Con punto fijo Rotaciones Simetría Axial Sin punto fijo Traslaciones Reflexión Deslizante

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Con punto fijo Rotaciones Simetría Axial Sin punto fijo Traslaciones Reflexión Deslizante"

Transcripción

1 Eje: Geometría, FASCÍCULO 12 Transformaciones Rígidas y Homotecias En el Fascículo 11 vimos que podemos pensar que hay 4 clases de transformaciones rígidas clasificadas de la siguiente manera (pensamos las simetrías centrales como un caso particular de rotación): Preserva Orientación Invierte Orientación Con punto fijo Rotaciones Simetría Axial Sin punto fijo Traslaciones Reflexión Deslizante En matemática se conoce con el nombre de grupo a un conjunto que tiene una operación asociativa, con identidad y con inversos. En este sentido, las transformaciones rígidas forman un grupo con la operación de composición. En este fascículo completaremos el análisis de qué resultados obtenemos al componer las diferentes clases de transformaciones rígidas, es decir que estudiaremos, con cierto detalle, las características de este grupo. Como cierre del eje, estudiaremos brevemente algunas propiedades básicas de las homotecias.

2 Composición de las Transformaciones Rígidas A continuación describiremos algunos aspectos de las 10 composiciones: Rotación con Rotación Rotación con Traslación Rotación con Reflexión Rotación con Reflexión Deslizante Reflexión Deslizante con Reflexión Deslizante Traslación con Traslación Traslación con Reflexión Traslación con Reflexión Deslizante Reflexión con Reflexión Reflexión con Reflexión Deslizante Para experimentar con ellas, encontraremos en el Aula Virtual, un archivo Geogebra por cada una de ellas que realiza la composición. Recordemos que la composición de transformaciones NO es conmutativa en general. Sin embargo, qué tipo de transformación es el resultado no depende del orden en que hagamos la composición. Es por ello que, en la mayoría de los casos, analizaremos cada una de las 10 composiciones eligiendo un orden, dejando a los lectores la tarea de confirmar que si la composición se hace al revés, no cambia el tipo de transformación que obtenemos (a pesar de que el resultado es diferente). 1. Traslación con Traslación. Sean L v una traslación de vector v y L w una traslación de vector w, entonces L v o L w = L w o L v = L v + w, donde v + w es la suma vectorial de v y w. Es decir que la composición de traslaciones entre sí es conmutativa y está en correspondencia con la suma de vectores. El hecho de que la composición de traslaciones entre sí es una traslación puede expresarse diciendo que Las Traslaciones forman un subgrupo del grupo de las Transformaciones Rígidas. 2. Rotación con Traslación. Sean R P, α una rotación de centro P y ángulo α, y L v una traslación de vector v. Entonces R P, α o L v y L v o R P, α son rotaciones de ángulo α (en general R P, α o L v tiene distinto centro que L v o R P, α ). Esta composición fue discutida en el Fascículo 11.

3 3. Rotación con Rotación. Sean R P, α una rotación de centro P y ángulo α, y R Q, β una rotación de centro Q y ángulo β. Entonces: Si α + β no es múltiplo 360 entonces R P, α o R Q, β es una rotación de ángulo α + β, Si α + β es múltiplo 360 entonces R P, α o R Q, β es una traslación de vector de origen en Q y final en R P, α (Q). Como en este caso el resultado depende de α + β conviene incorporar un Deslizador para cada uno de los ángulos y ver como cambia el resultado a medida que los modificamos. Una vez que fijamos α y β podemos mover el punto A para descubrir si el resultado es rotación o traslación: si la distancia entre A y A'' varía, sabemos que el resultado es una rotación; si se mantiene constante, el resultado es traslación. Tal como habíamos hecho en el Fascículo 11, cuando α + β no es múltiplo 360 es interesante mover el punto A tratando de hacerlo coincidir con A'' para hallar el centro de la rotación. En los puntos 1, 2, 3 y 4 hemos analizado la composición de los Movimientos Rígidos (que eran las transformaciones que preservan la orientación). Los Movimientos Rígidos forman un subgrupo del grupo de las Transformaciones Rígidas. Forman también un subgrupo el conjunto de las Rotaciones? 4. Reflexión con Reflexión. Sean S r una reflexión con respecto a la recta r y S t una reflexión con respecto a la recta t. Entonces: Si r corta a t en el punto P entonces S r o S t es una rotación de centro P ángulo igual al doble del ángulo orientado que forman t y r. Si r es paralela a t entonces S r o S t es una traslación de vector igual al doble del vector correspondiente a la distancia desde la recta t y hasta la recta r.

