Ecuaciones Integradas de Velocidad

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ecuaciones Integradas de Velocidad"

Transcripción

1 Químic Fíic I Velocidd de Rección Ecucione Inegrd de Velocidd Reccione de Primer Orden e Pr un rección del io P, l ecución diferencil de velocidd d d k k (donde k k ). Inegrndo e oiene d d [ ] d k d k. Por lo no: [ ] k o k e L concenrción de dece exonencilmene con el iemo. L rereención de [ ] frene d un rec de endiene k y ordend en el origen [ ]. Si P] (ólo hy recivo), r un iemo, [ [P] [P] e y l concenrción de k roduco culquier vendrá dd or [P] ( e ) k. Reccione de Segundo Orden Tio I P Pr reccione del io de egundo orden con reeco l recivo, l ecución diferencil de velocidd e d d v k k d ( k k d ). Inegrndo e oiene Criin Díz Oliv. UM

2 Químic Fíic I Velocidd de Rección d k d k k L rereención de frene d un rec de endiene k y de ordend en el origen. Tio II Pr reccione del io B P lo recivo, l ecución diferencil de velocidd e d d v k d d de rimer orden r cd uno de L cnidde de y B que reccionn on roorcionle u coeficiene eequiomérico de form que Deejndo [ B] e oiene [ B]. Suiuyendo ee vlor en l ecución de velocidd, e e rnform en d kd d kd Si llmmo y inegrl de l form, vemo que e ecución e un dx x x( x) x y e reuelve or el méodo de l frccione rcile: Criin Díz Oliv. UM

3 Químic Fíic I Velocidd de Rección ( ) c d ( ) c d ( ) c c d ( ) ( c ) c d ( ) Por lo no e iene que cumlir que c ( c d ), e decir c c d c y d Suiuyendo lo vlore de c y d enemo que ( ) ( ) d ( d ) d donde y, or lo no, d ( ) [ ] Suiuyendo de nuevo y or u vlore d ( ) kd k Criin Díz Oliv. UM 3

4 Químic Fíic I Velocidd de Rección y / / k Pr el co riculr en que y B eén reene inicilmene en roorción eequioméric, l ecución nerior no e uede licr orque. Sin emrgo, i [ B] y [ B], enonce [ B] r culquier. E decir, y B ermnecen en roorción eequioméric durne el rncuro de l rección. En ee co d d[ ] k k y d[ ] k [ ] d kd d [ ] [ ] [ ] cuy olución e reccione de Tio I). k (reuldo imilr l oenido r l Reccione de Tercer Orden Tio I Pr reccione del io P, de ercer orden con reeco l recivo d 3 d, l ecución diferencil de velocidd e v k k d d 3 ( k k ), inegrndo oenemo d k d k 3 y k o ( k ) Criin Díz Oliv. UM 4

5 Químic Fíic I Velocidd de Rección Rereenndo frene e oiene un rec de endiene igul k y de ordend en el origen. Tio II Pr reccione del io B P, de rimer orden con reeco un recivo y de egundo con reeco l oro, l ecución diferencil de velocidd d e v k d De nuevo l cnidde de y B que reccionn on roorcionle u coeficiene eequiomérico de form que velocidd e rnform en y l ecución de d k d v d kd d kd Si llmmo y inegrl de l form, vemo que e ecución e un x dx ( x) x x x y e reuelve or el méodo de l frccione rcile: c ( ) d e c ( ) d( ) ( ) e Criin Díz Oliv. UM 5

6 Químic Fíic I Velocidd de Rección Por lo no e iene que cumlir que c( ) d( ) e decir,, e c c d d e c, d y e Suiuyendo lo vlore de c, d y e enemo que ( ) ( ) d ( ) d d d kd cuy olución inegrd e donde y k, or lo no, y uiuyendo de nuevo y or u vlore, enemo ( ) k Reccione de Orden n e P Pr un rección del io d n v k ( k k ) d, l ecución diferencil de velocidd Criin Díz Oliv. UM 6

7 Químic Fíic I Velocidd de Rección n n n n [ ] d k d k y [ ] (n )k n n Mulilicndo mo érmino or [ ] e oiene [ n n (n )k ] (válid cundo n ) Criin Díz Oliv. UM 7

