Modelos de Transporte: método de la esquina noroeste. M. En C. Eduardo Bustos Farías

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Modelos de Transporte: método de la esquina noroeste. M. En C. Eduardo Bustos Farías"

Transcripción

1 Modelos de Transporte: método de la esquina noroeste M. En C. Eduardo Bustos Farías as

2 LA REGLA DE LA ESQUINA NOROESTE 2

3 Esta regla nos permite encontrar una solución n factible básica b inicial (SFBI), una vez que tengamos el problema de transporte balanceado o equilibrado, es decir que el total de ofertas iguales al total de demandas. 3

4 PROCEDIMIENTO Iniciar la asignación n en el renglón n 1 y columna 1 (esquina noroeste) y formar una base asignando cantidades a las rutas, de forma tal que se agoten las existencias de la fabrica y se satisfaga la demanda de los mercados. Así entonces, la asignación n inicia en la casilla X11 (esquina noroeste) y si lo fábrica f 1 no agotó su oferta continuara en la casilla X12 y así sucesivamente. 4

5 En el caso de que el total de la oferta de la fabrica 1 no haya sido suficiente para cubrir la demanda del mercado 1, completar con la oferta de la fabrica 2, que es la casilla X21 y si no se agotó la oferta pasar a la casilla X22 y así continuar hasta concluir el proceso de asignación. n. 5

6 Con la forma anterior se conseguirá la siguiente solución n básica b factible inicial: x 1115 x 1215 x 13 x x 21 x 225 x 2331 x x 31 x 32 x 33 x x 41 x 42 x 43 x

7 Supuestos del método: m 1. Asignamos lo más m s que podamos a la variable x11 que ocupa la posición n noroeste de la tabla. 2. La oferta es igual a la demanda. 3. El proceso de asignar a la variable el mínimo m valor entre oferta y demanda disponibles se repite hasta que toda la oferta y demanda totales sean satisfechas. 4. Genera una solución n factible básica b inicial. 5. Las celdas en blanco corresponden a variables no básicas b y sus valores son cero. 6. Se obtienen variables básicas b en las celdas con asignación. n. 7

8 EJEMPLO 1 8

9 Encontrar la ruta de costo mínimo m para el siguiente problema de transporte, usando el método de la esquina noroeste. x 11 x 12 x 13 x x 21 x 22 x 23 x x 31 x 32 x 33 x x 41 x 42 x 43 x

10 X 11 x 12 x 13 x x 21 x 22 x 23 x x 31 x 32 x 33 x x 41 x 42 x 43 x

11 X 11 X 12 x 13 x x 21 x 22 x 23 x x 31 x 32 x 33 x x 41 x 42 x 43 x

12 X 11 X 12 x 13 x x 21 X 22 x 23 x x 31 x 32 x 33 x x 41 x 42 x 43 x

13 X 11 X 12 x 13 x x 21 X 22 X 23 X x 31 x 32 x 33 x x 41 x 42 x 43 x

14 X 11 X 12 x 13 x x 21 X 22 X 23 X x 31 x 32 x 33 x x 41 x 42 x 43 x

15 X 11 X 12 x 13 x x 21 X 22 X 23 X x 31 x 32 x 33 X x 41 x 42 x 43 x

16 X 11 X 12 x 13 x x 21 X 22 X 23 X x 31 x 32 x 33 X 34 x 41 x 42 x 43 X

17 EJEMPLO 2 17

18 18

19 SOLUCIÓN 19

20 20

21 U = =-6 21

22 22

23 23

24 24

25 Ejemplo 2 Método de la esquina noroeste 25

26 Encontrar la ruta de costo mínimo m para el siguiente problema de transporte, usando el método m de la esquina noroeste. 26

27 SOLUCIÓN 27

28

29 16 2 2,

30 16 2 2,

31 16 2 2, ,

32 32

33 SFBI X11=16 X12=2 X13=0 X21=0 X22=8 X23=7 Costo= (16x6)+(2x5)+(2x8)+(4x7)=150 33

34 MEJORA DE LA SOLUCIÓN 34

35 35

36 36

37 37

38 38

39 Analicemos la adición n hipotética tica de 1 unidad a la variable X21: 1. Un aumento del costo debido al aumento de X21 en una unidad por $4 2. Una disminución n del costo debido a una disminución de X11 en una unidad por $6 3. Un aumento del costo debido a un aumento de X12 en una unidad por $5 4. Una disminución n del costo debido a una disminución de X22 en una unidad por $2 El efecto neto es: = +$1 Es evidente que no se quiere este efecto. 39