4 Este es un caso muy importante pues nos revela que toda rotación y toda traslación pueden ser expresada como composición de dos reflexiones. Es decir que: Dada la rotación R P, α de centro P y ángulo α, si elegimos una recta t que pasa por P, trazamos sobre ella el ángulo α, y luego llamamos r a la bisectriz de α, entonces R P, α = S r o S t. Dada la traslación L v de vector v, llamamos t a la recta perpendicular a v que pasa por el origen de v y llamamos r a la recta perpendicular a v que pasa por el punto medio de v, entonces L v = S r o S t. Finalmente, como las Reflexiones Deslizantes son composición de una traslación y una reflexión ellas resultan composición de tres reflexiones. Así concluimos que: 1 Todas las transformaciones rígidas se expresan como composición de 1, 2 o 3 simetrías axiales. 5. Traslación con Reflexión. Sean S r una reflexión con respecto a la recta r y L v una traslación de vector v. Llamamos: w a la proyección de v sobre r, u a la componente de v perpendicular a r, m a la perpendicular al vector u ubicado con su origen sobre r. Entonces L v o S r = D u,m es una reflexión deslizante con respecto a u ubicado en m. En particular, si v es perpendicular a r, entonces S r o L v es una reflexión con respecto a la mediatriz del vector v cuando está ubicado con su origen sobre r. En qué cambia la respuesta si hacemos la composición en el otro orden: Sr o Lv? Advertencia. Recordemos que las Reflexiones Deslizantes son la composición de una traslación con una reflexión particular, pues la recta de reflexión debe contener al vector de traslación. Por lo tanto no es automático que la composición de una traslación con una reflexión arbitraria dé como resultado una reflexión deslizante (a pesar de que esto es verdad).

5 6. Rotación con Reflexión. Sean R P, α una rotación de centro P y ángulo α, y S r una reflexión con respecto a la recta r. Para determinar el resultado de S r o R P, α nos conviene expresar la rotación R P, α como composición de dos simetrías axiales (ver punto 4) R P, α = S t1 o S t2 de modo que las rectas t1 y t2 se corten en P y formen un ángulo orientado igual a la mitad de α. Entre todas las posibles elecciones de t1 y t2 con estas propiedades elegimos que t1 sea paralela a r. Si llamamos v al doble del vector que indica la distancia entre t1 y r obtenemos que S r o R P, α = S r o S t1 o S t2 = L v o S t2, es decir que hemos expresado el resultado como una traslación compuesta con una reflexión, y este caso ya fue discutido en el punto 5. Sabemos que el resultado es una reflexión deslizante salvo que v sea perpendicular a t2, en cuyo caso da simetría axial. Cómo deben ser P y r para que S r o R P, α sea una simetría axial (es decir para que v sea perpendicular a t2)? Cómo convendría descomponer la rotación si quisiéramos estudiar la composición R P, α o S r? 7. Traslación con Reflexión Deslizante. Sean L v una traslación de vector v y D w,r = S r o L w = L w o S r una reflexión deslizante con respecto al vector w ubicado en la recta r. Entonces: L v o D w,r = L v o L w o S r = L v + w o S r, D w,r o L v = S r o L w o L v = S r o L v + w, es decir que hemos expresado el resultado como una traslación compuesta con una reflexión. Este caso ya fue discutido en el punto 5, y sabemos que el resultado es una reflexión deslizante salvo que v + w sea perpendicular a r en cuyo caso el resultado es simetría axial.

6 8. Rotación con Reflexión Deslizante. Sean R P, α una rotación de centro P y ángulo α, y D v,r = S r o L v = L v o S r una reflexión deslizante con respecto al vector v ubicado en la recta r. Entonces, si llamamos Q al centro de la rotación L v o R P, α, obtenemos: D v,r o R P, α = S r o L v o R P, α = S r o R Q, α. Es decir que hemos expresado el resultado como una reflexión compuesta con rotación y este caso ya fue discutido en el punto Reflexión con Reflexión Deslizante. Sean S t una reflexión con respecto a la recta t, y D v,r = S r o L v = L v o S r una reflexión deslizante con respecto al vector v ubicado en la recta r. Entonces: Si r corta a t entonces D v,r o S t es una rotación de ángulo igual al doble del ángulo que forman t y r. Si r es paralela a t entonces D v,r o S t es una traslación. Obtenemos una justificación a partir del hecho que D v,r o S t = L v o S r o S t. Luego sabemos por el punto 4 que S r o S t es una rotación, si t es secante a r, o una traslación, si t es paralela a r. Finalmente sabemos por el punto 2 que la composición de traslación con rotación es rotación y por el punto 1 que la composición de traslación con traslación es traslación. 10. Reflexión Deslizante con Reflexión Deslizante. Sean D u,t = S t o L u = L u o S t una reflexión deslizante con respecto al vector u ubicado en la recta t, y D v,r = S r o L v = L v o S r una reflexión deslizante con respecto al vector v ubicado en la recta r. Entonces: Si r corta a t entonces D u,t o D v,r es una rotación de ángulo igual al doble del ángulo que forman t y r. Si r es paralela a t entonces D u,t o D v,r es una traslación.

