Aplicaciones del análisis combinatorio

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aplicaciones del análisis combinatorio"

Transcripción

1 Aplicaciones del análisis combinatorio UNAM 25 de noviembre de 2010

2 Plan de la plática Plantear problemas Especificación de clases combinatorias Traducción a funciones generadoras Comportamiento asintótico

3

4 Problemas 1 El número de palabras binarias que no tienen más de 4 ceros consecutivos, ni 2 unos seguidos. 2 Cuál es la probabilidad de que el texto de Hamlet tenga un mensaje escondido? 3 Cuántos mapeos de [1...n] a [1...n] no tienen puntos fijos? 4 Cuál es la probabilidad de que éstos tengan r órbitas?

5 Clase Combinatoria Definición Una clase combinatoria A es un conjunto a lo más numerable en donde se define una función Tamaño que cumple El tamaño de todos los elementos es un entero no negativo. El conjunto A n de todos los elementos de tamaño n de la clase es finito.

6 Clase Combinatoria Definición Una clase combinatoria A es un conjunto a lo más numerable en donde se define una función Tamaño que cumple El tamaño de todos los elementos es un entero no negativo. El conjunto A n de todos los elementos de tamaño n de la clase es finito. Ejemplo: Clase:Árboles binarios planos Tamaño: Nodos con grado 2.

7 Clase Combinatoria Definición Una clase combinatoria A es un conjunto a lo más numerable en donde se define una función Tamaño que cumple El tamaño de todos los elementos es un entero no negativo. El conjunto A n de todos los elementos de tamaño n de la clase es finito. Ejemplo: W ={E, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, aaab, aaba, aabb, abaa,...} Clase: Palabras binarias Tamaño: Longitud de la palabra.

8 Clase Combinatoria Ejemplo: Clase: Triangulaciones Tamaño: Número de triángulos.

9 Funciones generadoras La sucesión A n = a n, n N forma la cuenta sucesiva o sucesión de conteo de la clase combinatoria. Se codifica en una serie de potencias formales, que puede ser FGO-Ordinaria: A(z) = i 1 a n z n FGE-Exponencial: A(z) = i 1 a n z n n! Esta elección depende del modelo de la clase combinatoria.

10 Diccionario de operaciones Para especificar cualquier clase combinatoria tenemos: Clase Neutra E: tiene un sólo elemento de tamaño cero, E(z) = 1. Clase Atómica Z: tiene un sólo elemento de tamaño 1, Z(z) = z.

11 Diccionario de operaciones Para especificar cualquier clase combinatoria tenemos: Clase Neutra E: tiene un sólo elemento de tamaño cero, E(z) = 1. Clase Atómica Z: tiene un sólo elemento de tamaño 1, Z(z) = z. Utilizaremos que operaciones entre clases se traducen a operaciones entre sus FG s. Operaciones: Uniones, producto, secuencias, ciclos, conjuntos.

12 Operaciones básicas Suma: Se considera que las clases son ajenas, A =B C A(z) =B(z) + C(z)

13 Operaciones básicas Suma: Se considera que las clases son ajenas, A =B C A(z) =B(z) + C(z) Producto: A =B C A(z) =B(z) C(z)

14 Operaciones básicas Suma: Se considera que las clases son ajenas, A =B C A(z) =B(z) + C(z) Producto: A =B C A(z) =B(z) C(z) Secuencia: Es necesario que B 0 =, A = Seq(B) = k 0 1 A(z) = 1 B(z) B k

15 Lenguajes Teniendo un alfabeto A con m letras: Especificación: L = Seq(A), FGO: L(z) = 1 1 mz,

16 Lenguajes Teniendo un alfabeto A con m letras: Especificación: L = Seq(A), FGO: Cuenta sucesiva: L(z) = 1 1 mz, L n = m n.

17 Lenguajes Teniendo un alfabeto A con m letras: Especificación: L = Seq(A), FGO: Cuenta sucesiva: L(z) = 1 1 mz, L n = m n. Para m = 2 tenemos otra especificación de L: L = Seq(a)Seq(bSeq(a)),

18 Lenguajes restringidos Ésta nos permite encontrar la clase de palabras en donde b aparece sólo k veces: Especificación: L (k) = Seq(a)(bSeq(a)) k FGO: L (k) (z) = z k (1 z) k+1,

19 Lenguajes restringidos Ésta nos permite encontrar la clase de palabras en donde b aparece sólo k veces: Especificación: L (k) = Seq(a)(bSeq(a)) k FGO: Cuenta sucesiva: L (k) (z) = L (k) n = z k (1 z) k+1, ( ) n. k

20 Patrones escondidos en texto Patrones Un patrón escondido p es una sucesión de letras que aparecen en una palabra: p = p 1 p 2 p k, en el orden correcto pero no necesariamente contiguas. El patrón combinatoric en el texto de Hamlet.