40 Analicemos la adición n de la variable X13 a la solución: 1. Un aumento del costo debido al aumento de X13 en una unidad por $1 2. Una disminución n del costo debido a la disminución n de X23 en 1 unidad por $4 3. Un aumento del costo debido al aumento de X23 en 1 unidad por $2 4. Una disminución n del costo debido a la disminución n de X12 en 1 unidad por $5 El efecto neto es: = -$6 40

41 Hemos identificado una variable no básica (X13) que al volverse básica b tiene el efecto neto de disminuir el costo total en $6 por cada unidad remitida por esa ruta. La asignación n debe considerar las restricciones, así tendríamos la siguiente tabla: 41

42 42

43 Como era de esperar, el costo total del transporte se redujo en $ 12 ( = 138): (6)(16) + (1)(2) + (2)(10) + (4)(5) = =

44 Evaluemos ahora la posibilidad de otro intercambio entre las variables X11, X21, X23 y X13. El efecto neto de un intercambio de una unidad será: = -55 y el total de unidades que se pueden intercambiar es de cinco por lo tanto (-5)(5)( = -25 por lo cual el costo total del transporte se reduciría a en $25 ( = $ 113). Así,, la nueva tabla del transporte quedaría: a: 44

45 45

46 PROBLEMA PARA RESOLVER Encontrar la ruta de costo mínimo m para el siguiente problema de transporte, usando el método m de la esquina noroeste y el cálculo c de los índices de mejoramiento. 46

47 Plantear el modelo de red Elaborar el modelo de programación lineal asociado, sin resolverlo. 47

48 SOLUCIÓN 48

49 X13+X23<=400 X14+X24<=350 49

50 PROBLEMA PARA RESOLVER Encontrar la ruta de costo mínimo m para el siguiente problema de transporte, usando el método m de la esquina noroeste y el cálculo c de los índices de mejoramiento. 50

51 Encontrar la ruta de costo mínimo m para el siguiente problema de transporte, usando el método de la esquina noroeste. Encontrar la SFBI, indicar su costo asociado. Hacia Desde Boston Richmond Atlanta St. Louis Oferta Cleveland $ Detroit Greensboro Demanda

52 SOLUCIÓN 52

53 53

54 PROBLEMA PARA RESOLVER Encontrar la ruta de costo mínimo m para el siguiente problema de transporte, usando el método m de la esquina noroeste y el cálculo c de los índices de mejoramiento. 54

55

56 PROBLEMA PARA RESOLVER Método de la esquina noroeste 56

57 La Red de AJax La planta de Ajax se encuentra en Chicago. Ajax vende sus computadoras en 8 mercados. Para satisfacer la demanda de esta semana, el gerente de Ajax debe decidir un plan de embarque desde su planta hasta la bodega y los mercados. Los costos de transporte se muestran en la tabla Encontrar la ruta de costo mínimo m para el siguiente problema. Usando el método m de la esquina noroeste y el cálculo de los índices de mejoramiento. 57

58 Costos de transporte $/unidad Planta oferta demanda ENCONTRAR EL MODELO DE PL Y RESOLVERLO USAR EL MÉTODO DE LA ESQ. NW Y RESOLVERLO 58

59 EJERCICIO PARA RESOLVER Encontrar la ruta de costo mínimo m para el siguiente problema. Usando el método m de la esquina noroeste y el cálculo c de los índices de mejoramiento. 59

60 Almacenes planta oferta demanda Se desea saber cuántos camiones enviar de i a j dados los costos 60 De transporte de i a j.