3.5.1 Trasformada de Laplace de la función escalón unitario

3.5.1 Trasformada de Laplace de la función escalón unitario .5. Trformd de Lplce de l función eclón unirio 0.5. Trformd de Lplce de l función eclón unirio Función Eclón Unirio Tmbién llmd función lo unidd de Heviide, y con frecuenci e uiliz en pliccione que rn

Más detalles

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las CAPÍTULO 9. INTEGRALES IMPROPIAS 9.. Límies de inegrción infinios 9.. Inegrles con inegrndo que iende infinio 9.. Oservciones ls inegrles impropis Cpíulo 9 Inegrles impropis f ( ) f ( ) f f ( ) () f()

Más detalles

es incompatible: a) Si m = 1 b) Si m = 2 c) Ninguna de las anteriores. Solución:, siendo r(a) = 2 y r(m) = 3 Sistema incompatible.

es incompatible: a) Si m = 1 b) Si m = 2 c) Ninguna de las anteriores. Solución:, siendo r(a) = 2 y r(m) = 3 Sistema incompatible. nálisis eáico José rí ríne edino PROBLES DE SITES rouesos en eáenes) Preguns de io es. El sise es incoible: ) Si = b) Si = c) Ningun de ls neriores. 8 si r) =, SCD. Si =,, siendo r) = r) = Sise incoible.

Más detalles

Determinantes y matrices

Determinantes y matrices emáics SS Deerminnes José rí rínez edino Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los

Más detalles

EJERCICIOS DE CINEMÁTICA PARA REPASAR

EJERCICIOS DE CINEMÁTICA PARA REPASAR EJERCICIOS DE CINEMÁTICA PARA REPASAR 1. L poición de un óvil, que igue un tryectori rectilíne, qued deterind por l ecución x = 5 + t, en l que tod l gnitude etán expred en el S.I. ) Arrnc el óvil dede

Más detalles

Guía de Movimiento Rectilíneo Uniformemente Variado

Guía de Movimiento Rectilíneo Uniformemente Variado Experienci demori DEPARTAMENTO DE FÍSICA Guí de Moimieno Recilíneo Uniformemene Vrido 1) Ver lo ideo que e encuenrn en lo iguiene link pr poder reponder l pregun que e encuenrn coninución hp://www.youube.com/wch?=lmfbwzjyml0

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

1. CINEMÁTICA DE LA PARTÍCULA

1. CINEMÁTICA DE LA PARTÍCULA . CINEMÁTICA DE LA PARTÍCULA. Moimieno recilíneo.. Poición en función del iempo. L poición de un prícul que decribe un líne rec qued definid medine l epreión = / 9 +, donde i eá en, reul en m. Deermine:

Más detalles

TEMA 3. Sistemas de ecuaciones lineales Problemas Resueltos

TEMA 3. Sistemas de ecuaciones lineales Problemas Resueltos eáics II Bchillero de Ciencis) Soluciones de los roles rouesos Te wwweicsjco José rí ríne edino T Sises de ecuciones lineles Proles Resuelos Clsificción resolución de sises or éodos eleenles Resuelve uilindo

Más detalles

5.1 LÍMITES INFINITOS 5.2 INTEGRANDOS INFINITOS

5.1 LÍMITES INFINITOS 5.2 INTEGRANDOS INFINITOS MOISES VILLEA MUÑOZ 5 5. LÍMITES IFIITOS 5. ITEGRADOS IFIITOS Objeivo: Se reende que el esudine clcule inegrles sobre regiones no cods y resuelv roblems de licción relciondos con ls inegrles imrois 97

Más detalles

Ejercicios de Análisis Matemático Integrales. Aplicaciones del cálculo integral

Ejercicios de Análisis Matemático Integrales. Aplicaciones del cálculo integral Ejercicios de Análisis Memáico Inegrles. Alicciones del cálculo inegrl. Se f./ e sen. Jusific que f es inegrle en Œ; y se verific l desiguldd 6 f./ d 6 e. Solución. Como 6 sen 6 r odo Œ;, se sigue que