7 Obtenemos una justificación a partir del hecho que D u,t o D v,r = L u o S t o S r o L v. Luego sabemos por el punto 4 que S t o S r es una rotación, si t es secante a r; o una traslación, si t es paralela a r. Finalmente sabemos por 2 que la composición de traslación con rotación es rotación y por 1 que la composición de traslación con traslación es traslación. Homotecias Las Homotecias son las transformaciones del plano que estiran o encogen. Más precisamente, si P es un punto del plano y k es un número real positivo, la homotecia de centro P y razón k, denotada H P,k, es la aplicación que fija el punto P y a cada punto X diferente de P lo transforma en el punto Y que cumple a. Y está en la semirrecta de origen P que pasa por X, b. la distancia de P a Y es k veces la distancia de P a X. Muchas veces conviene considerar homotecias con razón k negativa. En este caso H P,k fija el punto P y a cada punto X diferente de P lo transforma en el punto Y que cumple: a. Y está en la semirrecta opuesta a la semirrecta de origen P que pasa por X, b. la distancia de P a Y es k veces la distancia de P a X. Así resulta que hay dos casos particulares de homotecias que coinciden con una trasformación rígida: si k = 1, entonces H P,k, es la transformación identidad, y si k = 1, entonces H P,k, es una simetría central con respecto a P (es decir una rotación de 180 ). Con Geogebra también podemos experimentar con Homotecias con la herramienta marcada en azul en la imagen.

8 En particular, podemos utilizar Geogebra para estudiar la composición de dos homotecias, que está descripta por el siguiente resultado: Sean H P1,k1 una homotecia de centro P1 y razón k1 y H P2,k2 una homotecia de centro P2 y razón k2. Definamos k3 = k1 x k2. Entonces: - Si k3 es distinto de 1, entonces H P1,k1 o H P2,k2, es una homotecia de razón k3, Dónde queda ubicado el centro de la homotecia resultante? - Si k3 = 1 entonces H P1,k1 o H P2,k2, es una traslación. Cuál es el vector de la traslación? Como en este caso el resultado depende de k3 es interesante utilizar un Deslizador para cada k1 y k2. Como ya hicimos anteriormente, podemos descubrir si el resultado es rotación o traslación mirando si la distancia entre A y A'' varía o no.

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 5: Transformaciones geométricas planas. Orientación espacial

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 5: Transformaciones geométricas planas. Orientación espacial Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 5: Transformaciones geométricas planas. Orientación espacial 1 Transformaciones geométricas 2 ISOMETRÍAS EN LIBROS DE PRIMARIA Cuáles de

Más detalles

Translaciones, giros, simetrías.

Translaciones, giros, simetrías. Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo

Más detalles

MOVIMIENTOS Y TRANSFORMACIONES EN EL PLANO

MOVIMIENTOS Y TRANSFORMACIONES EN EL PLANO MOVIMIENTOS Y TRANSFORMACIONES EN EL PLANO Traslación: Traslación (sin deslizadores) Traslación de un objeto: Traslación de una imagen: Actividad con geogebra: Construye un pentágono regular y trasládalo

Más detalles

TEMA 9.- TRANSFORMACIONES EN EL PLANO.

TEMA 9.- TRANSFORMACIONES EN EL PLANO. GEOMETRÍ: 5.- TRNSFORMIONES EN EL PLNO TEM 9.- TRNSFORMIONES EN EL PLNO. Definición 9.1.- Llamaremos transformación geométrica en el plano a una operación u operaciones geométricas que permiten deducir

Más detalles

1º Bachillerato Matemáticas I Tema 5: Vectores Ana Pascua García

1º Bachillerato Matemáticas I Tema 5: Vectores Ana Pascua García Página 1 de 13 Introducción Vectores: Algo más que números En este tema estudiaremos qué son los vectores en el plano real, R, sus propiedades, y a utilizarlos para entre otras cosas resolver problemas

Más detalles

20. TRANSFORMACIONES Y MOVIMIENTOS

20. TRANSFORMACIONES Y MOVIMIENTOS 20. TRANSFORMACIONES Y MOVIMIENTOS Los movimientos y las transformaciones son modificaciones aplicadas a los elementos del plano puntos, rectas, figuras_ con el fin de cambiar su posición o para convertirlos

Más detalles

TRANSFORMACIONES EN EL PLANO

TRANSFORMACIONES EN EL PLANO ACADEMIA SABATINA TRANSFORMACIONES EN EL PLANO Llamaremos transformación geométrica a una operación que permite producir una nueva figura (imagen) de la dada originalmente. Las podemos clasificar en directas,

Más detalles

TEMA 6: GEOMETRÍA EN EL PLANO

TEMA 6: GEOMETRÍA EN EL PLANO TEMA 6: GEOMETRÍA EN EL PLANO Definiciones/Clasificaciones Fórmulas y teoremas Dem. Def. y Clasificación de polígonos: Regular o irregular Cóncavo o convexo Por número de lados: o Triángulos: clasificación

Más detalles

TEMA 11.- VECTORES EN EL ESPACIO

TEMA 11.- VECTORES EN EL ESPACIO TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos

Más detalles

18. TANGENCIAS Características generales Rectas tangentes a una circunferencia desde un punto exterior.

18. TANGENCIAS Características generales Rectas tangentes a una circunferencia desde un punto exterior. 18. TANGENCIAS 18.1. Características generales. Tangencia entre recta y circunferencia: una recta t es tangente a una circunferencia de centro O en un punto T cuando es perpendicular en T al radio OT.