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE PROGRAMACION DE REDES. MODELOS DE TRANSPORTE El modelo de transporte o modelo de distribución es un ejemplo de un problema de optimización de redes. Se aplican para resolver ciertos tipos de problemas

Más detalles

TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA

TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI 1.1 Modelo de transporte Asignatura: Investigación Operativa I Docente: Ing. Jesús Alonso Campos TEMA N

Más detalles

1 $10 $0 $20 $11 15 2 $12 $7 $9 $20 25 3 $0 $14 $16 $18 10 Total demanda

1 $10 $0 $20 $11 15 2 $12 $7 $9 $20 25 3 $0 $14 $16 $18 10 Total demanda UNIDAD V. ALGORITMOS ESPECIALES 5.4. Métodos de aproximación para obtener una solución básica inicial Para resolver problemas de transporte se debe crear una solución básica inicial, la obtención de esta

Más detalles

Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías

Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías Modelos de Transporte: Problemas de asignación M. En C. Eduardo Bustos Farías as Problemas de Asignación Problemas de Asignación: Son problemas balanceados de transporte en los cuales todas las ofertas

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Ejemplo. Breeding Manufacturing Inc. Mezcla de productos 2 La Breeding Manufacturing Inc., fabrica y vende dos tipos de

Más detalles

Dirección de Operaciones

Dirección de Operaciones Dirección de Operaciones 1 Sesión No. 9 Nombre: Problemas de transporte y asignación. Primera parte. Objetivo Al finalizar la sesión, el alumno será capaz de Contextualización Cuál es el valor de estudiar

Más detalles

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES I TAREA Problemas de Transporte, transbordo y asignación Prof. :

Más detalles

FUNDACION UNIVERSITARIA LOS LIBERTADORES DEPARTAMENTO DE CIENCIAS GUÍA INVESTIGACIÓN DE OPERACIONES

FUNDACION UNIVERSITARIA LOS LIBERTADORES DEPARTAMENTO DE CIENCIAS GUÍA INVESTIGACIÓN DE OPERACIONES FUNDACION UNIVERSITARIA LOS LIBERTADORES DEPARTAMENTO DE CIENCIAS GUÍA INVESTIGACIÓN DE OPERACIONES AUTOR: Arturo Yesid Córdoba Berrio Ing. Industrial Administrador de Empresas Especialización en Transporte

Más detalles

- Contenido UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI. Carrera: Ingeniería de Sistemas

- Contenido UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI. Carrera: Ingeniería de Sistemas UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI Carrera: Ingeniería de Sistemas Nombre de la asignatura: Investigación de Operaciones I Año académico: Tercer año Semestre: Sexto - Contenido I-

Más detalles

INSTITUTO TECNOLÓGICO DE NUEVO LEÓN. Asignación y Transporte

INSTITUTO TECNOLÓGICO DE NUEVO LEÓN. Asignación y Transporte Asignación y Transporte Objetivo: Utilizar modelos matemáticos para la solución de problemas que contemplen la asignación y transporte. Introducción: La metodología de asignación y transporte está relacionada

Más detalles

PROGRAMACION ENTERA: METODO DE BIFURCACIÓN Y ACOTAMIENTO

PROGRAMACION ENTERA: METODO DE BIFURCACIÓN Y ACOTAMIENTO PROGRAMACION ENTERA: METODO DE BIFURCACIÓN Y ACOTAMIENTO La mayor parte de los PE se resuelven en la práctica mediante la técnica de ramificación y acotamiento. En este método se encuentra la solución

Más detalles

TRANSPORTE Y TRANSBORDO

TRANSPORTE Y TRANSBORDO TRANSPORTE Y TRANSBORDO En ésta semana estudiaremos un modelo particular de problema de programación lineal, uno en el cual su resolución a través del método simplex es dispendioso, pero que debido a sus

Más detalles

INVESTIGACIÓN OPERATIVA

INVESTIGACIÓN OPERATIVA FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Mg Jessica Pérez Rivera PROBLEMAS DE TRANSPORTE Y ASIGNACIÓN Las aplicaciones de la programación

Más detalles

El Problema del Transporte

El Problema del Transporte ASIGNATURA PROGRAMACIÓN LINEAL El Problema del Transporte Maestro Ing. Julio Rito Vargas Avilés Octubre 2014 1 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para

Más detalles

Unidad 6 Método de transporte

Unidad 6 Método de transporte Unidad 6 Método de transporte Como ya se vio en la unidad 3, los problemas de transporte son problemas de programación lineal (pl), pero con una estructura muy particular de la matriz de los coeficientes

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

Modelos de Redes: Problema del flujo máximom. M. En C. Eduardo Bustos Farías

Modelos de Redes: Problema del flujo máximom. M. En C. Eduardo Bustos Farías Modelos de Redes: Problema del flujo máimom M. En C. Eduardo Bustos Farías as Problema del flujo máimom Problema del flujo máimom Este modelo se utiliza para reducir los embotellamientos entre ciertos