Más detalles

FRACCIONES ALGEBRAICAS

FRACCIONES ALGEBRAICAS FRACCIONES ALGEBRAICAS CÓMO ESTAMOS EN EL TEMA?. Cuáno dee ñdirse / r oener l unidd?. De ué número h ue resr / r oener l se re del número?. Qué número sumdo con sus / con sus / es?. Un erson inviere los

Más detalles

1º) Si sobre un cuerpo no actúa ninguna fuerza, a qué aceleración está sometido?. Solución: 0 m/s 2

1º) Si sobre un cuerpo no actúa ninguna fuerza, a qué aceleración está sometido?. Solución: 0 m/s 2 DINAMICA º) Si obre un cuerpo no cú ningun uerz, qué celerción eá oeido?. Solución: / Por l º Ley de Newon: Si no cú ningun uerz, L únic ner de que un produco e cero e que lguno de lo do uliplicndo e cero.

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

ˆ ˆ. FÍSICA 100 CERTAMEN # 2 Forma R 12 de junio de La pirámide de la figura está definida por los vectores a, b y

ˆ ˆ. FÍSICA 100 CERTAMEN # 2 Forma R 12 de junio de La pirámide de la figura está definida por los vectores a, b y FÍSICA 1 CERAMEN # Form R 1 de junio de 1 A. AERNO A. MAERNO NOMBRE ROL USM - Si su rol comienz con 9 coloque 9 ESE CERAMEN CONSA DE REGUNAS EN 8 ÁGINAS. IEMO: 15 MINUOS SIN CALCULADORA. SIN ELÉFONO CELULAR

Más detalles

_ b Resolvemos el sistema formado por las ecuaciones 2. a y 3. a : 3 3x

_ b Resolvemos el sistema formado por las ecuaciones 2. a y 3. a : 3 3x loque I. Álger Mtemátics licds ls iencis Sociles II utoevlución Págin Resuelve e interret geométricmente los siguientes sistems: x + y = z x= ) x y = ) x+ z y = x + y = x z= _ ) x + y = x y = ` Resolvemos

Más detalles

Madrid OPOSICIONES AL CUERPO DE PROFESORES DE ENSEÑANZA SECUNDARIA EN LA ESPECIALIDAD DE MATEMÁTICAS

Madrid OPOSICIONES AL CUERPO DE PROFESORES DE ENSEÑANZA SECUNDARIA EN LA ESPECIALIDAD DE MATEMÁTICAS OPOSICIONES AL CUERPO DE PROFESORES DE ENSEÑANA SECUNDARIA EN LA ESPECIALIDAD DE MATEMÁTICAS Mdrid. Se M el uno medio de un cuerd P Q de un circunferenci. Por M se rzn ors dos cuerds AB y CD: L cuerd AD

Más detalles

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) Compible deermindo Compible indeermindo c) Incompible

Más detalles

Definición de un árbol Rojinegro

Definición de un árbol Rojinegro Definición de un árol Rojinegro Árol inrio esrico (los nodos nulos se ienen en cuen en l definición de ls operciones odo nodo oj es nulo) Cd nodo iene esdo rojo o negro Nodos oj (nulos) son negros L rí

Más detalles

Tema 13 Modelos de crecimiento exógeno básicos

Tema 13 Modelos de crecimiento exógeno básicos Tema 13 Modelo de crecimieno exógeno báico 13.1 Reolución del modelo con la función genérica de roducción. 13.2 Lo modelo de Harrod-Domar y de Kaldor. 13.3 El modelo de Solo. Bibliografía: Sala i Marin

Más detalles

Tema 7: ÁLGEBRA DE MATRICES

Tema 7: ÁLGEBRA DE MATRICES ÁLGER DE MTRICES Tem : ÁLGER DE MTRICES Índice. Concepo de mriz... Definición de mriz... Clsificción de ls mrices... Tls, grfos y mrices.. Operciones con mrices... Sum de mrices... Muliplicción de un número

Más detalles

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE PROBLEMS RESUELOS SOBRE MOVIMIENO RMÓNICO SIMPLE L ecución de un M..S. e ( = co,, en l que e l elongción en y en. Cuále on l mpliud, l frecuenci y el período de ee movimieno? En un M..S. l elongción en

Más detalles

ECUACIÓN DE BERNOULLI

ECUACIÓN DE BERNOULLI ECUACIÓN DE BERNOULLI 1. RESUMEN Ete lbortorio trt obre l comprobción de l ecución de Bernoulli. Aquí e intent comprobr l relción que exite entre l velocidd (cbez dinámic), l cbez (cbez etátic) y l cbez

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Solucionrio Deerminnes CTIVIDDES INICILES.I. usc ls relciones de dependenci linel enre ls fils columns de ls siguienes mrices e indic el vlor de su rngo. rg() F F Como C C C rg().ii. Comprue que ls siguienes

Más detalles

Problemas de inventarios.