Más detalles

1.1 Definición de Vectores en R^2 y R^3 y su generalización. Anteriormente vimos que un vector es un objeto matemático con dirección y magnitud.

1.1 Definición de Vectores en R^2 y R^3 y su generalización. Anteriormente vimos que un vector es un objeto matemático con dirección y magnitud. 1.1 Definición de Vectores en R^2 y R^3 y su generalización. Anteriormente vimos que un vector es un objeto matemático con dirección y magnitud. La palabra vectores se refiere a los elementos de cualquier

Más detalles

Cuaderno I: MOVIMIENTOS EN EL PLANO

Cuaderno I: MOVIMIENTOS EN EL PLANO á Cuaderno I: MOVIMIENTOS EN EL PLANO á MOVIMIENTOS EN EL PLANO Las transformaciones geométricas ha sido una de las constantes de la mayoría de las culturas, presentándose en los elementos decorativos

Más detalles

unidad 11 Transformaciones geométricas

unidad 11 Transformaciones geométricas unidad 11 Transformaciones geométricas Cómo dibujar ángulos de 60 con regla y compás Página 1 La cuerda de un arco de 60 (apertura del compás) es igual al radio con que se ha trazado. Veamos el proceso:

Más detalles

Sobre funciones reales de variable real. Composición de funciones. Función inversa

Sobre funciones reales de variable real. Composición de funciones. Función inversa Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real

Más detalles

Transformaciones en el plano y el espacio

Transformaciones en el plano y el espacio Transformaciones en el plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Transformaciones en el plano y el espacio 1 / 51 Transformaciones geométricas en R

Más detalles

TRANSF0RMACIONES GEOMÉTRICAS

TRANSF0RMACIONES GEOMÉTRICAS DIBUJO TÉNCICO 2º BACH TRANSF0RMACIONES GEOMÉTRICAS Nos referimos a Transformaciones Geométricas cuando hablamos de la operación u operaciones necesarias para convertir una figura F en otra figura F portadora

Más detalles

FIGURAS Y SIMETRIAS EN EL PLANO Y EN EL ESPACIO

FIGURAS Y SIMETRIAS EN EL PLANO Y EN EL ESPACIO FIGURAS Y SIMETRIAS EN EL PLANO Y EN EL ESPACIO Ana María Redolfi Gandulfo (*), Universidad de Brasilia, Brasil gandulfo@uol.com.br Márcia Helena Resende (*), Secretaría de Educación del Distrito Federal,

Más detalles

Clasificación de isometrías en el plano con ayuda de Geogebra.

Clasificación de isometrías en el plano con ayuda de Geogebra. 40 o Reunión de Educación Matemática Unión Matemática Argentina 11-15 diciembre 2017 Eugenio Hernández Universidad Autónoma de Madrid Clasificación de isometrías en el plano con ayuda de Geogebra. Un movimiento

Más detalles

1.3 PROPORCIÓN Y RELACIONES GEOMÉTRICAS (transformaciones geométricas)

1.3 PROPORCIÓN Y RELACIONES GEOMÉTRICAS (transformaciones geométricas) TEMA 1: Dibujo geométrico 1.3 PROPORCIÓN Y RELACIONES GEOMÉTRICAS (transformaciones geométricas) El tamaño es una cualidad de toda figura que percibimos comparándolo con el entorno donde se sitúa. La proporción

Más detalles

Transformaciones Isométricas

Transformaciones Isométricas Transformaciones Isométricas I o Medio Profesor: Alberto Alvaradejo Ojeda Índice 1. Transformación Isométrica 3 1.1. Traslación..................................... 3 1.2. Ejercicios.....................................

Más detalles

EXAMEN JUNIO PP 1A SEMANA

EXAMEN JUNIO PP 1A SEMANA EXAMEN JUNIO PP A SEMANA XAVI AZNAR Ejercicio. Defina semejanza, razón de semejanza y movimento asociado a una semejanza. Ejercicio. En el espacio vectorial V 3 (R) sea q la forma cuadrática cuya expresión

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

Puntos y Vectores. 16 de Marzo de 2012

Puntos y Vectores. 16 de Marzo de 2012 Geometría en Puntos y Vectores Universidad Autónoma Metropolitana Unidad Iztapalapa 16 de Marzo de 2012 Introducción En Geometría analítica plana las relaciones y las propiedades geométricas se expresan

Más detalles

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO Ecuación vectorial de la recta Ecuaciones paramétricas de la recta Ecuación continua de la recta Pendiente Ecuación punto-pendiente de la recta Ecuación general de la recta Ecuación explícita de la recta

Más detalles

V E C T O R E S L I B R E S E N E L P L A N O

V E C T O R E S L I B R E S E N E L P L A N O V E C T O R E S L I B R E S E N E L P L A N O 1. V E C T O R E S F I J O S Y V E C T O R E S L I B R E S E N E L P L A N O Existen magnitudes como la fuerza, la velocidad, la aceleración, que no quedan

Más detalles

Guía Nº 2 Transformaciones Isométricas

Guía Nº 2 Transformaciones Isométricas Colegio Raimapu Departamento de Matemática Nombre Alumno o Alumna: Guía Nº 2 Transformaciones Isométricas Curso: Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo indicando la respuesta