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 El Problema de Transporte

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 El Problema de Transporte Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Versión 2.0 29 de septiembre de 2003 corresponde a un tipo particular de un problema de programación lineal. Si bien este tipo

Más detalles

Problemas de Transbordo

Problemas de Transbordo Universidad Nacional de Ingeniería UNI-Norte Problemas de Transbordo III Unidad Temática MSc. Ing. Julio Rito Vargas II semestre 2008 El problema de transbordo Un problema de transporte permite sólo envíos

Más detalles

Universidad Autónoma de Guadalajara 3.1 Modelo de Transporte. Nomenclatura

Universidad Autónoma de Guadalajara 3.1 Modelo de Transporte. Nomenclatura UNIDAD III. ANÁLISIS DE REDES OBJETIVO DE APRENDIZAJE: El alumno identificará y analizará problemas de optimización de funciones y recursos para mejorar la operación de una organización. Modelos de transporte

Más detalles

Problemas de transporte, asignación y trasbordo

Problemas de transporte, asignación y trasbordo Problemas de transporte, asignación y trasbordo 1. Plantear un problema de transporte Tiene como objetivo encontrar el mejor plan de distribución, generalmente minimizando el coste. Un problema está equilibrado

Más detalles

MODELOS DE TRANSPORTE

MODELOS DE TRANSPORTE Universidad Mariano Gálvez de Guatemala Centro Universitario de Escuintla Facultad de Ciencias de la Administración Maestría en Dirección y Gestión del Recurso Humano Curso Modelos para la toma de decisiones

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Fundamentos de Investigación de Operaciones Modelos de Grafos

Fundamentos de Investigación de Operaciones Modelos de Grafos Fundamentos de Investigación de Operaciones de junio de 00 Muchos problemas de optimización puedes ser analizados y resueltos a través de representaciones gráficas. Tal es el caso de los problemas de planificación

Más detalles

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos:

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: Solución óptima a los problemas de transporte La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: a) Calcular los

Más detalles

UNIDAD III. INVESTIGACIÓN DE OPERACIONES

UNIDAD III. INVESTIGACIÓN DE OPERACIONES UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas

Más detalles

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El estudiante, conocerá los fundamentos en que se basan las herramientas de la investigación de operaciones para la toma de decisiones.

Más detalles

FORMULACIÓN DE MODELOS DE PROGRAMACIÓN ENTERA PROBLEMAS DE REDES

FORMULACIÓN DE MODELOS DE PROGRAMACIÓN ENTERA PROBLEMAS DE REDES 19 de Marzo de 2015 FORMULACIÓN DE MODELOS DE PROGRAMACIÓN ENTERA PROBLEMAS DE REDES Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación Entera

Más detalles

Unidad II: Análisis de Redes

Unidad II: Análisis de Redes Unidad II: Análisis de Redes 2.1 Conceptos Básicos Un problema de redes es aquel que puede representarse por: LA IMPORTANCIA DE LOS MODELOS DE REDES: Muchos problemas comerciales pueden ser resueltos a

Más detalles

El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés.

El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés. Universidad Nacional de Ingeniería Sede: UNI-Norte II Semestre 2008 Investigación de Operaciones I El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés. martes, 21 de octubre de 2008 El Problema

Más detalles

2) Existen limitaciones o restricciones sobre las variables de la función objetivo.

2) Existen limitaciones o restricciones sobre las variables de la función objetivo. 1 Introducción La programación lineal es un método de resolución de problemas que se ha desarrollado para ayudar a profesionales de distintos ambitos a tomar mejores decisiones Desde su aparición a finales

Más detalles

LOS PROBLEMAS SE DEBEN CONTESTAR EN MANOESCRITO Y EN ESPANOL DE LO CONTRARIO NO SE ACEPTARAN.