21 Patrones escondidos en texto Patrones Un patrón escondido p es una sucesión de letras que aparecen en una palabra: p = p 1 p 2 p k, en el orden correcto pero no necesariamente contiguas. La clase de palabras que contienen al patrón escondido: L = Seq(A \ p 1 )p 1 Seq(A \ p 2 )p 2 Seq(A \ p k )p k Seq(A).

22 Patrones escondidos en texto Patrones Un patrón escondido p es una sucesión de letras que aparecen en una palabra: p = p 1 p 2 p k, en el orden correcto pero no necesariamente contiguas. La clase de palabras que contienen al patrón escondido: L = Seq(A \ p 1 )p 1 Seq(A \ p 2 )p 2 Seq(A \ p k )p k Seq(A). La clase que distingue cada uno de los patrones escondidos: L = Seq(A)p 1 Seq(A)p 2 Seq(A)p k Seq(A).

23 Mensajes subliminales Para saber si en Hamlet hay un mensaje subliminal para estudiar combinatorics:

24 Mensajes subliminales Para saber si en Hamlet hay un mensaje subliminal para estudiar combinatorics: Buscamos la probabilidad de que un texto de longitud n = , con alfabeto de 26 letras...

25 Mensajes subliminales Para saber si en Hamlet hay un mensaje subliminal para estudiar combinatorics: Buscamos la probabilidad de que un texto de longitud n = , con alfabeto de 26 letras... tenga en total 1, patrones escondidos de longitud k = 13...

26 Mensajes subliminales Para saber si en Hamlet hay un mensaje subliminal para estudiar combinatorics: Buscamos la probabilidad de que un texto de longitud n = , con alfabeto de 26 letras... tenga en total 1, patrones escondidos de longitud k = Finalmente, el texto de Hamlet tiene 23 veces más patrones de lo esperado!!!

27 Mensajes subliminales Para saber si en Hamlet hay un mensaje subliminal para estudiar combinatorics: Buscamos la probabilidad de que un texto de longitud n = , con alfabeto de 26 letras... tenga en total 1, patrones escondidos de longitud k = Finalmente, el texto de Hamlet tiene 23 veces más patrones de lo esperado!!! Haciendo un análisis más refinado de la distribución de la letras, el error se reduce al 5 %.

28 Factores Un factor p es una sucesión de letras que aparecen en una palabra: p = p 1 p 2 p k, en el orden correcto y necesariamente contiguas. Teorema (de Borges) Toma cualquier conjunto finito de patrones y un texto aleatorio de longitud n. La probabilidad de que el texto contenga todos los patrones tiende exponencialmente rápido a 1, conforme n.

29 La biblioteca de Babel La biblioteca era tan grande que contenía... Todo: la historia minuciosa del porvenir, las autobiografías de los arcángeles, el catálogo fiel de la Biblioteca, miles y miles de catálogos falsos, la demostración de la falacia de esos catálogos, la demostración de la falacia del catálogo verdadero, el evangelio gnóstico de Basilides, el comentario de ese evangelio, el comentario del comentario de ese evangelio, la relación verídica de tu muerte, la versión de cada libro a todas las lenguas, las interpolaciones de cada libro en todos los libros,... La biblioteca de Babel, (fragmento.)

30 Permutaciones Esta clase se define en el universo etiquetado Las permutaciones están completamente determinadas por su ciclos. P = Seq(Z) = Set(Cyc(Z)) P(z) = 1 1 z

31 Mapeos de [1... n] [1... n] Dado un mapeo f, se construye una gráfica donde i jsi y sólo sif (i) = j G es la clase de árboles no planos. F = Set(Cyc(G)).

32 Mapeos de [1... n] [1... n] Dado un mapeo f, se construye una gráfica donde i jsi y sólo sif (i) = j G es la clase de árboles no planos. F = Set(Cyc(G)). Un marcador µ se usa para contar nuevos parámetros, como el número de órbitas, F = Set(µCyc(G)).

33 Comportamiento Asintótico La singularidad dominante z 0 de una función es la de menor norma. El creciemiento asintótico de una cuenta sucesiva se expresa con un factor exponencial A n, determinado por la posición de la singularidad dominante. un factor subexponencial Θ(n), determinado por la naturaleza de la singularidad.

34 Comportamiento Asíntotico: Triangulaciones Especificación Recursiva T (z) = 1 1 4z 2, Factor Exponencial ( ) 1 n, z 0 T n 4n 1 π n 3 Factor Subexponencial O(n 3/2 ).

35 Conclusiones El método simbólico: Ofrece un lenguaje universal para modelar clases combinatorias, Distintos modelos de una clase permiten estudiar distintas características de ella.

36 Conclusiones El método simbólico: Ofrece un lenguaje universal para modelar clases combinatorias, Distintos modelos de una clase permiten estudiar distintas características de ella. Las funciones generadoras: guardan la información de la cuenta sucesiva y simplifican el cálculo de probabilidades en modelos discretos. Se puede utilizar herramienta de análisis complejo, para estudiar el comportamiento asintótico de la cuenta sucesiva.