Problemas de inventarios. Problems de inventrios. Un inventrio es un recurso inemledo ero útil que osee vlor económico. El roblem se lnte cundo un emres exendedor o roductor de bienes y servicios no roduce en un momento determindo

Más detalles

0,1 mol AcH en 1 L de solución. Se sabe que 1,34 % de las moléculas reaccionan con el agua. Por lo tanto: [Ac - ] = [H + ] = 0,00134 M

0,1 mol AcH en 1 L de solución. Se sabe que 1,34 % de las moléculas reaccionan con el agua. Por lo tanto: [Ac - ] = [H + ] = 0,00134 M Químic nlític (93 titulcciones ácidobse SUBTE NEPTS Y EUINES BÁSIS 0, mol c en L de solución. Se sbe que,3 % de ls moléculs reccionn con el gu. Por lo tnto: c 0,003 c c 3 0, se denomin concentrción nlític

Más detalles

INTEGRAL DE RIEMANN-STIELTJES

INTEGRAL DE RIEMANN-STIELTJES Prof. Enrique Meus Nieves Docorndo en Educción Memáic. INTEGRAL DE RIEMANN-STIELTJES L inegrl de Riemnn-Sieljes es un exensión del concepo de Inegrl de Riemnn que permie mplir el poencil de es herrmien.

Más detalles

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática Moiiento ociltorio Moiiento rónico iple (MAS) Cineátic IES L Mgdlen. Ailé. Aturi Se dice que un prtícul ocil cundo tiene un oiiento de ién repecto de u poición de equilibrio, de for tl que el oiiento e

Más detalles

SOSTENIBILIDAD DE UNA POLÍTICA FISCAL

SOSTENIBILIDAD DE UNA POLÍTICA FISCAL 1 SOSTENIBILIDAD DE UNA POLÍTICA FISCAL Definición de un políic fiscl sosenible El concepo de políic fiscl sosenible no cep un definición precis. Sin embrgo, un definición generl (unque lgo rivil) es que

Más detalles

TABLA DE INTEGRALES INMEDIATAS QUE HAY QUE SABER DE MEMORIA

TABLA DE INTEGRALES INMEDIATAS QUE HAY QUE SABER DE MEMORIA Oriecioe r el eudio TABLA DE INTEGRALES INMEDIATAS QUE HAY QUE SABER DE MEMORIA Tio INTEGRAL FORMA COMPUESTA oecil d k, [f(] f '( d f( k ; eerio eoecil f '( d d L k d L f( k f( f ( f ( d k f '( d k co

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

APLICACIONES DE LAS MATRICES

APLICACIONES DE LAS MATRICES PLIIONES DE LS MTRIES Ejercicio nº.- ) Encuenr los vlores de pr los que l ri: no es inversible. Ejercicio nº.- lcul, si es posible, l invers de l ri: Pr los csos en los que. Ejercicio nº.- Hll un ri,,

Más detalles

FRACCIONES ALGEBRAICAS

FRACCIONES ALGEBRAICAS FRACCIONES ALGEBRAICAS CÓMO ESTAMOS EN EL TEMA?. Cuáno dee ñdirse / r oener l unidd?. De ué número h ue resr / r oener l se re del número?. Qué número sumdo on sus / on sus / es?. Un erson inviere los

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

La raíz cuadrada de un número es otro nº que al elevarlo al cuadrado nos da el radicando La raíz cuadrado de 9 es 3. Pues 3 2 es

La raíz cuadrada de un número es otro nº que al elevarlo al cuadrado nos da el radicando La raíz cuadrado de 9 es 3. Pues 3 2 es Curso 1/1 Mtemátics L ríz es l oerción contrri l otenci. c c L ríz cudrd de un número es otro nº que l elevrlo l cudrdo nos d el rdicndo. 9 L ríz cudrdo de 9 es. Pues es 9 9 L ríz cudrd de culquier nº

