Funciones de Una Variable Real II: Cálculo de Primitivas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Funciones de Una Variable Real II: Cálculo de Primitivas"

Transcripción

1 Universidad de Murcia Departamento Matemáticas Funciones de Una Variable Real II: Cálculo de Primitivas B. Cascales, J. M. Mira y L. Oncina Universidad de Murcia Grado en Matemáticas Curso

2 Contents Contenido 1 Recordatorio: teorema Fundamental del Cálculo 3 en cos y sen

3 Teorema Fundamental del Cálculo Teorema fundamental del cálculo Sea f R[a, b]. Para cada x [a, b] se define F (x) := x a f. (1) La función F así definida recibe el nombre de integral indefinida y verifica las propiedades siguientes: 1 F es continua en [a, b]. Si f es continua en c [a, b], entonces F es derivable en c y F (c) = f (c).

4 Primitivas: Regla de Barrow Definición Dada f : [a, b] R se dice que g es una primitiva de f si g es derivable y g = f. Integración por partes Sean f, g R[a, b] y supongamos que tienen primitivas F, G respectivamente. Entonces, b b Fg = F (b)g(b) F (a)g(a) fg. a a Cambio de variable Sea ϕ : [c, d] [a, b] una función derivable con derivada continua tal que ϕ(c) = a y ϕ(d) = b. Sea f : [a, b] R continua. Entonces b d f = (f ϕ)ϕ. a c

5 Primeros resultados Recordatorio: teorema Fundamental del Cálculo Sea f : [a, b] R una función que admite primitiva en [a, b]. Denotaremos por f (x) dx a una primitiva cualquiera de f en [a, b]. Si f es continua en [a, b], el conjunto de todas las primitivas de f en [a, b] lo escribiremos como f (x) dx + K donde K es un número real cualquiera.

6 Primeros resultados Recordatorio: teorema Fundamental del Cálculo Sea f : [a, b] R una función que admite primitiva en [a, b]. Denotaremos por f (x) dx a una primitiva cualquiera de f en [a, b]. Si f es continua en [a, b], el conjunto de todas las primitivas de f en [a, b] lo escribiremos como f (x) dx + K donde K es un número real cualquiera. Proposición Sean f y g funciones continuas en [a,b], y sean α y β números reales cualesquiera. Entonces: (αf (x) + βg(x)) dx = α f (x) dx + β g(x) dx. f (x)g (x) dx = f (x)g(x) g(x)f (x) dx. f (x) dx = f (ϕ(t))ϕ (t) dt, donde ϕ : [c, d] [a, b] es una biyección de clase C 1 ([c, d]), ϕ(c) = a y ϕ(d) = b.

7 Sea u(x) una función. Recordatorio: teorema Fundamental del Cálculo u n (x) u (x) dx = un+1 (x) n+1 + C, n 1 e u(x) u (x) dx = e u(x) + C cos(u(x)) u (x) dx = sen(u(x)) + C cosh(u(x)) u (x) dx = senh(u(x)) + C u (x) dx = ln u(x) + C, u(x) 0 u(x) a u(x) u (x) dx = au(x) ln a + C, a > 0, a 1 sen(u(x)) u (x) dx = cos(u(x)) + C senh(u(x)) u (x) dx = cosh(u(x)) + C u (x) u (x)) sen dx = cot(u(x)) + C (x) cos dx = tan(u(x)) + C (u(x)) u (x) senh dx = coth(u(x)) + C u (x)) (x) cosh dx = tanh(u(x)) + C (u(x)) u (x) 1+u dx = arctan(u(x)) + C u (x) dx = arcsen(u(x)) + C (x) 1 u (x) ( ) u (x) 1 u = arg tanh(u(x)) = u(x) (x) ln + C 1 u(x) ( u (x) dx = arg senh(u(x)) + C = ln u(x) + u (x)+1 ( u (x) dx = arg cosh(u(x)) + C = ln u(x) + u (x) 1 Tabla de primitivas inmediatas. ) u (x) + 1 u (x) 1 ) + C + C

8 Primitivas de funciones racionales en cos y sen Sean P(x) y Q(x) polinomios. Se trata de resolver P(x) dx. En primer lugar Q(x) nos aseguraremos de que el gradp(x) < gradq(x), en caso contrario haremos la división, P(x) = C(x)Q(x) + R(x), con gradr(x) < gradq(x), y así P(x) Q(x) dx = C(x) dx + R(x) Q(x) dx. Podemos asumir en lo que sigue que gradp(x) < gradq(x).