Más detalles

ELEMENTOS DE GEOMETRÍA

ELEMENTOS DE GEOMETRÍA ELEMENTOS DE GEOMETRÍA 1. Elementos geométricos básicos: punto, recta y plano. 2. Semirrectas y segmentos. 3. Ángulos. 3.1. Cómo se miden los ángulos? 3.2. Ángulos importantes. 3.3. Clasificación respecto

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

ÁLGEBRA VECTORIAL MAGNITUDES ESCALARES Y VECTORIALES:

ÁLGEBRA VECTORIAL MAGNITUDES ESCALARES Y VECTORIALES: MAGNITUDES ESCALARES Y VECTORIALES: Una magnitud es escalar cuando el conjunto de sus valores se puede poner en correspondencia biunívoca y continua con el conjunto de los números reales o una parte del

Más detalles

MOVIMIENTOS EN EL PLANO

MOVIMIENTOS EN EL PLANO Ejercicio nº 1.- MOVIMIENTOS EN EL PLANO a) Aplica una traslación de vector t 3, 2 a las figuras y F. F1 2 b Qué habríamos obtenido en cada caso si, en lugar de aplicar la traslación, hubiéramos aplicado

Más detalles

E E V (P, Q) v = P Q AA + AB = AB AA = 0.

E E V (P, Q) v = P Q AA + AB = AB AA = 0. Espacios afines. 1 Definición y propiedades. Definición 1.1 Sea E un conjunto no vacío. Se dice que E está dotado de estructura de espacio afín asociado a un espacio vectorial V, si existe una aplicación:

Más detalles

Johnson R.A. (1929) Advanced Euclidean Geometry. (pag. 154). Dover publications, INC. New York.

Johnson R.A. (1929) Advanced Euclidean Geometry. (pag. 154). Dover publications, INC. New York. Problema 720.- Teorema Si una recta r contiene al ortocentro H corta a los lados del triángulo ABC en L1, L2 y L3, las simétricas de r respecto a AB, AC y BC concurren en un punto P del circuncírculo y

Más detalles

EL PROBLEMA DE APOLONIO 1

EL PROBLEMA DE APOLONIO 1 EL PROBLEMA DE APOLONIO 1 Benjamín R. Sarmiento Lugo 2 Universidad Pedagógica Nacional Profesor de Planta Bogotá Colombia bsarmiento@pedagogica.edu.co RESUMEN El objetivo de este cursillo es reconstruir

Más detalles

3 reglas básicas que se cumplen SIEMPRE

3 reglas básicas que se cumplen SIEMPRE 3 reglas básicas que se cumplen SIEMPRE 1.En todo ejercicio de Tangencias deberás indicar SIEMPRE indicar el Punto de Tangencia y el Centro de las Circunferencias tangentes. Un ejercicio de tangencias

Más detalles

Mosaicos y frisos. Adela Salvador

Mosaicos y frisos. Adela Salvador Mosaicos y frisos Adela Salvador Isometrías en el plano Traslación Giro Simetría Simetría con deslizamiento Traslaciones La traslación queda definida al conocer el vector de traslación Busca dos vectores

Más detalles

1. ELEMENTOS FUNDAMENTALES

1. ELEMENTOS FUNDAMENTALES 1. ELEMENTOS FUNDAMENTALES 1.1. El Punto Es el elemento geométrico más simple y queda definido en la intersección de dos rectas coplanarias. Se designa normalmente con algunas de las primeras letras mayúsculas

Más detalles

7 Geometría del plano. Movimientos

7 Geometría del plano. Movimientos Qué tienes que saber? 7 QUÉ tienes que saber? Lugares geométricos ctividades Finales 7 Teorema de Pitágoras. plicaciones Ten en cuenta Dos rectas secantes forman dos ángulos adyacentes si son consecutivos

Más detalles

Álgebra y Matemática Discreta Sesión de Prácticas 12

Álgebra y Matemática Discreta Sesión de Prácticas 12 Álgebra y Matemática Discreta Sesión de Prácticas 12 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 2 Dic 2013-8 Dic 2013 Giros en el Plano Matriz de Giro Si α es el ángulo que queremos girar,

Más detalles

GEOMETRÍA. DESPLAZAMIENTO 2 Nuevas isometrías: composición de simetrías axiales

GEOMETRÍA. DESPLAZAMIENTO 2 Nuevas isometrías: composición de simetrías axiales GEOMETRÍA DESPLAZAMIENTO 2 Nuevas isometrías: composición de simetrías axiales Instituto de Profesores Artigas Departamento de Matemática de Formación Docente 2013 DEFINICIÓN 1 1? DEFINICIONES DE ROTACIÓN

Más detalles

21.3. Rectas tangentes exteriores a dos circunferencias.

21.3. Rectas tangentes exteriores a dos circunferencias. 21. TANGENCIAS 21.1. Características generales. Tangencia entre recta y circunferencia: una recta t es tangente a una circunferencia de centro O en un punto T cuando es perpendicular en T al radio OT.