LOS PROBLEMAS SE DEBEN CONTESTAR EN MANOESCRITO Y EN ESPANOL DE LO CONTRARIO NO SE ACEPTARAN. MATERIAL SEGUNDO EXAMEN 1. Examen Programacion Lineal 2. Problemas: 10-11,10-13 y 10-28 MATERIAL TERCER EXAMEN 1. Problemas: 3-16, 3-21, 3-2, 3-27, 5-1, 5-15, 5-17, 5-18 LOS PROBLEMAS SE DEBEN CONTESTAR

Más detalles

INVESTIGACION DE OPERACIONES:

INVESTIGACION DE OPERACIONES: METODO SIMPLEX El algoritmo símplex fue descubierto por el matemático norteamericano George Bernard Dantzig en 1947, es una técnica para dar soluciones numéricas a problema de programación lineal Un problema

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

EL PROBLEMA DE TRANSPORTE

EL PROBLEMA DE TRANSPORTE 1 EL PROBLEMA DE TRANSPORTE La TÉCNICA DE TRANSPORTE se puede aplicar a todo problema físico compatible con el siguiente esquema: FUENTES DESTINOS TRANSPORTE DE UNIDADES Donde transporte de unidades puede

Más detalles

Problemas de Programación Lineal: Método Simplex

Problemas de Programación Lineal: Método Simplex Problemas de Programación Lineal: Método Simplex Ej. (3.1) (C) Los siguientes Tableaux fueron obtenidos en el transcurso de la resolución de PL en los cuales había que maximizar una Función Objetivo con

Más detalles

Fundamentos de Investigación de Operaciones El Problema de Transporte

Fundamentos de Investigación de Operaciones El Problema de Transporte Fundamentos de Investigación de Operaciones El Problema de Transporte Septiembre 2002 El Problema de Transporte corresponde a un tipo particular de un problema de programación lineal. Si bien este tipo

Más detalles

1.Restricciones de Desigualdad 2.Procedimiento algebraico

1.Restricciones de Desigualdad 2.Procedimiento algebraico Universidad Nacional de Colombia Sede Medellín 1. Restricciones de Desigualdad Clase # 6 EL MÉTODO M SIMPLEX El método m simplex es un procedimiento algebraico: las soluciones se obtienen al resolver un

Más detalles

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30

Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30 1.- Dado el siguiente problema mín Z = 8x 1 + 9x + 7x 3 s. a: x 1 + x + x 3 40 x 1 + 3x + x 3 10 x 1 + x x 3 30 x 1 0, x 0, x 3 0 A) Plantear el problema dual y escribir las condiciones de la holgura complementaria

Más detalles

En los siguientes ejemplos, usarás Solver para resolver los modelos y problemas de programación lineal planteados. 1 + x 2

En los siguientes ejemplos, usarás Solver para resolver los modelos y problemas de programación lineal planteados. 1 + x 2 II000_MAAL3_Ejemplos Versión: Septiembre 0 Ejemplos con Solver por Oliverio Ramírez En los siguientes ejemplos, usarás Solver para resolver los modelos y problemas de programación lineal planteados. Ejemplo

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN El método símplex El método gráfico del capítulo 2 indica que la solución óptima de un programa lineal siempre está asociada con un punto esquina del espacio de soluciones. Este resultado es la clave del

Más detalles

Métodos de distribución

Métodos de distribución Métodos de distribución Ejercicios: 1)Que es una red de distribución. Describa sus componentes. 2)Enuncie las condiciones que debe satisfacer una solución inicial factible básica. 3)Detalle el procedimiento

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George

Más detalles

SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION.

SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION. UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA DE LA PRODUCCIÓN INGENIERÍA INDUSTRIAL SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE

Más detalles

Listado de Trabajo TRANSPORTE

Listado de Trabajo TRANSPORTE Listado de Trabajo TRANSPORTE Problema 1 Una compañía de servicios Informáticos, recibe pedidos de sus productos desde tres diferentes ciudades, en las siguientes cantidades: La ciudad A pide 18 Pc portatiles.

Más detalles

17 POR TODOS LADOS. Llena los espacios de color amarillo, con los números del 1 al 9, sin repetir ninguno, de tal manera que:

17 POR TODOS LADOS. Llena los espacios de color amarillo, con los números del 1 al 9, sin repetir ninguno, de tal manera que: 17 POR TODOS LADOS Llena los espacios de color amarillo, con los números del 1 al 9, sin repetir ninguno, de tal manera que: la suma por cada lado del triángulo sea 17 1 2 3 4 5 6 7 8 9 Sugerencia para

Más detalles

Breve introducción a la Investigación de Operaciones

Breve introducción a la Investigación de Operaciones Breve introducción a la Investigación de Operaciones Un poco de Historia Se inicia desde la revolución industrial, usualmente se dice que fue a partir de la segunda Guerra Mundial. La investigación de

Más detalles

Modelos de Pert/CPM: intercambios de tiempo y costo

Modelos de Pert/CPM: intercambios de tiempo y costo INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO Modelos de Pert/CPM: intercambios de tiempo y costo M. En C. Eduardo Bustos Farías 1 Hasta este punto nos hemos concentrado la atención en los

Más detalles

PROBLEMAS RESUELTOS DE TRANSPORTES.

PROBLEMAS RESUELTOS DE TRANSPORTES. PROBLEMAS RESUELTOS DE TRANSPORTES. Prof.: MSc. Julio Rito Vargas Avilés Inv. Operaciones I Ejemplo 1 (Modelo de transporte estándar - equiulibrado) MG Auto Company tiene plantas en Los Ángeles, Detroit

Más detalles

n-1 n (número del período)

n-1 n (número del período) ÍNDIÍ ICES PARA DECISIONES EN PROYECTOS DE INVERSII IÓN De los índices más utilizados para decisiones de inversión en proyectos se tienen: Valor presente neto (VPN), Tasa Interna de Retorno (TIR), Beneficio

Más detalles

Unidad 4 Análisis de dualidad

Unidad 4 Análisis de dualidad Unidad 4 Análisis de dualidad Objetivos Al nalizar la unidad, el alumno: Identi cará el tipo de problemas que se resuelven con el método dual-símple. Utilizará el método dual-símple para resolver modelos

Más detalles

Parcial. Martes 12 de marzo de (sin textos)

Parcial. Martes 12 de marzo de (sin textos) 5.53 Parcial Martes 2 de marzo de 2 (sin textos). Responda a todas las preguntas en los cuadernillos de examen. 2. Controle el tiempo. Si un problema (o uno de sus apartados) le lleva mucho tiempo, le

Más detalles

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO 1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles

Universidad Autónoma de Sinaloa

Universidad Autónoma de Sinaloa Universidad Autónoma de Sinaloa Facultad de Ciencias Sociales Licenciatura en Economía Programa de estudios Asignatura: Investigación de operaciones. Clave: Eje de formación: Básica EFBCII Área de Conocimiento:

Más detalles

INVESTIGACIÓN OPERATIVA

INVESTIGACIÓN OPERATIVA INVESTIGACIÓN OPERATIVA MODELO DE TRANSPORTE Expositor: Msc. Ing. Iván Marcelo Morales Alconini INICIO 1 PROBLEMA DE TRANSPORTE Un fabricante de jabón y detergentes tiene tres plantas, localizadas en Cincinnati,

Más detalles

UNIDAD 5. Problema de Transporte

UNIDAD 5. Problema de Transporte UNIDAD 5 Problema de Transporte En matemáticas y economía, un problema de transporte es un caso particular de problema de programación lineal en el cual se debe minimizar el coste del abastecimiento a

Más detalles

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y 4 1 5 6 C = 2 8 9 3.

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y 4 1 5 6 C = 2 8 9 3. UNIVERSIDAD DE MANAGUA CURSO: PROGRAMACIÓN LINEAL TAREA # 2 Problemas de Transporte, transbordo y asignación Prof. : MSc. Julio Rito Vargas Avilés III C 2015 1. Considerar el problema de transporte definido

Más detalles

los requerimientos y al mismo tiempo lograr reducir o minimizar el costo de dicha operación.

los requerimientos y al mismo tiempo lograr reducir o minimizar el costo de dicha operación. UNIDAD III. INVESTIGACIÓN DE OPERACIONES APLICADA A LOS NEGOCIOS Tema 3.2 El modelo de transporte es un problema de optimización de redes donde debe determinarse como hacer llegar los productos desde los

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal Conferencia clase Al desacoplar las ecuaciones se tiene stemas de ecuaciones diferenciales lineales usando álgebra lineal Contenido. 1. stemas de ecuaciones diferenciales de primer orden. 2. Forma matricial

Más detalles

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2 INTRODUCCION AL METODO GRAFICO Antes de entrarnos por completo en los métodos analíticos de la investigación de operaciones es muy conveniente ver un poco acerca de las desigualdades de una ecuación lineal.

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Problemas resueltos con el método gráfico 4 de junio de 2014 1. Resuelva el siguiente PL por el método gráfico Max z = x 1 + x 2 x 1 + x 2 4 x 1 x 2 5 En la figura 1

Más detalles

CAPITULO III. Determinación de Rutas de Entregas

CAPITULO III. Determinación de Rutas de Entregas CAPITULO III Determinación de Rutas de Entregas Un importante aspecto en la logística de la cadena de abastecimiento (supply chain), es el movimiento eficiente de sus productos desde un lugar a otro. El

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE PROBLEMA DE FLUJO DE COSTO MINIMO. 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones de Modelos de LP 25 de julio de 2004. Descripción del Método ualquier problema de Programación Lineal de sólo 2 variables puede

Más detalles

Splines (funciones polinomiales por trozos)

Splines (funciones polinomiales por trozos) Splines (funciones polinomiales por trozos) Problemas para examen Interpolación lineal y cúbica 1. Fórmulas para la interpolación lineal. Dados t 1,..., t n, x 1,..., x n R tales que t 1

Más detalles

PLANEACIÓN CON RECURSOS RESTRINGIDOS. Veremos la forma de incorporar las consideraciones de recursos en el plan y el programa del proyecto.

PLANEACIÓN CON RECURSOS RESTRINGIDOS. Veremos la forma de incorporar las consideraciones de recursos en el plan y el programa del proyecto. 1 PLANEACIÓN CON RECURSOS RESTRINGIDOS Veremos la forma de incorporar las consideraciones de recursos en el plan y el programa del proyecto. Usted se familiarizará con: La consideración de las restricciones

Más detalles

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

Modelos de Redes: Árbol. M. En C. Eduardo Bustos Farías

Modelos de Redes: Árbol. M. En C. Eduardo Bustos Farías Modelos de Redes: Árbol de expansión n mínimam M. En C. Eduardo Bustos Farías as Objetivos Conceptos y definiciones de redes. Importancia de los modelos de redes Modelos de programación n lineal, representación

Más detalles

TEMA 2: PROGRAMACIÓN LINEAL.

TEMA 2: PROGRAMACIÓN LINEAL. TEMA : PROGRAMACIÓN LINEAL.. 1. INTRODUCCIÓN. La Programación Lineal (PL) puede considerarse como uno de los grandes avances científicos habidos durante la primera mitad del siglo XX y sin duda es una

Más detalles

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Introducción a la Programación Lineal Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Historia La investigación de Operaciones se caracteriza

Más detalles

GUÍA DE ANÁLISIS DE DETECCIÓN DE PROBLEMA CAUSA RAÍZ

GUÍA DE ANÁLISIS DE DETECCIÓN DE PROBLEMA CAUSA RAÍZ GUÍA DE ANÁLISIS DE DETECCIÓN DE PROBLEMA CAUSA RAÍZ Objetivo: Contar con una metodología que sirva de apoyo para la detección de problema causas raíz. Qué es la identificación de la causa raíz? Es una

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

Prácticas de IO con POM-QM 2014

Prácticas de IO con POM-QM 2014 PROBLEMAS DE OPTIMIZACIÓN DE REDES (Puede hacer uso del software POM-QM) 1. Encuentre la ruta más corta de la siguiente red. Los números representan las distancias correspondientes reales entre los nodos.

Más detalles

CAPÍTULO 6 PROGRAMACIÓN DINÁMICA. Programación Dinámica

CAPÍTULO 6 PROGRAMACIÓN DINÁMICA. Programación Dinámica CAPÍTULO 6 PROGRAMACIÓN DINÁMICA Programación Dinámica Programación Dinámica En muchos casos las decisiones del pasado afectan los escenarios del futuro. En estos casos se pueden tomar 2 opciones: asumir

Más detalles

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1 Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran

Más detalles

ANALISIS DE LOS METODOS DE TRANSPORTE EN LA LOCALIZACION DE EMPRESAS Y SU APLICACION EN LA INCERTIDUMBRE

ANALISIS DE LOS METODOS DE TRANSPORTE EN LA LOCALIZACION DE EMPRESAS Y SU APLICACION EN LA INCERTIDUMBRE ANALISIS DE LOS METODOS DE TRANSPORTE EN LA LOCALIZACION DE EMPRESAS Y SU APLICACION EN LA INCERTIDUMBRE Dunia Durán Juvé Universidad de Barcelona (España) 1 de marzo de 1999 RESUMEN En el presente trabajo

Más detalles

Práctica N 6 Modelos de Programación Lineal Entera

Práctica N 6 Modelos de Programación Lineal Entera Práctica N 6 Modelos de Programación Lineal Entera 6.1 Una empresa textil fabrica 3 tipos de ropa: camisas, pantalones y shorts. Las máquinas necesarias para la confección deben ser alquiladas a los siguientes

Más detalles

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250 EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 3, 0 y 40 millones

Más detalles

OPTIMIZACION DETERMINISTICA

OPTIMIZACION DETERMINISTICA OPTIMIZACION DETERMINISTICA 1 PROBLEMA GENERAL Además de analizar los flujos de caja de las las alternativas de inversión, también se debe analizar la forma como se asignan recursos limitados entre actividades

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado IO04001 Investigación de Operaciones I Tema # 6 Introducción al método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex Matricial para

Más detalles

PROBLEMAS DE PROGRAMACIÓN ENTERA I

PROBLEMAS DE PROGRAMACIÓN ENTERA I Problemas de Programación Entera I 1 PROBLEMAS DE PROGRAMACIÓN ENTERA I 1. Un departamento ha dispuesto 2 millones de pesetas de su presupuesto general para la compra de material informático, con el que

Más detalles

Programación Lineal Modelo de transporte Asignación

Programación Lineal Modelo de transporte Asignación Programación Lineal Modelo de transporte Asignación Curso: Investigación de Operaciones Ing. Javier Villatoro MODELO DE ASIGNACIÓN Modelo de Asignación Consiste en asignar al mínimo costo los requerimientos

Más detalles

Recepción de Bienes y Servicios

Recepción de Bienes y Servicios Recepción de Bienes y Servicios P-PS-103-04-2013 1 Contenido 1. DIAGRAMA DE PROCESO... 3 2. Recibir la solicitud de Recepción enviada por la empresa Contratista... 4 3. Confección de Acta de Recepción

Más detalles

Problemas de la Ruta más m s corta

Problemas de la Ruta más m s corta Modelos de Redes: Problemas de la Ruta más m s corta M. En C. Eduardo Bustos Farías as Problemas de la Ruta más m s corta Problemas de la Ruta más m s corta Se trata de encontrar la ruta de menor distancia,

Más detalles

MANUAL DE PROCEDIMIENTOS

MANUAL DE PROCEDIMIENTOS Anexos MANUAL DE PROCEDIMIENTOS PROCESO ADMINISTRATIVO IDENTIFICACIÓN: Nombre de la Dependencia: Empresa S.A. de C.V. Manual de: Procedimiento Administrativo Lugar y fecha de elaboración: Hermosillo, Sonora.,

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA: DEPARTAMENTO: ADMINISTRACIÓN

NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA: DEPARTAMENTO: ADMINISTRACIÓN CODIGO: 092-4883 HORAS SEMANALES 4 HORAS TEORICAS: 2 UNIVERSIDAD DE ORIENTE COMISIÓN CENTRAL DE CURRÍCULA PROGRAMA DE ASIGNATURA NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA:

Más detalles

Capitulo 4. DECISIONES BAJO RIESGO TEORIA DE JUEGOS

Capitulo 4. DECISIONES BAJO RIESGO TEORIA DE JUEGOS Capitulo 4. DECISIONES BAJO RIESGO TEORIA DE JUEGOS INTRODUCCIÓN En el mundo real, tanto en las relaciones económicas como en las políticas o sociales, son muy frecuentes las situaciones en las que, al

Más detalles

HERRAMIENTAS DE PLANIFICACIÓN

HERRAMIENTAS DE PLANIFICACIÓN ADMINISTRACIÓN GENERAL I HERRAMIENTAS DE PLANIFICACIÓN Dr. Alfredo Rébori Se han desarrollado distintas técnicas para ayudar a los gerentes en uno de los aspectos más desafiantes de la planificación estratégica:

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

1. El Método de Diferencias Finitas

1. El Método de Diferencias Finitas 1. El Método de Diferencias Finitas Por Guillermo Hernández García El Método consiste en una aproximación de derivadas parciales por expresiones algebraicas envolviendo los valores de la variable dependiente

Más detalles

5. Coloración de grafos: El Sudoku

5. Coloración de grafos: El Sudoku 4 5. Coloración de grafos: El Sudoku Un pasatiempo muy famoso en estos días es el llamado Sudoku. Éste consiste en un cuadrado 9 9, dividido a su vez en nueve cuadrados, en el que algunos de las cuadrados

Más detalles