9 Primitivas de funciones racionales en cos y sen Si conocemos la factorización del polinomio del denominador Q(x) = (x a 1) m1 (x a r ) mr (x + p 1x + q 1) n1 (x + p sx + q s) ns, donde q i > p i P(x), i = 1,,..., s. Se puede demostrar que se puede expresar 4 Q(x) de manera única como suma de fracciones simples: P(x) Q(x) = A 1 1 (x a A m1 1 1) (x a 1) m A1 r + M1 1 x + N Mn1 1 x + Nn 1 1 x + p 1x + q 1 (x + p 1x + q ) n 1 + M1 s x + Ns 1 (x + p sx + q Mns s x + Ns ns s) (x + p sx + q, s) ns donde A i k, M i k, N i k son numeros reales a determinar. (x a r ) A mr r (x a r ) mr

10 Primitivas de funciones racionales en cos y sen Se trata pues de ser capaz de calcular la primitiva de cada una de las fracciones tipo que aparecen en la descomposición. Así tenemos: A dx = A ln x a + K. x a A dx = A (x a) n n 1 1 (x a) n 1 + K, n =, 3,... Mx+N dx = M ln [ (x + p x +px+q ) + c ] + N M p arctan c ( p ) x+. c

11 Primitivas de funciones racionales en cos y sen Cuando aparecen raíces complejas múltiples usaremos el método de Hermite u Ostrogadsky. Se trata de expresar la fracción como: ( ) P(x) Q(x) = d A(x) + B(x) dx D 1(x) D ; (x) con grada(x) < gradd 1(x), gradb(x) < gradd (x); D 1(x) es el máximo común divisor de Q(x) y Q (x), es decir, todos los factores que aparecen en Q(x) con un grado menos; D (x) = Q(x) D 1, es decir, D(x) son todos los (x) factores de Q(x) con multiplicidad 1. Por lo tanto, P(x) A(x) B(x) dx = Q(x) D + 1(x) D dx. (x)

12 Recordatorio de identidades trigonométricas en cos y sen 6.3 Funciones racionales en seno y coseno 47 Identidades trigonométricas sen x +cos x =1 sen(x + π )=cosx cos(x + π )= sen x tg x = sen x cos x cotg x = cos x sen x 1+tg x = 1 cos x sen x +seny =sen x + y sen x sen y =sen x y cos x y cos x + y sen(x + y) =senx cos y +cosx sen y cos(x + y) =cosx cos y sen x sen y sen x =senxcos x cos x =cos x sen x sen 1 cos x x = cos x = 1+cosx cos x +cosy =cos x + y cos x cos y = sen x + y cos x y sen x y Cuadro 6.1: Relaciones trigonométricas básicas. Estas relaciones, que seguramente

13 Funciones que contienen cos x y sen x en cos y sen Sea f (u, v) una función racional de dos variables y nos planteamos calcular f (sen(x), cos(x))dx.

14 Funciones que contienen cos x y sen x en cos y sen Sea f (u, v) una función racional de dos variables y nos planteamos calcular f (sen(x), cos(x))dx. En general haremos el cambio de variable t = tan( x ) y así: cos(x) = 1 t t ; sen(x) = 1 + t 1 + t ; dx = 1 + t dt.

15 Funciones que contienen cos x y sen x en cos y sen Sea f (u, v) una función racional de dos variables y nos planteamos calcular f (sen(x), cos(x))dx. En general haremos el cambio de variable t = tan( x ) y así: cos(x) = 1 t t ; sen(x) = 1 + t 1 + t ; dx = 1 + t dt. Queda entonces una función racional en la variable t, f ( t, 1 t ) dt 1+t 1+t 1+t

16 tado que la herramienta informáticaprimitivas proporciona de fracciones conracionales el que aparece escrito en la fórmula anterior. Coinciden losprimitivas resultados? de fracciones Explique racionales razonadamentesu cos y sen respuesta. Recordatorio: teorema Fundamental del Cálculo Otras integrales que contienen cos x y sen x En algunos casos particulares pueden hacerse otros cambios más específicos que, Caso frecuentemente, R(, ) = R(, dan ) lugar a primitivas más sencillas de calcular. Si R es una función par en seno y coseno, es decir, R( sen x, cos x) =R(sen x, cos x), lo que significa que cambiando simultáneamente sen x por sen x y cos x por cos x se obtiene la misma función, entonces puede comprobarse que el cambio 6.3 Funciones racionales en seno y coseno t =tgx 49 permite reducir también la primitiva a una del tipoanálisis considerado Matemático en la sec-ción 6.. Se tiene la siguiente fórmula J. M. Mira S. Sánchez-Pedreño t =tg x = sen x cos x = sen x 1 sen x que permite expresar sen x en función de t. Procediendodeformasimilarcon la función coseno se obtienen, finalmente, las siguientes fórmulas: sen x = t, cos x = 1 dt, dx = 1+t 1+t 1+t. 1

17 El lector debería B. Cascales, comparar J. M. Mirael y L. cambio Oncina de Funciones variable de Unaempleado Variable Real II en este caso en R(sen x, cos x) = sen x cos x +cos x = Recordatorio: teorema Fundamental del Cálculo = Otras integrales que contienen cos x y sen x en cos y sen 1 = R( sen x, cos x) ( sen x)( cos x)+( cos x) Entonces el cambio de variable t = tgx es adecuado y más sencillo que t =tg(x/); así: 1 sen x cos x +cos x dx = 1 dx tg x +1 cos x dt = =log 1+t + C =log 1+tgx + C Caso R es una función impar en el1+t seno Si R es una función impar en seno es decir, R( sen x, cos x) = R(sen x, cos x), entonces el cambio t =cosx permite reducir la primitiva a una del tipo considerado en la sección 6. como es fácil comprobar. Ejemplo sen 3 x 1+cos x dx = sen x 1 cos 1+cos x sen xdx= x sen xdx 1+cos x 1 t = 1+t dt = 1+ dt = t arctgt + C 1+t =cosx arctg(cosx)+c.

18 Otras integrales que contienen cos x y sen x en cos y sen 50 Cálculo de primitivas Caso R es una función impar en el coseno Si R es una función impar en coseno, es decir, R(sen x, cos x) = R(sen x, cos x), entonces el cambio t =senx permite reducir la primitiva a la de una función racional, del tipo considerado en la sección 6.. Ejemplo cos x dx = = 1 cos x cos xdx= 1 cos xdx 1 sen x 1 1 t dt = 1 ( 1 1+t + 1 ) = 1 1 t dt log 1+t 1 t + C =log 1+sinx B. Cascales, J. M. Mira y L. Oncina + C Funciones de Una Variable Real II

19 Funciones que contienen cos x y sen x en cos y sen Merece la pena hacer especial mención del caso cos n (x) sen m (x) dx, n, m N. 1 Si n es impar, haremos el cambio t = sen(x). Si m es impar, haremos el cambio t = cos(x). 3 Si n y m son pares, usaremos cos (x) = 1+cos(x) y sen (x) = 1 cos(x) para reducir el grado en el integrando.

20 Ejemplos Recordatorio: teorema Fundamental del Cálculo en cos y sen Calcular las siguientes primitivas 1 1 dx = arctan ( 1 tan( x )). 5+4 cos(x) 3 3

21 Ejemplos Recordatorio: teorema Fundamental del Cálculo en cos y sen Calcular las siguientes primitivas 1 1 dx = arctan ( 1 tan( x )). 5+4 cos(x) cos (x) dx = 1 ln 1+sen(x) cos(x)(1+sen (x)) 4 1 sen(x) + 3 arctan(sen(x)).

22 Ejemplos Recordatorio: teorema Fundamental del Cálculo en cos y sen Calcular las siguientes primitivas 1 1 dx = arctan ( 1 tan( x )). 5+4 cos(x) cos (x) dx = 1 ln 1+sen(x) cos(x)(1+sen (x)) 4 1 sen(x) + 3 arctan(sen(x)). 3 sen (x) dx = ( ) 1 arctan 1+cos (x) tan(x) x.

23 Ejemplos Recordatorio: teorema Fundamental del Cálculo en cos y sen Calcular las siguientes primitivas 1 1 dx = arctan ( 1 tan( x )). 5+4 cos(x) cos (x) dx = 1 ln 1+sen(x) cos(x)(1+sen (x)) 4 1 sen(x) + 3 arctan(sen(x)). 3 sen (x) dx = ( ) 1 arctan 1+cos (x) tan(x) x. 4 sen (x) cos (x) dx = 1 x 1 sen(4x). 8 3

24 Funciones de la forma f (e x ) en cos y sen Si f es una fracción racional, las primitivas de la forma f (e x ) dx se calculan haciendo el cambio t = e x, y entonces f (e x ) dx = f (t) dt = f 1(t) dt, t donde f 1 es también una fracción racional.

25 Funciones de la forma f (e x ) en cos y sen Si f es una fracción racional, las primitivas de la forma f (e x ) dx se calculan haciendo el cambio t = e x, y entonces f (e x ) dx = f (t) dt = f 1(t) dt, t donde f 1 es también una fracción racional. Hay que mencionar que toda fracción racional de cosh(x) y senh(x) se transforma en una de las anteriores sin más que expresar dichas funciones hiperbólicas en función de la exponencial: cosh(x) = ex +e x y senh(x) = ex e x. Recordar que las inversas se pueden escribir también como: arg cosh(x) = ln(x + x 1), arg senh(x) = ln(x + x + 1).