Más detalles

Expresión matricial de las operaciones de simetría

Expresión matricial de las operaciones de simetría Epresión matricial de las operaciones de simetría Cada una de las operaciones de simetría se puede describir como una transformación de ejes de coordenadas, de tal manera que las coordenadas de la imagen

Más detalles

Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Matemáticas. Guía de Trabajo Geometría I

Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Matemáticas. Guía de Trabajo Geometría I Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Matemáticas Guía de Trabajo Geometría I Presentación: Esta guía de trabajo pretende desarrollar el concepto de homotecia

Más detalles

2 Transformaciones en 3D

2 Transformaciones en 3D 2 Transformaciones en 3D La manera más fácil de conseguir las transformaciones básicas (traslación, rotación, escalación, en general las transformaciones afines) es utilizando matrices de transformación.

Más detalles

GEOMETRÍA MÉTRICA. Plano afín:

GEOMETRÍA MÉTRICA. Plano afín: Plano afín: Es el plano vectorial al que se le ha dotado de un sistema de referencia compuesto por un origen y una base de dicho espacio vectorial. En el plano afín podemos asignar a cada punto del plano

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA Geometría analítica 1.- Ecuación de la recta 2.- Cónicas 3.-Ecuación de la parábola UNIDAD II: CONICAS (CIRCUNFERENCIA Y PARABOLAS) Una superficie cónica de revolución está engendrada por la rotación de

Más detalles

Bloque 2. Geometría. 3. La recta. 1. Definición de recta

Bloque 2. Geometría. 3. La recta. 1. Definición de recta Bloque 2. Geometría 3. La recta 1. Definición de recta Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares, cuyo corte es el punto 0 de

Más detalles

Tema 2: Álgebra vectorial

Tema 2: Álgebra vectorial Tema 2: Álgebra vectorial FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores

Más detalles

12Direcciones de internet

12Direcciones de internet 12Direcciones de internet En la dirección http://www.nucleogestion.8m.com/hall.htm se puede pasear libremente por el museo virtual de Escher. Se puede entrar en la sala que se desee haciendo clic sobre

Más detalles

Apéndice A. Vectores: propiedades y operaciones básicas.

Apéndice A. Vectores: propiedades y operaciones básicas. Vectores 145 Apéndice A. Vectores: propiedades y operaciones básicas. Una clasificación básica de las distintas propiedades físicas medibles, establece que estas pueden dividirse en dos tipos: a) Aquellas

Más detalles

Dibujo Técnico Sistema diédrico.- Cambios de plano, giros y ángulos. ÁNGULOS.

Dibujo Técnico Sistema diédrico.- Cambios de plano, giros y ángulos. ÁNGULOS. 30. SISTEMA DIÉDRICO.- CAMBIOS DE PLANO, GIROS Y ÁNGULOS. 30.1. Cambios de plano. Los cambios de planos de proyección consisten en tomar o elegir otros planos de proyección de forma que los elementos que

Más detalles

TEMA 4. TRANSFORMACIONES EN EL PLANO

TEMA 4. TRANSFORMACIONES EN EL PLANO TEMA 4. TRANSFORMACIONES EN EL PLANO HERRAMIENTAS PARA TRANSFORMACIONES En este bloque encontramos las siguientes herramientas: Simetría axial La herramienta Refleja objeto en recta dibuja la figura simétrica

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

Proyecto Guao CONGRUENCIA DE TRIÁNGULOS

Proyecto Guao CONGRUENCIA DE TRIÁNGULOS CONGRUENCIA DE TRIÁNGULOS Y si te dieran dos triángulos con todas las medidas de los ángulos y todas las longitudes de los lados marcados? Cómo sabrías si los dos triángulos son congruentes? Después de

Más detalles

El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla

El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla El sólido rígido Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2011/2012 Dpto.Física Aplicada III Universidad de Sevilla Índice Campo de velocidades de

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas

Más detalles

Materia: Matemática de Octavo Tema: Rotaciones

Materia: Matemática de Octavo Tema: Rotaciones Materia: Matemática de Octavo Tema: Rotaciones Qué pasaría si quisieras encontrar el centro de rotación y el ángulo de giro de las flechas en el símbolo de reciclaje internacional mostrado abajo? Son tres

Más detalles

ESTUDIO GRÁFICO DE LA ELIPSE.

ESTUDIO GRÁFICO DE LA ELIPSE. Curvas Cónicas para Dibujo y Matemáticas. Aplicación web Dibujo Técnico para ESO y Bachillerato Matemáticas para Bachillerato Educación Plástica y Visual Autor: José Antonio Cuadrado Vicente. ESTUDIO GRÁFICO

Más detalles

GEOMETRÍA ANALÍTICA DEL PLANO

GEOMETRÍA ANALÍTICA DEL PLANO GEOMETRÍ NLÍTIC DEL PLNO.-Dependencia e independencia lineal de vectores. Un conjunto de vectores son linealmente dependientes cuando uno de ellos puede expresarse como combinación lineal de los restantes

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD SLUINES LS EJERIIS E L UNI Pág. 1 Página 207 PRTI 1 Reproduce sobre papel cuadriculado el paralelogramo (,,, ). a) Somételo a una traslación de vector t 1. b) Traslada la figura obtenida, ', mediante t

Más detalles

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz 1 Lugar Geométrico Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz Mediatriz de un segmento es el lugar geométrico de los puntos del plano que equidistan

Más detalles

ISOMETRÍA ( MOVIMIENTO): transformación que conserva la forma y el tamaño de las figuras.