37 GRACIAS!

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo: 1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.

Más detalles

CAPITULO 2: LENGUAJES

CAPITULO 2: LENGUAJES CAPITULO 2: LENGUAJES 2.1. DEFINICIONES PREIAS SIMBOLO: Es una entidad indivisible, que no se va a definir. Normalmente los símbolos son letras (a,b,c,.., Z), dígitos (0, 1,.., 9) y otros caracteres (+,

Más detalles

Expresiones Regulares

Expresiones Regulares Conjuntos Regulares y Una forma diferente de expresar un lenguaje Universidad de Cantabria Conjuntos Regulares y Esquema 1 Motivación 2 Conjuntos Regulares y 3 4 Conjuntos Regulares y Motivación El problema

Más detalles

1. Cadenas EJERCICIO 1

1. Cadenas EJERCICIO 1 LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada

Más detalles

Una introducción a la combinatoria analítica. Análisis del algoritmo de Euclides en F q [X].

Una introducción a la combinatoria analítica. Análisis del algoritmo de Euclides en F q [X]. Una introducción a la combinatoria analítica. Análisis del algoritmo de Euclides en F q [X]. Eda Cesaratto Universidad Nacional de Gral. Sarmiento and CONICET (Argentina) Jornadas de y dinámica. Aplicaciones

Más detalles

Alfabetos, cadenas y lenguajes

Alfabetos, cadenas y lenguajes Capítulo 1 lfabetos, cadenas y lenguajes 1.1. lfabetos y cadenas Un alfabeto es un conjunto finito no vacío cuyos elementos se llaman símbolos. Denotamos un alfabeto arbitrario con la letra Σ. Una cadena

Más detalles

SSL Guia de Ejercicios

SSL Guia de Ejercicios 1 SSL Guia de Ejercicios INTRODUCCIÓN A LENGUAJES FORMALES 1. Dado el alfabeto = {a, b, c}, escriba las palabras del lenguaje L = {x / x }. 2. Cuál es la cardinalidad del lenguaje L = {, a, aa, aaa}? 3.

Más detalles

PROYECTO DE LA REAL ACADEMIA DE CIENCIAS S.A.E.M. THALES. ESTALMAT Estímulo del Talento Matemático Prueba de selección 2 de junio de 2012

PROYECTO DE LA REAL ACADEMIA DE CIENCIAS S.A.E.M. THALES. ESTALMAT Estímulo del Talento Matemático Prueba de selección 2 de junio de 2012 PROYECTO DE LA REAL ACADEMIA DE CIENCIAS S.A.E.M. THALES ESTALMAT Estímulo del Talento Matemático Prueba de selección 2 de junio de 2012 Nombre:... Apellidos:... Localidad: Provincia:... Fecha de nacimiento:././...

Más detalles

LENGUAJES Y GRAMÁTICAS

LENGUAJES Y GRAMÁTICAS LENGUAJES Y GRAMÁTICAS LENGUAJES Y GRAMÁTICAS La sintaxis de un lenguaje natural en lenguajes como el ingles, español, alemán o francés es extremadamente complicada, dado que es imposible especificar la

Más detalles

Escribir la expresión regular de un número entero que no acepte que el primer dígito sea cero salvo el número 0. Solución: 0 [1-9][0-9]*

Escribir la expresión regular de un número entero que no acepte que el primer dígito sea cero salvo el número 0. Solución: 0 [1-9][0-9]* Procesadores de lenguaje Ejercicios del Tema 2 Ejercicio 2.1 Sean L = {a, aa, b} y M = {ab, b }. Describe LM y M 3 por enumercaión LM = { aab, ab, aaab, bab, bb } M 3 = { ababab, ababb, abbab, abbb, babab,

Más detalles

LENGUAJES Y GRAMÁTICAS

LENGUAJES Y GRAMÁTICAS LENGUAJES Y GRAMÁTICAS Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 20 de septiembre de 2008 Contenido Lenguajes y Gramáticas Gramáticas Gramáticas

Más detalles

Lenguajes (gramáticas y autómatas)

Lenguajes (gramáticas y autómatas) Lenguajes (gramáticas y autómatas) Elvira Mayordomo Universidad de Zaragoza 19 de septiembre de 2013 Elvira Mayordomo (Universidad de Zaragoza) Lenguajes (gramáticas y autómatas) 19 de septiembre de 2013

Más detalles

Sumario: Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 1: Conceptos básicos (parte 1) Tema 1: Conceptos básicos

Sumario: Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 1: Conceptos básicos (parte 1) Tema 1: Conceptos básicos Formales Tema 1: Conceptos básicos (parte 1) Holger Billhardt holger.billhardt@urjc.es Sumario: Tema 1: Conceptos básicos 1. Lenguajes Formales 2. Gramáticas Formales 3. Autómatas Formales 2 1 Sumario:

Más detalles

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto

Más detalles

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt holger.billhardt@urjc.es Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica Fa.M.A.F., Universidad Nacional de Córdoba 22//4 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes y computación.

Más detalles

Capítulo 1 Lenguajes formales 6

Capítulo 1 Lenguajes formales 6 Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica y la Computación Fa.M.A.F., Universidad Nacional de Córdoba 26/0/6 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes

Más detalles

TEORIA DE AUTOMATAS.

TEORIA DE AUTOMATAS. TEORIA DE AUTOMATAS. RELACION DE PROBLEMAS II.. Construir un AFND capaz de aceptar una cadena u {, }, que contenga la subcadena. Construir un AFND capaz de aceptar una cadena u {, }, que contenga la subcadena.

Más detalles

Preguntas Propuestas

Preguntas Propuestas Preguntas Propuestas 4 Clasificación de los Z + III 1. Si la cantidad de divisores de 52! es m y la de 54! es P, calcule m P. A) 40 91 D) 400 459 B) 200 459 C) 200 409 E) 100 229 2. Cuántos triángulos

Más detalles

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS Licenciatura en Sistemas de Información PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS UNSE FCEyT 1. DESCRIPCIÓN Este taller consta de tres partes. En cada una de ellas se especifican

Más detalles

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ.

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ. Alfabetos, Cadenas y Lenguajes Definición 1 Un Alfabeto es cualquier conjunto finito, no vacío. Ejemplo 1 Sea Σ = {0, 1, 2, 3,..., 9} donde 0 Σ Definición 2 Una cadena sobre Σ es cualquier secuencia de

Más detalles

Modelos De Computación. Guía Modelos de Computación. Tema I: Lenguajes y Gramáticas

Modelos De Computación. Guía Modelos de Computación. Tema I: Lenguajes y Gramáticas Guía Modelos de Computación Tema I: Lenguajes y Gramáticas Introducción La sintaxis de un lenguaje natural, esto es, la de los lenguajes hablados, como el inglés, el español, el alemán o el francés, es

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales 1. Objetivos 2. Representación de los datos en Mathematica 3. Eliminación de símbolos inútiles 3.1. Símbolos

Más detalles

Oliver A. Vilca H. Pág. 1. Resumen de clases Oliver Amadeo Vilca Huayta

Oliver A. Vilca H. Pág. 1. Resumen de clases Oliver Amadeo Vilca Huayta Oliver A. Vilca H. Pág. 1 Expresiones regulares y autómatas finitos Resumen de clases Oliver Amadeo Vilca Huayta Una expresión regular sirve como un descriptor de un lenguaje, también es una herramienta

Más detalles

Matemáticas Discretas Enrique Muñoz de Cote INAOE. Permutaciones y Combinaciones

Matemáticas Discretas Enrique Muñoz de Cote INAOE. Permutaciones y Combinaciones Matemáticas Discretas Enrique Muñoz de Cote INAOE Permutaciones y Combinaciones Contenido Introducción Reglas de la suma y el producto Permutaciones Combinaciones Generación de permutaciones Teorema del

Más detalles

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )

Más detalles

Lenguajes Regulares. Antonio Falcó. - p. 1

Lenguajes Regulares. Antonio Falcó. - p. 1 Lenguajes Regulares Antonio Falcó - p. 1 Cadenas o palabras I Una cadena o palabra es una sucesión finita de símbolos. cadena {c, a, d, e, n}. 10001 {0, 1} El conjunto de símbolos que empleamos para construir

Más detalles

Unidad 3 Combinatoria

Unidad 3 Combinatoria Unidad 3 Combinatoria CONTEO La enumeración no termina con la aritmética. Tiene aplicaciones en áreas como álgebra, la probabilidad y estadística (matemáticas) y el análisis de algoritmos (en ciencias

Más detalles

06 Análisis léxico II

06 Análisis léxico II 2 Contenido Alfabetos, símbolos y cadenas Operaciones con cadenas Concatenación de dos cadenas Prefijos y sufijos de una cadena Subcadena y subsecuencia Inversión de una cadena Potencia de una cadena Ejercicios

Más detalles

Tema 2. Análisis léxico

Tema 2. Análisis léxico Departamento de Tecnologías de la Información Tema 2 Análisis léxico Ciencias de la Computación e Inteligencia Artificial Índice 2.1 Introducción 2.2 Especificación de categorías léxicas 2.3 Autómatas

Más detalles

Propiedades de lenguajes independientes del contexto

Propiedades de lenguajes independientes del contexto Capítulo 12. Propiedades de lenguajes independientes del contexto 12.1. Identificación de lenguajes independientes del contexto Lema de bombeo. 12.2. Propiedades Cierre, Complemento de lenguajes, Sustitución,

Más detalles

Máquinas de estado finito y expresiones regulares

Máquinas de estado finito y expresiones regulares Capítulo 3 Máquinas de estado finito y expresiones regulares En este tema definiremos y estudiaremos máquinas de estado finito, llamadas también máquinas de estado finito secuenciales o autómatas finitos.

Más detalles

Ciencias de la Computación I

Ciencias de la Computación I Ciencias de la Computación I Gramáticas Regulares Expresiones Regulares Gramáticas - Intuitivamente una gramática es un conjunto de reglas para formar correctamente las frases de un lenguaje - Por ejemplo,

Más detalles

Introducción a la Teoría de la Información

Introducción a la Teoría de la Información Introducción a la Teoría de la Información Codificación de fuentes Facultad de Ingeniería, UdelaR (Facultad de Ingeniería, UdelaR) Teoría de la Información 1 / 43 Agenda 1 Codificación de fuente Definiciones

Más detalles

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila. 0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)

Más detalles

Tema 2. Fundamentos de la Teoría de Lenguajes Formales

Tema 2. Fundamentos de la Teoría de Lenguajes Formales Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones

Más detalles

Lenguajes Incontextuales

Lenguajes Incontextuales Tema 5: Gramáticas Formales Lenguajes Incontextuales Departamento de Sistemas Informáticos y Computación http://www.dsic.upv.es p.1/31 Tema 5: Gramáticas Formales Gramáticas. Tipos de Gramáticas. Jerarquía

Más detalles

Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º ( )

Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º ( ) 1 Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º (2015-2016) Tema 1: NÚMEROS REALES Conjuntos numéricos. Números naturales. Números enteros. Números racionales. Números

Más detalles

Lenguajes Formales y Monoides

Lenguajes Formales y Monoides Universidad de Cantabria Esquema 1 2 3 La operación esencial sobre Σ es la concatenación o adjunción de palabras: : Σ Σ Σ (x, y) x y es decir, si x = x 1 x n e y = y 1 y m, entonces x y = x 1 x n y 1 y

Más detalles

Tema 4. Polinomios Operaciones

Tema 4. Polinomios Operaciones Tema 4. Polinomios Operaciones 1. Expresiones algebraicas. Identidades y ecuaciones.. Monomios.1. Definiciones.. Operaciones con monomios. Polinomios.1. Definiciones.. Operaciones con polinomios Tema.

Más detalles

Conjuntos. Aritmética CAPÍTULO I. 06. Si: n (M x N) = 63, n[p(m Δ N)] = 1024 n(m N) = 3, hallar el máximo número de elementos

Conjuntos. Aritmética CAPÍTULO I. 06. Si: n (M x N) = 63, n[p(m Δ N)] = 1024 n(m N) = 3, hallar el máximo número de elementos Aritmética CAPÍTULO I Conjuntos 01. Calcule el cardinal de E : x + 1 E = {x / N x < 17} 3 A) 16 B) 10 C) 3 D) 2 E) 4 02. Dado el conjunto A = {2, {3}, {2, 3}. 4} Cuántas proposiciones son verdaderas: φ

Más detalles

Tipos de datos en S. Lógica y Computabilidad. Codificación de variables y etiquetas de S. Codificación de programas en S

Tipos de datos en S. Lógica y Computabilidad. Codificación de variables y etiquetas de S. Codificación de programas en S Tipos de datos en S Lógica y Computabilidad Verano 2011 Departamento de Computación - FCEyN - UBA Computabilidad - clase 5 Codificación de programas, Halting problem, diagonalización, tesis de Church,

Más detalles

Funciones generadoras de probabilidad

Funciones generadoras de probabilidad Funciones generadoras de probabilidad por Ramón Espinosa Armenta En este artículo veremos cómo utilizar funciones generadoras en teoría de la probabilidad. Sea Ω un conjunto finito o numerable de resultados

Más detalles

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos

Más detalles

ESPECIFICACIÓN DE SÍMBOLOS

ESPECIFICACIÓN DE SÍMBOLOS 1 UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE COMPUTACIÓN ESPECIFICACIÓN DE SÍMBOLOS Elaborado el Sábado 24 de Julio de 2004 I.- COMPONENTES LÉXICOS, PATRONES Y LEXEMAS (extraído de

Más detalles

Comunicación de datos

Comunicación de datos Comunicación de datos Primero se aplica una XOR al par de bits menos significativos; a continuación se aplica otra XOR a la salida de la operación anterior y al siguiente bit (más significativo), y así

Más detalles

ACT-11302: Cálculo Actuarial III

ACT-11302: Cálculo Actuarial III ACT-11302: Cálculo Actuarial III Notas de Clase Juan Carlos Martínez-Ovando ITAM 25 de agosto de 2016 Agenda Modelo estadístico Intercambiabilidad Modelo estadístico Definición Se dice que un conjunto

Más detalles

Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta

Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática

Más detalles

UNIDAD 4. Álgebra Booleana

UNIDAD 4. Álgebra Booleana UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,

Más detalles

Sistemas de numeración, operaciones y códigos.

Sistemas de numeración, operaciones y códigos. Tema : Sistemas de numeración, operaciones y códigos. Para representar ideas, los seres humanos (al menos los occidentales) utilizamos cadenas de símbolos alfanuméricos de un alfabeto definido. En el mundo

Más detalles

Estructuras de Datos y de la Información Ingeniería Técnica en Informática de Gestión. Curso 2007/2008 Ejercicios del Tema 2

Estructuras de Datos y de la Información Ingeniería Técnica en Informática de Gestión. Curso 2007/2008 Ejercicios del Tema 2 Estructuras de Datos y de la Información Ingeniería Técnica en Informática de Gestión. Curso 2007/2008 Ejercicios del Tema 2 Diseño de algoritmos recursivos 1. Dado un vector de enteros de longitud N,

Más detalles

Generación de números aleatorios con distribución uniforme

Generación de números aleatorios con distribución uniforme Generadores de Números Aleatorios 1 Existen en la actualidad innumerables métodos para generar números aleatorios En la literatura disponible se pueden encontrar gran cantidad de algoritmos. Generación

Más detalles

Curso Básico de Computación

Curso Básico de Computación CINVESTAV IPN México City 2010 1 Preliminares 1.1 Cadenas, alfabetos y lenguajes Un símbolo es un ente abstracto que no se puede definir formalmente. Letras o dígitos son ejemplos

Más detalles

Universidad de Valladolid

Universidad de Valladolid Universidad de Valladolid Departamento de Informática Teoría de autómatas y lenguajes formales. 2 o I.T.Informática. Gestión. Examen de primera convocatoria. 18 de junio de 29 Apellidos, Nombre... Grupo:...

Más detalles

Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R.

Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R. Conjuntos Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por se entiende que a pertenece a R. a R Normalmente, podremos definir a un conjunto de dos maneras: Por

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña Máquinas Secuenciales, Autómatas y Lenguajes Tema 4: Expresiones Regulares Luis Peña Sumario Tema 4: Expresiones Regulares. 1. Concepto de Expresión Regular 2. Teoremas de Equivalencia Curso 2012-2013

Más detalles

Matemáticas Discretas L. Enrique Sucar INAOE. Teoría de Grafos. Problema de los puentes de Königsberg [Euler]

Matemáticas Discretas L. Enrique Sucar INAOE. Teoría de Grafos. Problema de los puentes de Königsberg [Euler] Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Grafos Problema de los puentes de Königsberg [Euler] Teoría de Grafos Definición y terminología Tipos de grafos Trayectorias y circuitos Isomorfismo

Más detalles

ESTRUCTURAS ALGEBRAICAS. Parte 1

ESTRUCTURAS ALGEBRAICAS. Parte 1 ESTRUCTURAS ALGEBRAICAS Parte 1 ESTRUCTURAS ALGEBRAICAS Una estructura algebraica es una n-tupla (a 1,a 2,...,a n ), donde a 1 es un conjunto dado no vacío, y {a 2,...,a n } un conjunto de operaciones

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO Autómatas de pila y lenguajes independientes del contexto -1- AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO AUTÓMATAS DE PILA - Son autómatas finitos con una memoria en forma de pila. - Símbolos

Más detalles

Distribuciones Paramétricas

Distribuciones Paramétricas Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica

Más detalles

Curso Básico de Computación Preliminares

Curso Básico de Computación Preliminares Curso Básico de Computación Preliminares Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) Preliminares 2010 1 / 11 1 Preliminares

Más detalles

Matemática computable

Matemática computable Conjuntos computables - Combinatoria - Álgebra Antonio Montalbán. U. de Chicago Coloquio Uruguayo de Matemática. Diciembre, 2009 Conjuntos computables - Combinatoria - Álgebra 1 Conjuntos computables 2

Más detalles

Introducción a la Probabilidad

Introducción a la Probabilidad Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento

Más detalles

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOL Un árbol es un grafo no dirigido, conexo, sin ciclos (acíclico), y que no contiene aristas

Más detalles

EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA

EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA 1ER PARCIAL TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Examen parcial 12/02/2003 1.- Usa el lema de bombeo para

Más detalles

Estructuras de ARN y disecciones de polígonos: Una invitación a la combinatoria analítica

Estructuras de ARN y disecciones de polígonos: Una invitación a la combinatoria analítica Miscelánea Matemática 60 205) 05-30 SMM Estructuras de ARN y disecciones de polígonos: Una invitación a la combinatoria analítica Ricardo Gómez Aíza Instituto de Matemáticas de la Universidad Nacional

Más detalles

los lenguajes WHILE y LOOP X2 := X1; while X2 0 do X1 := X1 + 1; X2 := X2 1 od

los lenguajes WHILE y LOOP X2 := X1; while X2 0 do X1 := X1 + 1; X2 := X2 1 od los lenguajes WHILE y LOOP X2 := X1; while X2 0 do X1 := X1 + 1; X2 := X2 1 od índice de materias introducción histórica modelos de cálculo lenguajes WHILE y LOOP funciones µ-recursivas teorema de equivalencia

Más detalles

Teoría de Lenguajes // 1er. cuatrimestre de er. Parcial

Teoría de Lenguajes // 1er. cuatrimestre de er. Parcial Teoría de Lenguajes // er. cuatrimestre de 200 er. Parcial Dados los lenguajes: L = { w (a b)* para algún prefijo v de w: v a - v b > } (Ejemplos: Las cadenas ababaa y bbbaa pertenecen a L. Las cadenas

Más detalles

Contenido. Capítulo I Sistemas numéricos 2. Capítulo II Métodos de conteo 40

Contenido. Capítulo I Sistemas numéricos 2. Capítulo II Métodos de conteo 40 CONTENIDO v Contenido Contenido de la página Web de apoyo... xi Página Web de apoyo... xvii Prefacio... xix Capítulo I Sistemas numéricos 2 1.1 Introducción... 4 1.2 Sistema decimal... 5 1.3 Sistemas binario,

Más detalles

Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado.

Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado. Universidad Rey Juan Carlos Curso 2010 2011 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 10 Gramaticas Independientes del Contexto Nivel del

Más detalles

DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES

DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES 1 DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES Los LENGUAJES FORMALES están formados por PALABRAS, las palabras son CADENAS y las cadenas están constituidas por SÍMBOLOS de un ALFABETO. SÍMBOLOS

Más detalles

GRAMÁTICAS y LENGUAJES INDEPENDIENTES DEL CONTEXTO

GRAMÁTICAS y LENGUAJES INDEPENDIENTES DEL CONTEXTO Dpto. de Informática (ATC, CCIA y LSI). Universidad de Valladolid. TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES I Ingeniería Técnica en Informática de Sistemas. Curso 2011-12 GRAMÁTICAS y LENGUAJES INDEPENDIENTES

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Tareas adicionales Algunos de estos problemas compuso Gustavo Antonio Sandoval Angeles (como parte de su servicio social). Estos problemas son más difíciles o más laboriosos

Más detalles

Capítulo 3: Técnicas de Conteo Clase 3: Conteo utilizando relaciones de recurrencia

Capítulo 3: Técnicas de Conteo Clase 3: Conteo utilizando relaciones de recurrencia Capítulo 3: Técnicas de Conteo Clase 3: Conteo utilizando relaciones de recurrencia Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 3: Técnicas de Conteo 1 /

Más detalles

Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria.

Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Operación Binaria Se conoce una operación binaria

Más detalles

Integral de Lebesgue

Integral de Lebesgue Integral de Lebesgue Problemas para examen n todos los problemas se supone que (, F, µ) es un espacio de medida. Integración de funciones simples positivas. La representación canónica de una función simple

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

13.Teoría de colas y fenómenos de espera

13.Teoría de colas y fenómenos de espera 3.Teoría de colas y fenómenos de espera Notación y terminología Modelado del proceso de llegada Modelado del proceso de servicio Notación de Kendall-Lee Procesos de nacimiento y muerte Modelo M/M/. Análisis

Más detalles

08 Análisis léxico IV

08 Análisis léxico IV 2 Contenido Expresiones regulares Lenguaje generado por una expresión regular Precedencia de las operaciones con las expresiones regulares Ejemplos Definiciones regulares Extensiones de las expresiones

Más detalles

COLEGIO HELVETIA PROGRAMA DE MATEMÁTICAS GRADO ONCE

COLEGIO HELVETIA PROGRAMA DE MATEMÁTICAS GRADO ONCE COLEGIO HELVETIA PROGRAMA DE MATEMÁTICAS GRADO ONCE 201-2015 OBJETIVO GENERAL: Entender las bases conceptuales de función, el problema del infinito, así como sus aplicaciones a otras áreas del conocimiento

Más detalles

LOS CONTENIDOS DE MATEMÁTICAS EN LOS BACHILLERATOS ITALIANOS

LOS CONTENIDOS DE MATEMÁTICAS EN LOS BACHILLERATOS ITALIANOS LOS CONTENIDOS DE MATEMÁTICAS EN LOS BACHILLERATOS ITALIANOS LOS CONTENIDOS DEL BIENIO (1º Y 2º AÑO) PROGRAMA A (PARA LOS INDERIZZOS CLÁSICO, LINGÜÍSTICO, SOCIO-PSICO-PEDAGÓGICO Y ARTÍSTICO, 4 horas semanales)

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

Unidad 3 Combinatoria

Unidad 3 Combinatoria Unidad 3 Combinatoria CONTEO La enumeración no termina con la aritmética. Tiene aplicaciones en áreas como álgebra, la probabilidad y estadística (matemáticas) y el análisis de algoritmos (en ciencias

Más detalles

Estadística y Probabilidad

Estadística y Probabilidad La universidad Católica de Loja Estadística y Probabilidad ESCUELA DE ELECTRÓNICA Y TELECOMUNICACIONES Paralelo C Nombre: Milner Estalin Cumbicus Jiménez. Docente a Cargo: Ing. Patricio Puchaicela. Ensayo

Más detalles

Contenido. Contenidos interactivos... xiii Plataforma de contenidos interactivos... xviii Prefacio... xix. Parte I Fundamentos...

Contenido. Contenidos interactivos... xiii Plataforma de contenidos interactivos... xviii Prefacio... xix. Parte I Fundamentos... Contenido Contenidos interactivos... xiii Plataforma de contenidos interactivos... xviii Prefacio... xix Parte I Fundamentos... 1 Capítulo I Lógica, conjuntos e inducción... 2 1.1 Introducción... 4 1.2

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO 1 2 cíclicos 3 Subgrupos 4 Algoritmos 5 ElGamal Definición Un grupo es un conjunto de elementos sobre los cuales

Más detalles

La reordenación aleatoria de un conjunto finito

La reordenación aleatoria de un conjunto finito La reordenación aleatoria de un conjunto finito Pérez Cadenas J. I. 0.06.2003 Resumen Al desordenar y, a continuación, reordenar aleatoriamente un conjunto finito es posible que algunos de sus elementos

Más detalles

Lenguajes y Compiladores Aspectos Formales (Parte 2) Compiladores

Lenguajes y Compiladores Aspectos Formales (Parte 2) Compiladores Facultad de Ingeniería de Sistemas Lenguajes y Aspectos Formales (Parte 2) 2007 1 Derivaciones El proceso de búsqueda de un árbol sintáctico para una cadena se llama análisis sintáctico. El lenguaje generado

Más detalles

Tablas de contenidos Matemática PDD 2018

Tablas de contenidos Matemática PDD 2018 Tablas de contenidos Matemática PDD 2018 Primero básico y Operaciones Comparación de números Representación de números Conteo de números Patrones y Patrones pictóricos Figuras geométricas 2D y 3D Ubicación

Más detalles

EXPRESIÓN ALGEBRAICA Monomios, Polinomios

EXPRESIÓN ALGEBRAICA Monomios, Polinomios EXPRESIÓN ALGEBRAICA Monomios, Polinomios CPR. JORGE JUAN Xuvia-Narón Se denomina expresión algebraica a toda combinación de números reales y letras ligadas por las operaciones aritméticas de, adición,

Más detalles

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y CONTENIDO Reconocedores [HMU2.1]. Traductores [C8]. Diagramas de Estado [HMU2.1]. Equivalencia entre AF deterministas y no deterministas [HMU2.2-2.3]. Expresiones [HMU3]. Propiedades de [HMU4]. Relación

Más detalles

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso ESPACIO AFÍN Introducción Ecuaciones de la recta...

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso ESPACIO AFÍN Introducción Ecuaciones de la recta... Unidad 5 ESPACIO AFÍN 5.. Introducción.... - - 5.. Ecuaciones de la recta.... - - 5.3. Ecuaciones del plano.... - 4-5.4. Posiciones relativas (Incidencia y paralelismo).... - 6 - Anexo I.- EJERCICIOS...

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas //2 Análisis de datos y gestión veterinaria Variables aleatorias continuas y distribuciones Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 8 de Noviembre de 2

Más detalles

Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del

Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del Límite Área de Estadística e Investigación Operativa Mariano Amo Salas y Licesio J. Rodríguez-Aragón

Más detalles

TÍTULO: MATEMÁTICA DISCRETA Y LÓGICA Disponibilidad

TÍTULO: MATEMÁTICA DISCRETA Y LÓGICA Disponibilidad TÍTULO: MATEMÁTICA DISCRETA Y LÓGICA Disponibilidad Calculo proposicional 1 Argumentos y proposiciones lógicas 1 Algunos argumentos lógicos importantes 2 Proposiciones 4 Conexiones lógicas 5 Negación (tabla)

Más detalles

Compiladores. Análisis Sintáctico Ascendente. Adrian Ulises Mercado Martínez. Facultad de Ingeniería, UNAM. 5 de septiembre de 2013

Compiladores. Análisis Sintáctico Ascendente. Adrian Ulises Mercado Martínez. Facultad de Ingeniería, UNAM. 5 de septiembre de 2013 Compiladores Análisis Sintáctico Ascendente Adrian Ulises Mercado Martínez Facultad de Ingeniería, UNAM 5 de septiembre de 2013 Adrian Ulises Mercado Martínez (FI,UNAM) Compiladores 5/07/2013 1 / 34 Índice

Más detalles

Números naturales y recursividad

Números naturales y recursividad Números naturales y recursividad Rafael F. Isaacs G. Sonia M. Sabogal P. * Fecha: 8 de marzo de 2005 Números naturales Se sabe que los números naturales constituyen la estructura básica de la Matemática;

Más detalles