26 Funciones de la forma f (e x ) en cos y sen Si f es una fracción racional, las primitivas de la forma f (e x ) dx se calculan haciendo el cambio t = e x, y entonces f (e x ) dx = f (t) dt = f 1(t) dt, t donde f 1 es también una fracción racional. Hay que mencionar que toda fracción racional de cosh(x) y senh(x) se transforma en una de las anteriores sin más que expresar dichas funciones hiperbólicas en función de la exponencial: cosh(x) = ex +e x y senh(x) = ex e x. Recordar que las inversas se pueden escribir también como: arg cosh(x) = ln(x + Calcular ( ) 1+sinh(x) dx = ln (e x +1). 1+cosh(x) e x e x +1 x 1), arg senh(x) = ln(x + x + 1).

27 Funciones que contienen ax + bx + c R(x, ax + bx + c)dx = 1 3 que es ya una función racional (I 3 ) 3 1+t 1+t 1 u 3 R(x, ax + bx + c) dx en cos y sen u 3 u 3u (1 u 3 )+u 3 3u du = (1 u 3 ) (1 u 3 ) du Aquí R representa a una función racional de dos variables y suponemos, obviamente, que ax + bx + c tiene sentido. Este tipo de primitivas se conoce con el nombre de irracionales cuadráticas. Por calcular las primitivas de este tipo de funciones basta observar que mediante un adecuado cambio de variable afín (del tipo t = αx + β) laprimitivapropuesta da origen a una de las siguientes: t 1, t +1o 1 t,dependiendode los valores de a, b y c. Setrataahoradecalcularlasprimitivasdecadaunade ellas. 1 t. Puede calcularse de forma sencilla mediante el cambio de variable z =sent. Los otros casos Análisis Matemático I Cuando despues del cambio de variable se obtienen expresiones J. M. Mira de la forma S. Sánchez-Pedreño t 1 o t + 11 se hacen cambios del tipo t por una función hiperbólica. Veáse OCW.

1. Algunas primitivas inmediatas (o casi inmediatas).

1. Algunas primitivas inmediatas (o casi inmediatas). Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera

Más detalles

1. CÁLCULO DE PRIMITIVAS

1. CÁLCULO DE PRIMITIVAS 1 1. CÁLCULO DE PRIMITIVAS Definición 1.1. Primitiva. Una función F (x) es primitiva de f(x) si F (x) = f(x) para todo x del dominio de f. Obsérvese que si F (x) es primitiva de f(x), entonces F (x) +

Más detalles

Cálculo de Primitivas

Cálculo de Primitivas . Primitivas de una función Sea I un intervalo y f : I IR. Se dice que f tiene tiene una primitiva en I si existe una función G : I IR, continua en I, derivable en el interior de I y verificando que G

Más detalles

Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición

Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición Funciones racionales Funciones racionales Tema 5: Integración. Integrales racionales y reducibles a racionales Análisis Matemático Grado en Física Definición Una función f se dice que es racional si f

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Octubre 2013 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada En esta Presentación... En esta Presentación veremos: Definición de Antiderivada Ejemplos En esta Presentación...

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas ir Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura ir ir Índice. Definiciones y propiedades Método de por

Más detalles

Unidad Temática Cálculo de primitivas

Unidad Temática Cálculo de primitivas Unidad Temática 5 5.1 Análisis Matemático (Ingeniería Informática) Departamento de Matemática Aplicada Facultad de Informática Universidad Politécnica de Valencia Contenidos 1 Integración Primitiva Integración

Más detalles

Contenidos de los preliminares

Contenidos de los preliminares Preliminares del tema Contenidos de los preliminares Propiedades de los logaritmos Un par de primitivas elementales Algunas ideas sobre la función arcotangente Funciones hiperbólicas Descomposición en

Más detalles

B. Cálculo de primitivas.

B. Cálculo de primitivas. 50CAPÍTULO 5. INTEGRAL DEFINIDA. CÁLCULO DE PRIMITIVAS y y f(x) x y y F (x) x F (x) 8 >< >: x si x [0, ] x + six (, ] x si x (, ] Figura 5.5: B. Cálculo de primitivas. 5.. Integración inmediata. Definición

Más detalles

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013 Funciones Hiperbólicas Funciones Hiperbólicas Who? Verónica Briceño V. When? noviembre 2013 En esta Presentación... En esta Presentación veremos: Definición de Funciones Hiperbólicas En esta Presentación...

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Antiderivada o Promitiva agosto 2012 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada. En esta Presentación... En esta Presentación veremos: Definición de Antiderivada.

Más detalles

integración de funciones racionales

integración de funciones racionales VIII 1 / 6 Ejercicios sugeridos para : los temas de las clases del 26 de febrero y 2 de marzo de 2004. Tema : Integración de funciones racionales. 1.- Diga, justificando, cuales de las siguientes fórmulas

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II - Fernando Sánchez - - 3 Cálculo Cálculo II de primitivas 04 03 06 Si f es una función elemental, se trata de encontrar una función F que cumpla F (x = f (x. Para una clase amplia de funciones ya se ha

Más detalles

Funciones hiperbólicas inversas (19.09.2012)

Funciones hiperbólicas inversas (19.09.2012) Funciones hiperbólicas inversas 9.09.0 a Argumento seno hiperbólico. y = arg shx = x = senh y = ey e y = x = e y e y. Multiplicando por e y, xe y = e y = e y xe y = 0, de donde e y = x ± x +. Para el signo

Más detalles

Método de integración por fracciones parciales

Método de integración por fracciones parciales Método de integración por fracciones parciales Temas Fracciones parciales. Método de integración por fracciones parciales. Capacidades Descomponer una fracción en suma de fracciones parciales. Conocer

Más detalles

Funciones de una variable real II Fórmula de Taylor y aplicaciones

Funciones de una variable real II Fórmula de Taylor y aplicaciones Universidad de Murcia Departamento Matemáticas Funciones de una variable real II Fórmula de Taylor y aplicaciones B. Cascales J. M. Mira L. Oncina Departamento de Matemáticas Universidad de Murcia Grado

Más detalles

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Ingeniería Matemática SEMANA 6: PRIMITIVAS 3.3. Integración por partes Proposición 3. (Fórmula de integración

Más detalles

1.1. Primitivas inmediatas

1.1. Primitivas inmediatas 1.1. Primitivas inmediatas Sólo sabiendo derivar podemos conocer la primitiva de una amplia variedad de funciones, el conocimiento de dichas primitivas (elementales) junto con algunas técnicas serán suficientes

Más detalles

MÉTODOS DE INTEGRACION

MÉTODOS DE INTEGRACION MÉTODOS DE INTEGRACION En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones elementales

Más detalles

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Este método permite resolver un gran número de integrales no inmediatas. 1. Sean u y v dos funciones dependientes

Más detalles

2. La fórmula de la derivada de un producto de dos funciones, aplicada a f(x) g(x), permite escribir,

2. La fórmula de la derivada de un producto de dos funciones, aplicada a f(x) g(x), permite escribir, INTRO. MÉTODOS DE INTEGR. ( II ) En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones

Más detalles

FUNCIONES ELEMENTALES.

FUNCIONES ELEMENTALES. Departamento de Análisis Matemático FUNCIONES ELEMENTALES.. Polinomios p : R R : p(x) = a n x n + +a x+a 0, x R, donde a 0,a,...,a n son constantes reales. Propiedades de los polinomios: a) p es continuo

Más detalles

Funciones. A.1 Definiciones. Dominio, rango e imagen A.1.1

Funciones. A.1 Definiciones. Dominio, rango e imagen A.1.1 Definiciones A La idea de función aparece por todas partes: cada persona tiene una edad o un número de hijos o una cantidad de dinero en el bolsillo. No necesariamente tenemos que referirnos a números,

Más detalles

Definición. Se denomina primitiva de la función f(x) en un intervalo (a, b) a toda función F (x) diferenciable en (a, b) y tal que F (x) = f(x).

Definición. Se denomina primitiva de la función f(x) en un intervalo (a, b) a toda función F (x) diferenciable en (a, b) y tal que F (x) = f(x). Tema 5 Integración 5.1 Integral Indefinida Definición. Se denomina primitiva de la función f(x) en un intervalo (a, b) a toda función F (x) diferenciable en (a, b) y tal que F (x) = f(x). Ejemplos: La

Más detalles

Por extensión, también se puede hablar de la preimagen de un conjunto. Si B 0 B, la preimagen de B 0 es

Por extensión, también se puede hablar de la preimagen de un conjunto. Si B 0 B, la preimagen de B 0 es Definiciones A La idea de función aparece por todas partes: cada persona tiene una edad o un número de hijos o una cantidad de dinero en el bolsillo. No necesariamente tenemos que referirnos a números,

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II - Fernando Sánchez - - 3 Cálculo Cálculo II de primitivas 0 03 07 Si f es una función elemental, se trata de encontrar una función F que cumpla F (x) = f (x). Para una clase amplia de funciones ya se ha

Más detalles

16) x 2) ( 7) exp(2t) 8) 2. 11) y 5 +y. 12) sen (log(x)) 17) Ch 2 xdx 18) x x 3dx

16) x 2) ( 7) exp(2t) 8) 2. 11) y 5 +y. 12) sen (log(x)) 17) Ch 2 xdx 18) x x 3dx 1.7. Demostrar la fórmula del binomio de Newton: n ( ) n (a + b) n = a j b n j j siendo n un número natural mayor o igual que 1. 1.8. Sea P [x] el conjunto de los polinomios de grado menor o igual a dos

Más detalles

TRABAJO PRÁCTICO Nº 4: POLINOMIOS

TRABAJO PRÁCTICO Nº 4: POLINOMIOS TRABAJO PRÁCTICO Nº : POLINOMIOS EJERCICIOS A DESARROLLAR Clase ) Dados los polinomios reales P(x) =.x ; Q(x) = 3x3 x + y los polinomios complejos R(x) = i.x ; S(x) = x + ( + i).x i, calcular: a) 3x. P(x)

Más detalles

2 x

2 x FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08-2 Importante: Visita regularmente ttp://www.dim.ucile.cl/~calculo. Aí encontrarás las guías de ejercicios

Más detalles

Contenidos de los preliminares

Contenidos de los preliminares Preliminares del tema 3 Contenidos de los preliminares Algunas primitivas Una primitiva por cambio de variable Igualdades notables Ecuaciones bicuadradas Construcción de un polinomio de segundo grado a

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

Funciones, Límites y Continuidad

Funciones, Límites y Continuidad Tema Funciones, Límites y Continuidad Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real, así como de los límites en dichas

Más detalles

POLINOMIOS. (Versión Preliminar) Un polinomio en la variable x es una expresión de la forma. p(x) = a n x n + a n 1 x n

POLINOMIOS. (Versión Preliminar) Un polinomio en la variable x es una expresión de la forma. p(x) = a n x n + a n 1 x n POLINOMIOS (Versión Preliminar) Estas notas deben ser complementadas con ejercicios de la guía o de algun texto. En esta sección denotaremos por N al conjunto de los números naturales incluido el cero.

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS INTEGRALES INDEFINIDAS Índice: 1. Primitiva de una función--------------------------------------------------------------------------- 2 2. Interpretación geométrica. Propiedades de la integral indefinida--------------------------

Más detalles

Integrales indenidas

Integrales indenidas Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.

Más detalles

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010 Polinomios (II) 1 Sesión teórica 4 (págs. 3-9) 7 de septiembre de 010 Pares de raíces conjugadas irreducibles Consideremos un polinomio f (x) =a0 + a1x + ax + + anx n R[x], es decir, con coeficientes reales

Más detalles

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática CAPITULO 5 Integral Indefinida 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr) Créditos

Más detalles

La integral indefinida

La integral indefinida Apuntes Matemáticas º de bachillerato Leibniz Tema 7 La integral indefinida Matemáticas º de bachillerato 7. Introducción Def.: Dadas dos funciones, F() y f(), si se verifica que: F () f(), para un cierto

Más detalles

Cálculo integral de funciones de una variable: integral indefinida

Cálculo integral de funciones de una variable: integral indefinida Cálculo integral de funciones de una variable: integral indefinida BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

Tema 6: Derivada de una función

Tema 6: Derivada de una función Tema 6: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles

Capítulo 2: Cálculo diferencial de una y varias variables

Capítulo 2: Cálculo diferencial de una y varias variables Capítulo 2: Cálculo diferencial de una y varias variables (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos Límites y continuidad Límites laterales

Más detalles

Familiarizarse con las propiedades y las principales técnicas de integración.

Familiarizarse con las propiedades y las principales técnicas de integración. Capítulo 7 Integración Objetivos Familiarizarse con las propiedades y las principales técnicas de integración. 7.1. Definición y propiedades Sea f(x) una función real. Una primitiva o integral indefinida

Más detalles

Cálculo de primitivas.

Cálculo de primitivas. Cálculo de primitivas. Isabel María Elena Fernández y Celia Rodríguez Alfama * 8 de septiembre de 005 Resumen Vamos a intentar mostrar una introducción al cálculo integral, que es el tema que nos ha quedado

Más detalles

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS NOTAS Toda expresión algebraica del tipo a n x n + a n 1 x n 1 + + a 1 x + a 0 es un polinomio de grado n, si a n 0. Es bien conocida la fórmula que da las

Más detalles

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): 1 FUNCIONES ELEMENTALES CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): Lo denotamos por : f : Dom -----> R x

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

Funciones reales de variable real

Funciones reales de variable real Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

1. Empleando sustitución universal, calcular: dx.

1. Empleando sustitución universal, calcular: dx. Escuela Superior Politécnica del Litoral Práctica 1.4 de Cálculo Integral 1. Empleando sustitución universal, calcular: a) b) 1 sen(x) + cos(x) dx. 1 3 + 5cos(x) dx. c) d) sen(x) 1 sen(x) dx. dx 8 4sen(x)

Más detalles

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Integración por fracciones parciales

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Integración por fracciones parciales Métodos de Integración Integración por fracciones parciales P x) Consideremos la función racional donde P, Q son polinomios. Si derivamos una función racional Qx) obtenemos una funciòn racional. Si integramos

Más detalles

Apuntes de Funciones

Apuntes de Funciones Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función. Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,

Más detalles

INTEGRACIÓN INDEFINIDA

INTEGRACIÓN INDEFINIDA 1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple quef'(x) = f(x), x. Dicho

Más detalles

x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2

x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2 Tema 5 Integración Indefinida Ejercicios resueltos Ejercicio Calcular la integral x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = x dx dv =

Más detalles

S2: Polinomios complejos

S2: Polinomios complejos S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2017 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

Derivadas. 1. Tasa de variación media La tasa de variación media de una función f(t) en un intervalo [a, b] se define como:

Derivadas. 1. Tasa de variación media La tasa de variación media de una función f(t) en un intervalo [a, b] se define como: Derivadas Antes de dar la definición de derivada de una función en un punto, vamos a introducir el concepto de tasa de variación media y dos ejemplos o motivaciones iniciales que nos van a dar la medida

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

1. Nociones básicas. Oct, 2007

1. Nociones básicas. Oct, 2007 Cálculo 1. Nociones básicas Oct, 2007 Nociones básicas Números complejos Funciones reales de variable real Valor absoluto Funciones polinómicas y racionales Función exponencial y logarítmica Funciones

Más detalles

Funciones de Una Variable Real I. Derivadas

Funciones de Una Variable Real I. Derivadas Contents : Derivadas Universidad de Murcia Curso 2010-2011 Contents 1 Funciones derivables Contents 1 Funciones derivables 2 Contents 1 Funciones derivables 2 3 Objetivos Funciones derivables Definir,

Más detalles

ANÁLISIS MATEMÁTICO IES A SANGRIÑA 2016/2017

ANÁLISIS MATEMÁTICO IES A SANGRIÑA 2016/2017 ANÁLISIS MATEMÁTICO 4. INTEGRACIÓN INDEFINIDA UN POCO DE HISTORIA El símbolo de integración fue introducido por el matemático alemán Gottfried Leibniz en 1675, basándose en la palabra latina summa, suma,

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN DERIVADA DE UNA FUNCIÓN 3URI/XLV~xH] Se estudia aquí uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. Además de la definición y su interpretación, se allarán las

Más detalles

Julio Deride Silva. 6 de agosto de 2010

Julio Deride Silva. 6 de agosto de 2010 Repaso Matemático Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 6 de agosto de 2010 Tabla de Contenidos Repaso Matemático Julio Deride Silva Área

Más detalles

Capítulo 5: Cálculo integral

Capítulo 5: Cálculo integral Capítulo 5: Cálculo integral 1. Lección 18. La integral indefinida 1.1. Concepto de integral indefinida En el capítulo 3 hemos visto la diferencial de una función: dada y = f(x), su diferencial es una

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Graficación de funciones

Graficación de funciones Clasificación de funciones Graficación de funciones Efraín Soto Apolinar www.aprendematematicas.org.mx 15 de enero de 2011 Efraín Soto Apolinar (www.aprendematematicas.org.mx) Clasificación de funciones

Más detalles

1. CÁLCULO DE PRIMITIVAS

1. CÁLCULO DE PRIMITIVAS . CÁLCULO DE PRIMITIVAS. Calcular las siguientes integrales indefinidas:. ( + Es inmediata. ( = (ln ln + + C +. + + + Descomponemos el integrando en fracciones parciales y obtenemos. + + = + arc tg + =

Más detalles

Ejercicios de Álgebra Básica. Curso 2016/17

Ejercicios de Álgebra Básica. Curso 2016/17 Tema 4: Polinomios Ejercicios de Álgebra Básica. Curso 2016/17 El anillo k[x]. Divisibilidad Ejercicio 1. Sea A un anillo. Prueba que, si A es dominio de integridad, A[x] = A y demuestra con un contraejemplo

Más detalles

Cálculo 20. Semestre B-2015 Prof. José Prieto Correo: 1. Teoremas sobre funciones derivables

Cálculo 20. Semestre B-2015 Prof. José Prieto Correo: 1. Teoremas sobre funciones derivables Cálculo 20. Semestre B-2015 Prof. José Prieto Correo: prieto@ula.ve 1. Teoremas sobre funciones derivables Problema 1 Determine si la función dada satisface las hipótesis del Teorema de Bolzano sobre el

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

Cálculo:Notas de preliminares

Cálculo:Notas de preliminares Cálculo:Notas de preliminares Antonio Garvín Curso 04/05 1 Recordando cosas Recordaremos los conjuntos con los que vamos a trabajar, en especial R y R n. A fin de cuentas el cálculo trata basicamente de

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia Cálculo de primitivas MATEMÁTICAS II. PRIMITIVA DE UNA FUNCIÓN. PROPIEDADES DE LA INTEGRAL INDEFINIDA. INTEGRALES INMEDIATAS.. Ejemplos de integrales inmediatas tipo potencia.. Ejemplos de integrales inmediatas

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

1. Función primitiva e integral indefinida

1. Función primitiva e integral indefinida Entrenamiento Matemático Sesión 0 (4 -Octubre-00) Cálculo elemental de Primitivas GRUPO:. Función primitiva e integral indefinida Dada una función f: R-->R, se dice que una función derivable F es primitiva

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Métodos de integración

Métodos de integración Teóricas de Análisis Matemático (8) - Práctica 9 - Métodos de integración Práctica 9 - Parte Métodos de integración Esta parte de la materia está dedicada a estudiar distintos métodos que nos resultarán

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

Matemáticas Empresariales I. Funciones y concepto de ĺımite

Matemáticas Empresariales I. Funciones y concepto de ĺımite Matemáticas Empresariales I Lección 3 Funciones y concepto de ĺımite Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 22 Concepto de función Función de

Más detalles

Bloque 3. Análisis. 2. Tipos de funciones

Bloque 3. Análisis. 2. Tipos de funciones Bloque 3. Análisis 2. Tipos de funciones 1. Función lineal Es una función polinómica de primer grado y tiene una ecuación del tipo: y = mx. Su gráfica es una línea recta que pasa por el origen de coordenadas,

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

Integrales racionales

Integrales racionales hapter Integrales racionales Son del tipo dx donde P(x) y Q(x) son dos polinomios en x Q(x) asos: ) Si grado Q(x). Efectuamos la división entre ambos polinomios y: Q(x) dx = (x)dx + R(x) Q(x) dx siendo

Más detalles

Matemáticas CÁLCULO DE DERIVADAS

Matemáticas CÁLCULO DE DERIVADAS Matemáticas Derivada de un cociente de funciones CÁLCULO DE DERIVADAS Considérense, como en los casos precedentes, dos funciones f y g definidas y derivables en un punto x. Además, en este caso, se tiene

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Capitulo IV - Inecuaciones

Capitulo IV - Inecuaciones Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

Cálculo diferencial de funciones reales de variable real

Cálculo diferencial de funciones reales de variable real Cálculo diferencial de funciones reales de variable real María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I (1 o Ingeniería Electrónica Automática e Industrial) M. Muñoz (U.P.C.T.) Cálculo diferencial

Más detalles

Función Logaritmo y exponencial. Función logaritmo natural

Función Logaritmo y exponencial. Función logaritmo natural Función Logaritmo y exponencial Función logaritmo natural En términos matemáticos la función logaritmo natural es una herramienta de mayor utilidad que el logaritmo del álgebra elemental, el cual está

Más detalles

f(x) = x 2 Ejercicio 121 Para x = 1/2 formar los cocientes incrementales f/ x para los incrementos entre x = 1 y x = 1+ x de tres maneras diferentes:

f(x) = x 2 Ejercicio 121 Para x = 1/2 formar los cocientes incrementales f/ x para los incrementos entre x = 1 y x = 1+ x de tres maneras diferentes: 22 CAPÍTULO 3. INTEGRALES: CÁLCULO POR MEDIO DE PRIMITIVAS 3.2. La derivada En la sección 3. analizamos los incrementos y cocientes incrementales de varias funciones. En esta sección nos concentraremos

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad.

Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad. Tema 1: Repaso de conocimientos previos.... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Outline Relaciones trigonométricas 1 Relaciones trigonométricas 2 3 4 5 6 Outline Relaciones

Más detalles

FUNCIONES POLINÓMICAS

FUNCIONES POLINÓMICAS PRÁCTICAS CON DERIVE 28 NUM.de MATRÍCULA FECHA... APELLIDOS /Nombre...PC PRÁCTICA CUATRO. FUNCIONES ELEMENTALES FUNCIONES POLINÓMICAS Dado un entero n 0, la función f(x) =a 0 x n + a 1 x n 1 + a 2 x n

Más detalles

Funciones Parte 1. Prof. Derwis Rivas Olivo

Funciones Parte 1. Prof. Derwis Rivas Olivo Universidad de Los ndes Facultad de Ingeniería Escuela ásica de Ingeniería Departamento de Cálculo Funciones Parte 1 Prof. Derwis Rivas Olivo 1.- Dadas las funciones f : R R / f(x) = x 3 + x 3 y g : R

Más detalles