Más detalles

SISTEMAS DE ECUACIONES DE PRIMER GRADO

SISTEMAS DE ECUACIONES DE PRIMER GRADO el log e me e i: Memáis I. Sisems e euiones. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO Un sisem e os euiones e primer gro on os inógnis puee esriirse sí: += `+`=` one los oefiienes e ls inógnis los érminos

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Te Resolución de sises edine deerinnes Meáics II º chillero TEM RESOLUIÓN DE SISTEMS MEDINTE DETERMINNTES Resolución de sises Regl de rer Teore de Rouché-Froenius EJERIIO Resuelve plicndo l regl de rer

Más detalles

SOLUCIONES EJERCICIOS MATRICES

SOLUCIONES EJERCICIOS MATRICES SOLUIONES EJERIIOS MTRIES Ejercicio nº.- Un hipermercdo quiere oferr res clses de bndejs,. L bndej coniene g de queso mnchego, g de roquefor 8 g de cmember l bndej coniene g de cd uno de los res ipos de

Más detalles

PROBLEMAS DE TEOREMA DE GREEN

PROBLEMAS DE TEOREMA DE GREEN PROBLEMAS E TEOREMA E GREEN ENUNIAO EL TEOREMA Se un curv simple cerrd suve rozos oriend posiivmene se F(; (P;Q un cmpo vecoril cus funciones coordends ienen derivds prciles coninus sore un región ier

Más detalles

EJERCICIOS MATRICES. 2 euros/kg. Ejercicio nº 1.-

EJERCICIOS MATRICES. 2 euros/kg. Ejercicio nº 1.- EJERIIOS MTRIES Ejercicio nº.- Un hipermercdo quiere oferr res clses de bndejs,. L bndej coniene g de queso mnchego, g de roquefor 8 g de cmember l bndej coniene g de cd uno de los res ipos de queso neriores

Más detalles

CAPÍTULO. La derivada

CAPÍTULO. La derivada CAPÍTULO 5 L derivd 5. L derivd de un función A continución trtremos uno de los concetos fundmentles del cálculo, que es el de l derivd. Este conceto es un ite que está estrecmente ligdo l rect tngente,

Más detalles

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como: Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión

Más detalles

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática Moviiento ociltorio Moviiento rónico iple (MAS) Cineátic IES L Mgdlen. Avilé. Aturi Se dice que un prtícul ocil cundo tiene un oviiento de vivén repecto de u poición de equilibrio, de for tl que el oviiento

Más detalles

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución. APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

Resuelve. Unidad 3. Sistemas de ecuaciones. BACHILLERATO Matemáticas II. Los fardos de cereal. Página 89

Resuelve. Unidad 3. Sistemas de ecuaciones. BACHILLERATO Matemáticas II. Los fardos de cereal. Página 89 Unidd. Sises de ecuciones BCHILLERTO Meáics II Resuelve Págin 9 Los rdos de cerel Resuelve el role chino de los rdos de cerel rocediendo de or siilr coo lo resolvieron ellos. Recuerd el éodo de Guss que

Más detalles

SISTEMAS DE ECUACIONES LINEALES amn

SISTEMAS DE ECUACIONES LINEALES amn Apunes de A. Cbñó Memáics plicds cc.ss. SISTEMAS DE ECUACIONES LINEALES. CONTENIDOS: Plnemienos de problems lineles. Soluciones de un sisem de ecuciones lineles. Sisems lineles equivlenes. Méodo de reducción

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

PRÁCTICA 3 LEYES DE NEWTON

PRÁCTICA 3 LEYES DE NEWTON Fundmenos Físicos de l Inenierí Inenierí Indusril Prácics de Lbororio PRÁCTIC 3 LEYES DE NEWTON 3 OJETIVO- Deerminr ls leyes que rien l relciones espcio-iempo y velocidd-iempo en movimienos uniformemene

Más detalles

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2012 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2012 Cuestiones (Un punto por cuestión). Exmen de Físic-1, 1 del Grdo en Ingenierí Químic Exmen finl. Sepiembre de 1 Cuesiones (Un puno por cuesión). Cuesión 1 (Primer prcil): Un rineo se deliz por un superficie horizonl cubier de nieve con un

