22 de abril de 2009 Contenidos Motivación y Representación de Poliedros Contenidos 1 Motivación 2 y Representación de Poliedros

Más detalles

Dirección de Operaciones

Dirección de Operaciones Dirección de Operaciones 1 Sesión No.5 Nombre: El método simplex. Segunda parte. Objetivo Al finalizar la sesión, el alumno será capaz de identificar las herramientas que permiten resolver problemas de

Más detalles

Programación Entera. Nelson Devia C. IN Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile

Programación Entera. Nelson Devia C. IN Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile IN3701 - Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile 2011 Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulos 10 y 11

Más detalles

Guía de Problemas para el Control 2

Guía de Problemas para el Control 2 Guía de Problemas para el Control 2 Geometría Problema 1 Demuestre que la intersección de conjuntos convexos es un conjunto convexo. Utilizando esto demuestre que todo poliedro es un conjunto convexo.

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

Tema 2: Optimización lineal. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga

Tema 2: Optimización lineal. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Tema 2: Optimización lineal Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Sumario El modelo de programación lineal Formulación de modelos Método gráfico

Más detalles

Kg P1 Kg P Unidades Vitamina A

Kg P1 Kg P Unidades Vitamina A Dualidad El concepto de dualidad desempeña importantes papeles dentro de la programación lineal (también en la no lineal), tanto desde un punto de vista teórico como práctico. Todo programa lineal lleva

Más detalles

RAMIFICAR-ACOTAR Y PLANOS DE CORTE

RAMIFICAR-ACOTAR Y PLANOS DE CORTE RAMIFICAR-ACOTAR Y PLANOS DE CORTE ELISA SCHAEFFER Programa de Posgrado en Ingeniería de Sistemas (PISIS) elisa@yalma.fime.uanl.mx INVESTIGACIÓN DE OPERACIONES EL MÉTODO RAMIFICAR-ACOTAR (RA) (ingl. Branch

Más detalles

Programación Lineal Continua

Programación Lineal Continua Elisenda Molina Universidad Carlos III de Madrid elisenda.molina@uc3m.es 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.

Más detalles

Práctica 1. Introducción a la optimización mediante herramienta MS Excel Solver (I)

Práctica 1. Introducción a la optimización mediante herramienta MS Excel Solver (I) Ingeniería de Telecomunicación Planificación Avanzada de Redes de Comunicaciones Curso 2006-2007 Pablo Pavón Mariño Práctica 1. Introducción a la optimización mediante herramienta MS Excel Solver (I) Objetivos

Más detalles

RESOLVER PROBLEMA DE PROGRAMACIÓN LINEAL POR METODO SIMPLEX

RESOLVER PROBLEMA DE PROGRAMACIÓN LINEAL POR METODO SIMPLEX RESOLVER PROBLEMA DE PROGRAMACIÓN LINEAL POR METODO SIMPLEX Prof. MSc. Julio Rito Vargas ================================================================================ Resolver por el método Simplex,

Más detalles

Ejemplo 1: Programación Entera

Ejemplo 1: Programación Entera Repaso Prueba 2 Ejemplo 1: Programación Entera Supongamos que una persona está interesada en elegir entre un conjunto de inversiones {1,,7} y quiere hacer un modelo 0,1 para tomar la decisión. Modelar

Más detalles

0. En la solución inicial estos ratios son 30; 155

0. En la solución inicial estos ratios son 30; 155 PASO 7. Regla de entrada. Se introduce en la base la variable con mayor coste reducido, en este caso, la variable. PASO 8. Regla de salida. A continuación debemos determinar qué variable sale de la base.

Más detalles

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2 INTRODUCCION AL METODO GRAFICO Antes de entrarnos por completo en los métodos analíticos de la investigación de operaciones es muy conveniente ver un poco acerca de las desigualdades de una ecuación lineal.

Más detalles

Programación entera 1

Programación entera 1 Programación entera 1 1. El modelo de programación entera. 2. Aplicaciones de la programación entera. 3. Solución gráfica de problemas enteros. 4. El algoritmo de ramificación y acotación. 5. El algoritmo

Más detalles

Pasos en el Método Simplex

Pasos en el Método Simplex Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006

Más detalles

3.1 Por inspección del tablero óptimo genere las respuestas a los numerales dados. X 1 = Cantidad de tarjetas de invitación a producir semanalmente en Kimberly Colpapel y X 2 = Cantidad de tarjetas de

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo: Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones

Más detalles

(2.b) PROPIEDADES DE LOS MODELOS LINEALES

(2.b) PROPIEDADES DE LOS MODELOS LINEALES (2.b) PROPIEDADES DE LOS MODELOS LINEALES ESTUDIO GRÁFICO DE UN P.P.L. EN R 2. Caracterización de la región factible. Resolución gráfica del problema. Óptimos alternativos. Problemas no factibles y no

Más detalles

UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO SUBPROGRAMA DE DISEÑO ACADÉMICO AREA: INGENIERÍA / CARRERA: INGENIERÍA DE SISTEMAS PLAN DE CURSO

UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO SUBPROGRAMA DE DISEÑO ACADÉMICO AREA: INGENIERÍA / CARRERA: INGENIERÍA DE SISTEMAS PLAN DE CURSO I. Identificación UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO SUBPROGRAMA DE DISEÑO ACADÉMICO AREA: INGENIERÍA / CARRERA: INGENIERÍA DE SISTEMAS PLAN DE CURSO Nombre: INVESTIGACIÓN DE OPERACIONES

Más detalles

Control 2 13 de Mayo 2009

Control 2 13 de Mayo 2009 Control 2 13 de Mayo 2009 Profs: Auxs: Guillermo Durán Richard Weber Fernanda Bravo, André Carboni, Rodrigo Wolf Pregunta 1 1. (1.2 Ptos.) Cuáles son los 3 criterios principales que guían el algoritmo

Más detalles

Prueba de optimalidad con. Métodos de Transporte. Autor : Ing. Germán D. Mendoza R.

Prueba de optimalidad con. Métodos de Transporte. Autor : Ing. Germán D. Mendoza R. Prueba de optimalidad con algoritmo STEPPING-STONE en Métodos de Transporte Autor : Ing. Germán D. Mendoza R. PROBLEMAS DE TRANSPORTE FASE 1: Algoritmos de solución básica Inicial: Método de la esquina

Más detalles

Algoritmos de Planos de Corte

Algoritmos de Planos de Corte Algoritmos de Planos de Corte Problema: max {cx / x X} con X = {x / Ax b, x Z n + } Proposición: conv (X) es un poliedro que puede entonces escribirse como conv (X) = {x / Ax b, x 0} Lo mismo ocurre para

Más detalles

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones.

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones. A partir del planteamiento del problema de Programación Lineal expresado en su formulación estándar, vamos a estudiar las principales definiciones y resultados que soportan el aspecto teórico del procedimiento

Más detalles

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

3.1. Motivación gráfica del método Simplex

3.1. Motivación gráfica del método Simplex l método Simplex. Algoritmo de las dos fases.. Motivación gráfica del método Simplex l método gráfico de resolución nos garantiza que si la región de soluciones posibles es acotada, como ocurre en los

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

Tipos de juegos. Número de jugadores. Número de estrategias. Evolución en el tiempo. Intercambio de información entre jugadores

Tipos de juegos. Número de jugadores. Número de estrategias. Evolución en el tiempo. Intercambio de información entre jugadores Teoría de Juegos Introducción Dos o más decisores (jugadores) deben tomar una decisión entre un conjunto de alternativas (estrategias) Puede existir conflicto entre los intereses de los jugadores Puede

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN)

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN) UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I Prof.: MSc. Ing. Julio Rito Vargas Avilés (SOLUCIÓN) I. Representar gráficamente la región determinada

Más detalles

PROGRAMACIÓN MATEMÁTICA

PROGRAMACIÓN MATEMÁTICA PROGRAMACIÓN MATEMÁTICA TEMA 1. INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA. CONJUNTOS CONVEXOS. CONVEXIDAD DE UNA FUNCIÓN. PLANTEAMIENTO FORMAL DEL PROBLEMA DE PROGRAMACION MATEMATICA. - Función Objetivo:

Más detalles

Fundamentos de Investigación de Operaciones Modelos de Grafos

Fundamentos de Investigación de Operaciones Modelos de Grafos Fundamentos de Investigación de Operaciones de junio de 00 Muchos problemas de optimización puedes ser analizados y resueltos a través de representaciones gráficas. Tal es el caso de los problemas de planificación

Más detalles

de febrero de Ejemplo de los vasos. Nuevos cambios en el lado derecho. FAQ. Sí, conozco la teoría, pero me puede poner un ejemplo?

de febrero de Ejemplo de los vasos. Nuevos cambios en el lado derecho. FAQ. Sí, conozco la teoría, pero me puede poner un ejemplo? 15.053 26 de febrero de nálisis de sensibilidad La clase sigue un esquema de FQs (preguntas frecuentes) Los distintos puntos se explican a través de un mismo ejemplo sobre fabricación de vasos de cristal.

Más detalles

Programación Lineal I

Programación Lineal I Programación Lineal I P.M. Mateo y D. Lahoz 27 de mayo de 2009 En este tema se realiza la introducción de los modelos de programación lineal y de los elementos necesarios para concluir con el algorítmo

Más detalles

Matemática II Tema 3: resolución de sistemas de ecuaciones lineales

Matemática II Tema 3: resolución de sistemas de ecuaciones lineales Matemática II Tema 3: resolución de sistemas de ecuaciones lineales 2012 2013 Índice Sistemas de ecuaciones lineales 1 Interpretación geométrica y definición 1 Método de eliminación 4 Resolución de sistemas

Más detalles

Análisis de Sensibilidad de los Resultados

Análisis de Sensibilidad de los Resultados Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 22 Análisis de Sensibilidad de los Resultados ICS 02 Optimización Profesor : Claudio Seebach

Más detalles