ISOMETRÍA ( MOVIMIENTO): transformación que conserva la forma y el tamaño de las figuras. ISOMETRÍAS EN EL PLANO ISOMETRÍA ( MOVIMIENTO): transformación que conserva la forma y el tamaño de las figuras. Hay dos tipos de isometrías: Isometría directa: mantiene el sentido de giro de las agujas

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 PRODUCTO ESCALAR INTRODUCCIÓN El espacio vectorial de los vectores libres del plano se caracteriza por tener definidas dos operaciones: una interna, suma de vectores, y otra externa, producto de un número

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO DEF.- Se llama vector fijo de extremos A y B al segmento orientado AB, y se representa por Todo vector fijo queda caracterizado por { Dos vectores fijos se dice que son equivalentes,

Más detalles

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3.

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3. Unidad 13. Movimientos en el plano. Frisos y mosaicos a las Enseñanzas plicadas 3 Traslaciones Página 17 1. El mosaico de la derecha se llama multihueso. H 1, H, H 3 y H 4 son huesos. Se pueden estudiar

Más detalles

B23 Curvas cónicas Curvas cónicas

B23 Curvas cónicas Curvas cónicas Geometría plana B23 Curvas cónicas Curvas cónicas Superficie cónica de revolución es la engendrada por una recta que gira alrededor de otra a la que corta. Curvas cónicas son las que resultan de la intersección

Más detalles

Nociones elementales de trigonometría

Nociones elementales de trigonometría Nociones elementales de trigonometría La parte de la Matemática que se basa en las propiedades especiales de un triángulo rectángulo se llama trigonometría. Muchos conceptos de trigonometría son muy importantes

Más detalles

A. Simetría axial. l, entonces, M es el punto medio de PP y, P sobre el eje de simetría l es el punto P tal que l

A. Simetría axial. l, entonces, M es el punto medio de PP y, P sobre el eje de simetría l es el punto P tal que l Un eje de simetría es una recta que divide a una figura en dos partes donde cada punto de una parte es la reflexión sobre la recta de un punto en la otra parte de la figura. A. Simetría axial En el ejercicio

Más detalles

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse)

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) 1. LUGARES GEOMÉTRICOS Definición: Se llama lugar geométrico a la figura que forman un conjunto de puntos que cumplen una determinada

Más detalles

TRANSFORMACIONES GEOMÉTRICAS EN EL PLANO

TRANSFORMACIONES GEOMÉTRICAS EN EL PLANO Recopilación Teórica 1 Transformaciones Geométricas TRANSFORMACIONES GEOMÉTRICAS EN EL PLANO Acerca de la temática de esta unidad. La composición arquitectónica tiene como finalidad, la organización de

Más detalles

EL PROBLEMA DE APOLONIO

EL PROBLEMA DE APOLONIO EL PROBLEMA DE APOLONIO Benjamín Sarmiento Lugo Profesor Universidad Pedagógica Nacional Bogotá D.C, Colombia bsarmiento@pedagogica.edu.co Resumen El objetivo de este cursillo es presentar uno de los problemas

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometría del espacio: problemas de ángulos y distancias; simetrías MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Ángulos

Más detalles

EL ESPACIO VECTORIAL EUCLIDEO

EL ESPACIO VECTORIAL EUCLIDEO EL ESPACIO VECTORIAL EUCLIDEO PRODUCTO ESCALAR Sean dos vectores del espacio V 3. Llamamos producto escalar de dichos vectores, y se denota, al número real que se obtiene al multiplicar sus módulos por

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

EL ESPACIO AFÍN. se distinguen, además de su origen A y su extremo B, las siguientes

EL ESPACIO AFÍN. se distinguen, además de su origen A y su extremo B, las siguientes VECTOR FIJO Y VECTOR LIBRE. Sea E el espacio ordinario. EL ESPACIO AFÍN Llamaremos vector fijo a cualquier segmento orientado dado por dos puntos A y B del espacio E. Al punto A lo llamamos origen del

Más detalles

Geometría del plano y el espacio

Geometría del plano y el espacio Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO UNIDAD VECTORES EN EL ESPACIO Página 13 Problema 1 Halla el área de este paralelogramo en función del ángulo α: cm Área = 8 sen α = 40 sen α cm α 8 cm Halla el área de este triángulo en función del ángulo

Más detalles

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V.

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V. Capítulo 9 Variedades lineales Al considerar los subespacios de R 2, vimos que éstos son el conjunto {(0, 0)}, el espacio R 2 y las rectas que pasan por el origen. Ahora, en algunos contextos, por ejemplo

Más detalles

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO Alonso Fernández Galián Tema 6: Geometría analítica en el plano TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO La geometría analítica es el estudio de objetos geométricos (rectas, circunferencias, ) por medio

Más detalles

Unidad 7 Geometría analítica en el plano

Unidad 7 Geometría analítica en el plano Unidad 7 Geometría analítica en el plano PÁGINA 153 SOLUCIONES 1. La ecuación de la recta que pasa por A y B es: x+ y 9=. El punto C no pertenece a la recta pues no verifica la ecuación. Por tanto A, B

Más detalles

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO . Universidad Tecnológica Nacional - Facultad Regional Rosario Álgebra y Geometría Analítica EL PLANO Autores: Lic. Martha Fascella Ing. Ricardo F. Sagristá 0 Contenido EL PLANO... 3.- Definición del plano

Más detalles

CAPÍTULO 7: GENERALIDADES SOBRE TRANSFORMACIONES (II)

CAPÍTULO 7: GENERALIDADES SOBRE TRANSFORMACIONES (II) CAPÍTULO 7: GENERALIDADES SORE TRANSFORMACIONES (II) Dante Guerrero-Chanduví Piura, 2015 FACULTAD DE INGENIERÍA Área Departamental de Ingeniería Industrial y de Sistemas CAPÍTULO 7: GENERALIDADES SORE

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2014 OPCIÓN A Ejercicio 1 a) (1 punto) Determinar el valor del parámetro para que los puntos A(1,2,0), B(5,-4,0)

Más detalles

Catorce problemas del Court

Catorce problemas del Court Catorce problemas del Court Francisco Javier García Capitán 11 de febrero de 2009 1. Introducción Stephen Hawking fue avisado de que su libro Historia del Tiempo tendría la mitad de ventas por cada ecuación

Más detalles

TEMA V: SIMETRÍAS. 5.1.A Punto simétrico respecto a otro. Punto medio de un segmento

TEMA V: SIMETRÍAS. 5.1.A Punto simétrico respecto a otro. Punto medio de un segmento TEMA V: SIMETRÍAS Se consideran tres simetrías del punto: 1. Punto simétrico respecto de un punto 2. Punto simétrico respecto de una recta. Punto simétrico respecto de un plano 5.1.D Punto simétrico respecto

Más detalles

a) Producto interno: Si y son vectores de, definimos su producto punto, producto interno o producto escalar como

a) Producto interno: Si y son vectores de, definimos su producto punto, producto interno o producto escalar como Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección mostraremos la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

27. SISTEMA DIÉDRICO.- PARALELISMO, PERPENDICULARIDAD.

27. SISTEMA DIÉDRICO.- PARALELISMO, PERPENDICULARIDAD. 27. SISTEMA DIÉDRICO.- PARALELISMO, PERPENDICULARIDAD. 27.1. Paralelismo. 27.1.1. Paralelismo entre rectas. Dos rectas paralelas en el espacio se proyectan sobre un plano ortogonalmente sobre un plano

Más detalles

MAGNITUDES VECTORIALES

MAGNITUDES VECTORIALES MGNITUDES VECTORILES ÍNDICE 1. Magnitudes escalares y magnitudes vectoriales 2. Componentes de un vector 3. Coordenadas polares 4. Clasificación de los vectores 5. Suma y resta de vectores 6. Producto

Más detalles

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO VECTORES EN EL PLANO 1 ESPACIO VECTORIAL Un vector fijo es una pareja ordenada de puntos en el plano (origen y extremo) Si A y B son dichos puntos, representaremos el vector por AB Gráficamente, lo representamos

Más detalles

27.1. Representación del Plano. Trazas del plano

27.1. Representación del Plano. Trazas del plano 27. SISTEMA DIÉDRICO.- EL PLANO. 27.1. Representación del Plano. Trazas del plano Se llaman trazas de un plano a las rectas que resultan de la intersección de este plano con los planos de proyección. Por

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

Tema 2: Vectores libres

Tema 2: Vectores libres Tema 2: Vectores libres FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

S1A. GeoGebra (s1a_11_iniciales_proba_ej_3.ggb)

S1A. GeoGebra (s1a_11_iniciales_proba_ej_3.ggb) S1A 11.- RECTAS Y ÁNGULOS Ejercicio 1. GeoGebra (s1a_11_iniciales_proba_ej_1.ggb) Traza una recta pasando por dos puntos A y B. Con la herramienta Ángulo dada su amplitud, dibuja un ángulo de 30 dando

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS

EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS 1. TANGENCIAS EN LAS CIRCUNFERENCIAS Decimos que dos elementos geométricos son tangentes cuando tienen un punto en común. Las tangencias

Más detalles

ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO

ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO 2012-2013 José García-Cuerva Universidad Autónoma de Madrid 13 de febrero de 2013 JOSÉ GARCÍA-CUERVA (U.A.M.)

Más detalles

Semejanzas y Transformaciones. Everis Aixa Sánchez

Semejanzas y Transformaciones. Everis Aixa Sánchez Semejanzas y Transformaciones Everis Aixa Sánchez Estandar Geometría El estudiante es capaz de identificar formas y dimensiones geométricas, y utilizar el conocimiento espacial para analizar sus estructuras,

Más detalles