Más detalles

CINEMÁTICA DE UNA PARTÍCULA

CINEMÁTICA DE UNA PARTÍCULA Cpíulo IX CINEMÁTICA DE UNA PARTÍCULA 9.1 INTRODUCCIÓN L Cinemáic e ocup del movimieno de lo cuepo in conide l cu que oiginn dicho movimieno. E deci, eudiemo el movimieno de lo cuepo o pícul in conide

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

METODO DEL ESPACIO DE ESTADO

METODO DEL ESPACIO DE ESTADO Fcltd de Ingenierí Bioingenierí Control de Proceo METODO DEL ESPACIO DE ESTADO ESTADO: El etdo de n item dinámico e el conjnto má eqeño de vrile denomind vrile de etdo tl qe el conocimiento de e vrile

Más detalles

4.4 El teorema fundamental del cálculo

4.4 El teorema fundamental del cálculo 8 CAPÍTULO Inegrción. El eorem undmenl del cálculo Evlur un inegrl deinid uilizndo el eorem undmenl del cálculo. Enender uilizr el eorem del vlor medio pr inegrles. Enconrr el vlor medio de un unción sore

Más detalles

TEMA 6: PROBLEMAS RESUELTOS DE CÁLCULO PLÁSTICO

TEMA 6: PROBLEMAS RESUELTOS DE CÁLCULO PLÁSTICO roblems álculo lástico T : ROS RSUTOS ÁUO ÁSTIO.. Un vig de sección cudrd está erectmente emotrd en su extremo izquierdo y rticuld un tirnte en el derecho, tl como se indic en l igur. ste tirnte está rticuldo

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

1.MATRICES. Definición : Se llama matriz de dimensiones m x n ( m filas y n columnas) a una. colección de datos expresados de la siguiente forma A=.

1.MATRICES. Definición : Se llama matriz de dimensiones m x n ( m filas y n columnas) a una. colección de datos expresados de la siguiente forma A=. .MATRICES. DEINICION, TERMINOLOGIA, TIPOS DE MATRICES Y OPERACIONES LINEALES: Definición : Se llm mri de dimensiones m n ( m fils n columns) un colección de dos epresdos de l siguiene form A=. m. m..........

Más detalles

FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN DE PROBLEMAS.

FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN DE PROBLEMAS. EPARTAMENTO E QUÍMICA ANALÍTICA Y TECNOLOGÍA E ALIMENTOS FUNAMENTOS E ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN E PROBLEMAS..- Considerndo que un determindo compuesto AB present un vlor de 0 pr un sistem prticulr

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

CAPITULO II FUNCIONES VECTORIALES

CAPITULO II FUNCIONES VECTORIALES CAPITULO II FUNCIONES VECTORIALES En el cpíulo nerior, cundo describimos l rec en el espcio, uilizmos un prámero en ls ecuciones pr enconrr ls coordends de los punos que conformn es rec. ecuciones prmérics

Más detalles

INTEGRAL IMPROPIA. Extensión del concepto de integral definida La integral definida. 3. La función f (x) sea continua en dicho intervalo.

INTEGRAL IMPROPIA. Extensión del concepto de integral definida La integral definida. 3. La función f (x) sea continua en dicho intervalo. Inegrles INTEGRAL IMPROPIA Eensión del oneo de inegrl definid L inegrl definid d requiere que: El inervlo [, ] se finio L funión f () esé od en el inervlo [, ] L funión f () se oninu en diho inervlo Cundo:

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semn 7 - Cle 2. Definicione pr Comenzr Trnformd de Lplce En generl vmo definir un trnformción integrl, F (), de un función, f(t) como F () = b K (, t) f(t)dt = T {f(t)} () donde K (, t) e un función conocid

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

EXAMEN DE MATEMÁTICAS II (Recuperación)

EXAMEN DE MATEMÁTICAS II (Recuperación) º Bchillero Ciencis XN D TÁTICS II Recuperción) ÁLGBR. ), punos) Clsific en función del práero R, el sise de ecuciones: b) puno) Resuélvelo pr, si es posible.. Se un ri cudrd de orden. Si el deerinne de

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Mtemático Tem: L integrl Integrl Herrmients digitles de uto-prendizje pr Mtemátics, Grupo de Innovción Didáctic Deprtmento de Mtemátics Universidd de Extremdur Mtemático Tem: L integrl Integrl Mtemático

Más detalles

Los números reales. 1.4 Orden de los números reales CAPÍTULO

Los números reales. 1.4 Orden de los números reales CAPÍTULO 1 CAPÍTULO 1 Los números reles 1 1.4 Orden de los números reles Un número que pertenezc los reles. 2 R / es positivo si está l derech del cero; esto se denot sí: > 0 o bien 0 < : 0 Un número que pertenezc

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA UNIVERSIDAD NACINAL DE INGENIERIA CENTR NACINAL DE ESTUDIS GENERALES MDALIDAD SABATINA UNIDAD II CINEMATICA: MVIMIENT DE CAÍDA LIBRE. MVIMIENT BIDIMENSINAL CAIDA LIBRE GUIA DE TRABAJ CLASE PRÁCTICA 4.

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos Álgebr: Sisems wwwmemicsjmmmcom José Mrí Mríne Medino MATEMÁTICAS II TEMA Sisems de ecuciones lineles: Problems propuesos Clsificción resolución de sisems por méodos elemenles Resuelve uilindo el méodo

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

el log de me de id CSII: mrices y deerminnes pág. DEFINICIONES Un cden de iends de elecrodomésicos dispone de curo lmcenes. En un deermindo momeno ls exisencis de lvdors, frigoríficos y cocins son ls siguienes:

Más detalles

Integración y Derivación Fraccionaria

Integración y Derivación Fraccionaria Cpíulo 2 Inegrción y Derivción Frccionri Anes de denrrnos en los operdores de inegrción y derivción generlizdos recordremos lgunos resuldos y nociones del cálculo elemenl que servirán como puno de prid

Más detalles

Ejercicios de Matemáticas

Ejercicios de Matemáticas Ejercicios resuelos de lger Ejercicios de Meáics. Se N M. ) Clcul e pr que MN = NM. ) Clcul M M ) MN ; NM = = = ) M = I M = M M = I M = M... Se ve que si el eponene es pr es igul l ri unidd si es ipr es

Más detalles

Transformada de Laplace

Transformada de Laplace Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y

Más detalles

a Y = X donde a 1 siendo Lg el logaritmo y

a Y = X donde a 1 siendo Lg el logaritmo y Mteri: Mtemátics de 4to ño Tem: Función logrítmic Mrco Teórico L función exponencil de l form f ( ) tiene un función invers, que llmmos función logrítmic y se escribe de l form: Un función > 0 g( ) Lg

Más detalles

4.2 Solución de un sistema de ecuaciones diferenciales lineales con condiciones iniciales por medio de la trasformada de Laplace

4.2 Solución de un sistema de ecuaciones diferenciales lineales con condiciones iniciales por medio de la trasformada de Laplace . Solución de un iema de ecuacione diferenciale lineale con condicione iniciale por medio de la raformada de Laplace 0. Solución de un iema de ecuacione diferenciale lineale con condicione iniciale por

Más detalles

MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA SEGUNDA CONVOCATORIA

MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA SEGUNDA CONVOCATORIA Dertmento de Mtemátic Alicd Escuel Universitri de Ingenierí Técnic Industril Universidd del Pís Vsco Plz de l Csill, 48 Bilbo MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA SEGUNDA CONVOCATORIA - EJERCICIO Tres

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

17532 = Hemos usado el 10 como base, pero podíamos haber usado cualquiera. Por ejemplo el 9, entonces.

17532 = Hemos usado el 10 como base, pero podíamos haber usado cualquiera. Por ejemplo el 9, entonces. Tem 1.- V de números 1.1.- Números pr contr. Un de ls primers ctividdes intelectules que reliz el ser humno es l de contr: el número de flechs, el número de ovejs, el número de enemigos, etc. En Mtemátics

Más detalles

Toda expresión que conste de una expresión algebraica en su denominador y en el numerador.

Toda expresión que conste de una expresión algebraica en su denominador y en el numerador. TEMA : Epresiones Rcionles Contenio TEMA H: Epresiones Rcionles... Introucción epresiones rcionles... PRÁCTICA: Inic los vlores que no formn prte el conjunto solución... Simplificr Epresiones Rcionles...

Más detalles

PROBLEMAS DE GENERADORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía. Fecha : Agosto Autor : Ricardo Leal Reyes.

PROBLEMAS DE GENERADORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía. Fecha : Agosto Autor : Ricardo Leal Reyes. ROBLMA D GNRADOR NCRÓNCO. Aigntur : Converión lectromecánic de l nergí. ech : Agoto200. Autor : Ricrdo Lel Reye. 1. Un generdor incrónico de 6 polo conectdo en etrell, de 480 (), 60 (Hz), 1 (Ω/fe), 60

Más detalles

Las medias como promedios ponderados

Las medias como promedios ponderados Misceláne Mtemátic 8 (009) 1 6 SMM Ls medis como promedios ponderdos Alfinio Flores Peñfiel University of Delwre lfinio@mth.udel.edu Resumen Tres de ls medis que se usn frecuentemente en mtemátics (medi

Más detalles

Tema 2. Determinantes

Tema 2. Determinantes Memáics plicds ls iencis Sociles II Álger: Deerminnes Deerminne de un mriz Tem Deerminnes Definición de deerminne El deerminne de un mriz cudrd es un número Pr l mriz, su deerminne se deno por de() o por

Más detalles

Titulación de ácido fuerte-base fuerte

Titulación de ácido fuerte-base fuerte Químic Anlític (9123) urv de titulcción y cp. buffer SUBTEMA 3 1 Titulción de ácido fuertebe fuerte En olución cuo, lo ácido y l be fuerte e encuentrn totlmente diocido. Por lo tnto, el ph lo lrgo de l

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

132 Matemáticas I. Parte IV. I.T.I. en Electricidad. Prof: José Antonio Abia Vian

132 Matemáticas I. Parte IV. I.T.I. en Electricidad. Prof: José Antonio Abia Vian 3 Memáics I Pre IV Cálculo inegrl en IR Prof: José Anonio Ai Vin I.T.I. en Elecricidd 33 Memáics I : Cálculo inegrl en IR Tem Cálculo de primiivs. Primiiv de un función Definición 57.- Diremos que l función

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 L trnformd de Lplce 6.4.3 Segund propiedd de trlción Et propiedd permitirá reolver ecucione diferencile donde prezcn funcione dicontinu. Pr entenderl e conveniente introducir un función con

Más detalles

SISTEMA DE ECUACIONES LINEALES

SISTEMA DE ECUACIONES LINEALES SISTEM DE ECUCIONES LINELES Defiició: Llmremos sistem de m ecucioes co icógits, u cojuto de ecucioes de l form: m.... m..... m m (S) Los elemetos so los coeficietes del sistem. ij Los elemetos i so ls

Más detalles

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul Bloque II: Equilibrios Químicos Profesor: Mª del Carmen Clemente Jul LEY DE EQUILIBRIO QUÍMICO. CONSTNTE DE EQUILIBRIO, EQ L LEY DE EQUILIBRIO QUÍMICO ES L EXPRESIÓN MTEMÁTIC DE L LEY DE CCIÓN DE MSS QUE

Más detalles

Integral impropia Al definir la integral definida b

Integral impropia Al definir la integral definida b Mte Univ II, 14 FCE-BUAP CÁLCULO INTEGRAL ALEJANDRO RAMÍREZ PÁRAMO 1. Sucesiones y series Integrl impropi Al definir l integrl definid b f(x)dx, pretendimos que l función f estb definid; demás de cotd,

Más detalles

5.2 Línea de influencia como diagrama de desplazamiento virtual

5.2 Línea de influencia como diagrama de desplazamiento virtual 5.2 íne de influenci como digrm de desplzmiento virtul líne de influenci se puede determinr plicndo el rincipio del Desplzmiento Virtul. r ello st con:. Remover el vínculo socido con el efecto cuy líne

Más detalles

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones.

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones. DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: TEORÍA DE LOS EXPONENTES, LOS RADICALES Y LOS LOGARITMOS PRIMERO UNIDAD TEORÍA DE LOS EXPONENTES, LOS

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles