Construcción de conjuntos B h módulo m y particiones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Construcción de conjuntos B h módulo m y particiones"

Transcripción

1 Vol. XIV No 2 Diiembre (2006) Matemátias: Matemátias: Enseñanza Universitaria Esuela Regional de Matemátias Universidad del Valle - Colombia Construión de onjuntos B h módulo m y partiiones Gilberto Garía P. Carlos Alberto Trujillo S. Juan Miguel Velásuez S. Reibido Abr. 18, 2006 Aeptado Jun. 13, 2006 Abstrat A set a 1, a 2,..., a n,... } of positive integers is alled a B h set, if all the sums a i1 +a i2 + + a ih (i s = i r is permitted) are different. In this paper we generalize the Bose-Chowla Theorem on onstrution of B h set on finite fields. Besides, we show the existene of a partition of an interval into B h sets. Keywords: B h sets, Bose-Chowla Theorem, Finite Field, Partitions. AMSC(2000): Primary: 11B50, Seondary: 11B75, 12E20, 05B10 Resumen A un onjunto A de enteros positivos se le llama un onjunto B h módulo m, si todas las sumas de h elementos de A, no neesariamente distintos, son inongruentes mod m. Demostramos ue uando m es de la forma n 1, para potenia de un primo, los logaritmos disretos de las raíes de polinomios de Artin-Shreier en el ampo finito on n elementos forman un onjunto B h módulo m, siendo h un divisor de n. Este resultado generaliza un teorema lásio en onstruión de onjuntos B h. Además, demostramos ue hay partiiones de Z n en onjuntos B h, donde h reorre los divisores de n. Palabras y frases laves: Conjuntos B h, Teorema de Bose - Chowla, Campos Finitos, Partiiones. 1 Introduión Un onjunto A de enteros positivos es un onjunto B h, o un onjunto de lase B h, si para todo entero positivo n, existe a lo sumo una representaión de la forma n = a 1 + a a h on a 1 a 2 a h y a i A Es deir, un onjunto A es B h, si todas las posibles sumas de h de sus elementos, son distintas. Además, si m 2 es entero, tal ue las sumas de h elementos de A son todas inongruentes módulo m, se die ue A es un onjunto B h módulo m. Cálulos senillos muestran ue A = 2 i : i N } es un onjunto B 2 y ue 1,12,22,29,31,34,35} es B 2 mod 48. El primer método para onstruir onjuntos B h fue desarrollado por J. Singer, [3], on éste método se onstruyen onjuntos B 2 módulo ( ), on +1 elementos. Los onjuntos del tipo Singer haen parte de los llamados Conjuntos Perfetos en Diferenias, estos son onjuntos de residuos módulo m, tales ue todos los elementos distintos de ero en diho módulo se pueden representar de manera únia omo la diferenia de dos elementos del onjunto.

2 66 G. Garía, C. Trujillo y J. Velásuez Por ejemplo, los onjuntos 1,2,4} y 1,2,5,7} son Perfetos en Diferenia para los módulos 7 y 13, respetivamente. Otro proedimiento para onstruir onjuntos B h modulares, es el desarrollado por Bose-Chowla, [1], en el ual se garantiza ue para h entero mayor o igual ue dos y una potenia de un primo, si θ es un elemento primitivo de F, el ampo finito on h elementos, entones el onjunto 0 < a h 1 : θ a θ F } es Bh módulo h 1. 2 Construión de onjuntos B h módulo m El primer teorema ue se presenta en esta seión, permite onstruir onjuntos B h on elementos por medio de los logaritmos disretos de las raíes de un tipo de polinomios en ampos finitos. Si es una potenia de un primo, h 2 es un entero y K = F, F = F h, son los ampos finitos on y h elementos respetivamente, se sabe por un resultado lásio de Artin - Shreier, [2, Thm 2.25], ue si γ F, la euaión x x γ = 0 tiene una soluión en F, si y sólo sí, la traza de γ sobre K es ero, si éste es el aso y α F es una raíz de la euaión, los elementos de α + K son todas las raíes de la misma. El siguiente teorema establee un método para onstruir onjuntos B h a través de las raíes de los polinomios de la forma x x γ Teorema 2.1. Si K y F son los ampos finitos on y h elementos respetivamente, β, θ elementos de F, on θ un elemento primitivo de F, γ = β β y } A(,θ,β) = 0 a h 1 : θ a θ a γ = 0 Entones: 1. Si β tiene grado d sobre K, A(, θ, β) es un onjunto on elementos, de lase B d módulo h Si β = 0, A(,θ,0) está formado por los múltiplos de m = h 1 1 ontenidos en 0,..., h 1 }. Demostraión. 1. Sea β un elemento de grado d sobre K, omo onseuenia del resultado de Artin-Shreier, antes menionado, se tiene ue } A(,θ,β) = 0 a h 1 : θ a β + K por lo tanto, es laro ue A(, θ, β) tiene elementos, y ue para ada a i A(,θ,β) existe un únio α i K tal ue

3 Conjuntos B h y partiiones 67 θ a i = β + α i (1) de auí se sigue ue, si donde a i1 + a i2 + + a id a j1 + a j2 + + a jd mod h 1 (2) i 1 i 2 i d, j 1 j 2 j d entones y de (1), se tiene θ a i 1θ a i2 θ a id = θ a j 1θ a j2 θ a jd d d (β + α i ) = (β + α i ). i=1 i=1 Al expandir el produto y simplifiar β d en ambos lados de la igualdad, se obtiene una euaión on oefiientes en K, de grado menor ue d ue se anula en β, esto es imposible, a menos ue el onjunto de los α y el de los α sean iguales, en uyo aso a i1,a i2,...,a id } = a j1,a j2,...,a jd } y A(,θ,β) es un onjunto B d módulo h Si β = 0, el onjunto A(,θ,0) viene dado por A(,θ,0) = } 0 a h 1 : θ a K = 0 a h 1 : θ a = θ a}. Por lo tanto, si a A(,θ,0), se umple ue θ ( 1)a = 1 y omo θ ( 1) tiene orden m = h 1, se sigue ue a es un múltiplo de m. 1 Al haer β = θ en el Teorema anterior, se obtiene el Teorema de Bose- Chowla, ver [1]. Convenión. En adelante, y a falta de un mejor nombre, diremos ue el onjunto A(,θ,0) es un onjunto B 1 mod ( h 1).

4 68 G. Garía, C. Trujillo y J. Velásuez 3 Partiiones. Una onseuenia del Teorema 2.1, es ue para n en Z h, existe un onjunto B d on elementos ue ontiene a n, siendo d un divisor de h ue depende de n. Ejemplo 3.1. Dado ue f(z) = z 4 + z 3 + z 2 + 2z + 2 es irreduible en Z 3, si θ es una de raíz de f(z), K = θ 10 0} y F = θ 0} son los ampos finitos on 9 y 81 elementos, respetivamente, β = θ 13 F es de grado 2 sobre K, por lo tanto, los logaritmos en base θ de las raíes de los elementos de θ 13 + K determinan un onjunto B 2 mod 80, ue ontiene a 13, diho onjunto es 1,13,35,48,49,66, 72, 74,77}. Si se aplia repetidamente el proedimiento anterior, variando n, se obtiene una partiión de Z 81 en onjuntos B 2 mod 80, el onjunto 0,10, 20,...,80} aparee al tomar β K. En general se tiene el siguiente Teorema. Teorema 3.2. Existe una partiión de Z h en onjuntos B d módulo ( h 1), donde d reorre los divisores de h. Demostraión. Sean K y F, los ampos finitos on y h elementos respetivamente, θ un elemento primitivo de F y P = A(,θ,β) : β F }. Se mostrará ue P satisfae la afirmaión. En efeto, si n Z h es laro ue n A(,θ,θ n ) y por lo tanto Z h = β F A(,θ,θ n ) de otro lado, si A(,θ,α) y A(,θ,β) son elementos de P tales ue A(,θ,α) A(,θ,β) entones, existe n Z h, tal ue θ n α y θ n β son elementos de K, así ue, (α β) K y A(,θ,α) = A(,θ,β). Lo ue termina la prueba. Si en el Teorema anterior, se toma h primo, todos los elementos de la partiión P, exepto A(,θ,0), son onjuntos B h módulo h 1. Si h es ompuesto, para ada divisor d de h, se puede determinar uántos onjuntos de la partiión son de lase B d módulo h 1, tal omo se muestra en el siguiente Teorema. Teorema 3.3. Si K y F son los ampos finitos on y h elementos, respetivamente y si d es un divisor de h, entones P d, la antidad de onjuntos B d módulo h 1 en la partiión de Z h obtenida por apliaión del Teorema 3.2, es P d = 1 ( ) d µ. d

5 Conjuntos B h y partiiones 69 Demostraión. Del Teorema 2.1, se sigue ue ada β en F de grado d sobre K, determina un onjunto B d, además, omo la antidad de elementos en F de grado d sobre K es d µ ( d, 1 y dado ue ada onjunto de la partiión es de ardinal, se sigue ue P d = 1 ( ) d µ d Ejemplo 3.4. En la partiión de Z 6 obtenida por la apliaión del Teorema 3.2, se tiene ue: P 1 = 1 1 P 2 = 1 2 P 3 = 1 3 P 6 = 1 6 µ ( 1 = 1 µ ( 2 = 1 µ ( 3 = 2 1 µ ( 6 = P 1 es el onjunto de múltiplos de En total se tienen 5 onjuntos, ada uno on elementos, de los uales 1 son B 2, 2 1 son B 3 y son B 6. Ejemplo 3.5. Al tomar = 9 y h = 2, por el Teorema 3.3, existe una partiión del onjunto Z 81 en 9 onjuntos, ada uno on 9 elementos, uno de ellos está formado por los múltiplos de = 10, a saber, A 0 = 0,10,20,30,40, 50,60,70, 80}, los demás, son onjuntos B 2 módulo 80, ue se obtienen al apliar el proedimiento desrito en el Ejemplo 3.1. Para este aso, una partiión de Z 81 viene dada por: 0,10,20,30,40, 50, 60,70,80}; 1, 13, 35,48,49, 66,72,74, 77} 2,4,7,11,23,45,58,59, 76}; 3, 25,38,39, 56, 62,64, 67, 71} 5,18,19,36,42, 44, 47,51,63}; 6, 12, 14,17,21, 33,55,68, 69} 8,9,26,32,34,37,41, 53,75}; 15, 28, 29,46,52, 54,57,61, 73} 16,22,24,27,31,33,65, 78,79}. Referenias [1] Bose and Chowla, Theorems in the additive theory of numbers. Comment. Math. Helvet. 37 ( ), MR 26: Donde µ es la funión de Möbius. Ver seión 3.2 en [2]

6 70 G. Garía, C. Trujillo y J. Velásuez [2] R. Lidl and H. Niederreiter, Finite fields. With a foreword by P. M. Cohn. Seond edition. Enylopedia of Mathematis and its Appliations, 20. Cambridge University Press, Cambridge, MR 97i: [3] J. Singer, A theorem in finite projetive geometry and some apliations to number theory, Trans. Am.math.So. 43, MR Direión de los autores: Gilberto Garía P., Universidad de Antiouia, gigaria@matematias.udea.edu.o Carlos Alberto Trujillo S., Universidad del Caua, trujillo@uniaua.edu.o Juan Miguel Velásuez S., Universidad del Valle, jumiveso@univalle.edu.o

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Discontinuidades en un Punto 1 - Tiene ramas infinitas en un punto

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Discontinuidades en un Punto 1 - Tiene ramas infinitas en un punto LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Disontinuidades en un Punto - Tiene ramas infinitas en un punto y 5 La reta 5 es una asíntota vertial - Presenta un salto en un punto, si y

Más detalles

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar:

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar: Pensamiento lgebraio Temas que debe dominar: GUÍ DE PR LOS SPIRNTES L MME-06 Definiión, operaiones y propiedades de: Números Naturales Números Enteros Números raionales Números irraionales Números omplejos

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauhy Fórmula integral de Cauhy. Si una funión f es analítia en una región que ontiene a urva simple errada y a su interior, entones para ada punto z 0 enerrado por, dz = 2πi f(z 0

Más detalles

Modulo de Desigualdades e Inecuaciones. 3º Medio

Modulo de Desigualdades e Inecuaciones. 3º Medio Modulo de Desigualdades e Ineuaiones. º Medio TEMA : Orden, Valor Absoluto y sus propiedades Definiión : La desigualdad a < b es una relaión de orden en el universo de los números reales. Por lo tanto

Más detalles

Matemáticas III Andalucía-Tech. Integrales múltiples

Matemáticas III Andalucía-Tech. Integrales múltiples Matemátias III Andaluía-Teh Tema 4 Integrales múltiples Índie. Preliminares. Funión Gamma funión Beta. Integrales dobles.. Integral doble de un ampo esalar sobre un retángulo................ Integral doble

Más detalles

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B.

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B. CONJUNTOS 1. Si se umple: a) = b) = ) = (Convoatoria junio 2001. Examen tipo E ) Es laro que la opión orreta es la a). Cuando un onjunto está dentro de otro, la interseión es el onjunto pequeño y la unión

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 1

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 1 INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tema 1 1.1 BREE INTRODUCCIÓN A LA LÓGICA MATEMÁTICA Bibliografía: Smith, Karl J.- Introduión a la Lógia simbólia.- Grupo Editorial Iberoaméria.- Méio, 1991. Espinosa

Más detalles

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides Reursión y Relaiones de Reurrenia UCR ECCI CI-04 Matemátias Disretas M.S. Krysia Daviana Ramírez Benavides Algoritmos Reursivos Un algoritmo es reursivo si se soluiona un problema reduiéndolo a una instania

Más detalles

AN ALISIS MATEM ATICO B ASICO. C ALCULO DE PRIMITIVAS. FUNCIONES RACIONALES.

AN ALISIS MATEM ATICO B ASICO. C ALCULO DE PRIMITIVAS. FUNCIONES RACIONALES. AN ALISIS MATEM ATICO B ASICO. C ALCULO DE PRIMITIVAS. FUNCIONES RACIONALES. Cuando tenemos el problema de alular la primitiva de una funion raional P (x) an x n + a n x n + + a x + a 0 b m x m + b m x

Más detalles

Construcción de Conjuntos B 2 [2] Finitos

Construcción de Conjuntos B 2 [2] Finitos Construcción de Conjuntos B [] Finitos Gladis J. Escobar Carlos A. Trujillo S. Oscar H. Zemanate Resumen Un conjunto de enteros positivos A se llama un conjunto B [g] si, para todo entero positivo s, la

Más detalles

En el sistema S las fórmulas de aberración relativista y efecto Doppler dan

En el sistema S las fórmulas de aberración relativista y efecto Doppler dan FÍSICA TEÓRICA 1 2do. Cuatrimestre 2015 Fresnel relativista Guía 6, problema 3 Se trata de enontrar las ondas reflejadas y transmitidas en el sistema del laboratorio uando una onda plana inide sobre la

Más detalles

Integración de formas diferenciales

Integración de formas diferenciales Capítulo 9 Integraión de formas difereniales 1. Complejos en R n En este apítulo iniiamos el estudio de la integraión de formas difereniales sobre omplejos en R n. Un omplejo es una ombinaión de ubos en

Más detalles

Núcleo e Imagen de una Transformación Lineal

Núcleo e Imagen de una Transformación Lineal Núleo e Imagen de una Transformaión Lineal Departamento de Matemátias CCIR/ITESM 8 de junio de Índie 7.. Núleo de una transformaión lineal................................. 7.. El núleo de una matri la

Más detalles

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville.

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. 4. Proiedades algebraias de las soluiones. Fórmulas de Abel y Liouville. A lo largo de esta seión suondremos que P, Q y R son funiones ontinuas en un intervalo

Más detalles

El Teorema de Cauchy

El Teorema de Cauchy El Teorema de Cauhy Deimos que una urva es errada si termina en el mismo punto donde empieza. Deimos que una urva es simple si no tiene autointerseiones. Uno de los primeros teoremas de topología del plano,

Más detalles

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012 Resumen de las Reglas de Diseño de Compensadores R. Alzate Universidad Industrial de Santander Buaramanga, marzo de 202 Sistemas de Control - 23358 Esuela de Ingenierías Elétria, Eletrónia y Teleomuniaiones

Más detalles

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos.

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos. Clase Las euaiones de Maxwell en presenia de dielétrios. A diferenia de los metales (ondutores elétrios) existen otro tipo de materiales (dielétrios) en los que las argas elétrias no son desplazadas por

Más detalles

Integración de formas diferenciales

Integración de formas diferenciales Capítulo 9 Integraión de formas difereniales. Complejos en R n En esta seión definiremos los objetos más simples en R n : los ubos, y los omplejos que forman. Es en estos objetos donde, más adelantes,

Más detalles

Tema 1. Sección 2. Incompatibilidad de la mecánica de Newton con el electromagnetismo.

Tema 1. Sección 2. Incompatibilidad de la mecánica de Newton con el electromagnetismo. Tema. Seión 2. Inompatibilidad de la meánia de Newton on el eletromagnetismo. Manuel Gutiérrez. Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. 2907-Málaga. Spain. Abril de 200.

Más detalles

Tema 6: Semejanza en el Plano.

Tema 6: Semejanza en el Plano. Tema 6: Semejanza en el Plano. 6.1 Semejanza de Polígonos. Definiión 6..1.- Cuatro segmentos a, b, y d son proporionales si se umple la siguiente igualdad: a =. A ese oiente omún se le llama razón de proporionalidad.

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Euaiones de primer grado. Resuelve las siguientes euaiones de primer grado on paréntesis. 3( + ) + ( 3 ) = 7 3( ) ( 3 ) ( + ) = 3( ) ( + ) ( + 3) = 3 + = 5 ( 7 ). Resuelve las siguientes euaiones de primer

Más detalles

UNIDAD 1.- PROBABILIDAD

UNIDAD 1.- PROBABILIDAD UNIDAD 1.- PROBABILIDAD 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. Definiión: Un fenómeno o experienia se die aleatorio uando al repetirlo en ondiiones análogas no se puede predeir el resultado. Si

Más detalles

Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG)

Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG) PAEG junio 016 Propuesta B Matemátias II º Bahillerato Pruebas de Aeso a Ensen anzas Universitarias Oiiales de Grado (PAEG) Matemátias II (Universidad de Castilla-La Manha) junio 016 Propuesta B EJERCICIO

Más detalles

y = y ' Esta es la relatividad de Galileo.

y = y ' Esta es la relatividad de Galileo. Transformaión de Galileo Supongamos dos sistemas de referenia: uno fijo on origen en y otro móil on respeto al primero que tiene su origen en. Para simplifiar, amos a suponer que el móil sólo se muee en

Más detalles

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008 Ejeriios de Matries, deterinantes sisteas de euaiones lineales. Álgebra 8 - Dado el sistea de euaiones lineales 5 (a) ['5 puntos] Clasifíalo según los valores del paráetro λ. (b) [ punto] Resuélvelo para

Más detalles

Extracción de parámetros de señales acústicas

Extracción de parámetros de señales acústicas VI Congreso Iberoameriano de Aústia - FIA 8 Buenos Aires, 5, 6 y 7 de noviembre de 8 Extraión de parámetros de señales aústias Aguilar, Juan (a), Salinas, Renato (b) FIA8-A16 (a) Instituto de Aústia, Universidad

Más detalles

Por qué k µ es un cuadrivector?

Por qué k µ es un cuadrivector? Por qué k µ es un uadrivetor? odemos deir algo aera de por qué la freuenia y el vetor número P de onda forman un uadrivetor. La respuesta orta es: onda plana en un sistema, onda plana en todos. La idea

Más detalles

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros roblema : uánto suman los primeros 008 términos de la suesión 0,,,,, L? Soluión: Observamos que los números de la suesión se pueden esribir de la siguiente 0 manera,,,,, L de esta manera la suma de los

Más detalles

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a .- Las asíntotas de la hipérbola a x + a y + axy + a 0x + a 0y + a 00 = 0 son retas que pasan por su entro y tienen de pendiente m tal que: a a) m = a b) m es raíz de m + a m + a 0 a = a + am + a m = )

Más detalles

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas Unidad 1. Superies Cuádrias 1.6 Superies Regladas Superies Regladas Deniión 1. Una superie on la propiedad de que para ada punto en ella hay toda una reta que está ontenida en la superie y que pasa por

Más detalles

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN Sugerenias al Profesor: Trabajar úniamente on funiones polinomiales y raionales, alarando que generalmente al bosquejar sus gráfias solo se muestra

Más detalles

Ecuaciones de 2º grado

Ecuaciones de 2º grado Euaiones de º grado La fórula para alular las raíes de la euaión opleta de segundo grado a es: Núero de soluiones a a La antidad a que aparee ajo el radial se llaa disriinante de la euaión, a que perite

Más detalles

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA 4. RLACIONS CONSTITUTIVAS. LY D HOOK GNRALIZADA 4. Ley de Hooke. Robert Hooke planteó en 678 que existe proporionalidad entre las fuerzas apliadas a un uerpo elástio y las deformaiones produidas por dihas

Más detalles

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Revista NOOS Volumen (3) Pág 4 8 Derehos Reservados Faultad de Cienias Exatas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Carlos Daniel Aosta Medina Ingrid Milena Cholo

Más detalles

MATEMÁTICA I Capítulo 2 CONJUNTOS Y FUNCIONES

MATEMÁTICA I Capítulo 2 CONJUNTOS Y FUNCIONES MATEMÁTICA I - 01- Capítulo CONJUNTOS Y FUNCIONES Comenzaremos on algunos omentarios generales aera de las demostraiones de enuniados matemátios. Se sugiere que repasen y relean el apunte de lógia visto

Más detalles

INSTITUTO DE PROFESORES ARTIGAS

INSTITUTO DE PROFESORES ARTIGAS INSTITUTO D PROFSORS RTIGS SPILIDD MTMÁTI GOMTRÍ UNIDD FIH 3: Teorema de Thales y más. 3.1 Teorema de Thales. 3. Teorema de las bisetries. 3.3 irunferenia de polonio. 3.4 riterios de semejanza de triángulos.

Más detalles

Tema 3. TRABAJO Y ENERGÍA

Tema 3. TRABAJO Y ENERGÍA Tema 3. TRABAJO Y ENERGÍA Físia, J.. Kane, M. M. Sternheim, Reverté, 989 Tema 3 Trabajo y Energía Cap.6 Trabajo, energía y potenia Cap. 6, pp 9-39 TS 6. La arrera Cap. 6, pp 56-57 . INTRODUCCIÓN: TRABAJO

Más detalles

1. Funciones matriciales. Matriz exponencial

1. Funciones matriciales. Matriz exponencial Dpto. Matemátia Apliada, Faultad de Informátia, UPM EDO Sistemas Lineales. Funiones matriiales. Matriz exponenial.. Funiones vetoriales Sea el uerpo IK que puede ser IC ó IR y sea I IR un intervalo. Entones

Más detalles

A'' D'' C'' B'' A' C' Figura 1. Verdadera Magnitud de ángulos de rectas.

A'' D'' C'' B'' A' C' Figura 1. Verdadera Magnitud de ángulos de rectas. Tema 5: Ángulos entre retas y planos. Triedros Angulo de dos retas. El ángulo de dos retas es una de las magnitudes de las formas planas, y para obtener su verdadera magnitud se aplia el ambio de plano,

Más detalles

Definición 1. Una proposición lógica es una afirmación que puede ser verdadera o falsa.

Definición 1. Una proposición lógica es una afirmación que puede ser verdadera o falsa. Capítulo 0 Introduión 0.1 Proposiiones lógias Definiión 1. Una proposiión lógia es una afirmaión que puede ser verdadera o falsa. Ejemplo. La tierra es un planeta. El sol gira en torno a la tierra. Estas

Más detalles

Reglas g-golomb. Carlos A. Martos O. Nidia Y. Caicedo. Universidad del Cauca - Universidad del Valle

Reglas g-golomb. Carlos A. Martos O. Nidia Y. Caicedo. Universidad del Cauca - Universidad del Valle Reglas g-golomb Carlos A. Martos O. Nidia Y. Caicedo Universidad del Cauca - Universidad del Valle ALGEBRA, TEORÍA DE NÚMEROS, COMBINATORIA Y APLICACIONES ALTENCOA-6 San Juan de Pasto Colombia Agosto 2014

Más detalles

Ecuación Solución o raíces de una ecuación.

Ecuación Solución o raíces de una ecuación. Euaión Igualdad que ontiene una o más inógnitas Soluión o raíes de una euaión. Valores de las inógnitas que umplen la igualdad. 15 = 3x + 6 15 6 = 3x 9 = 3x 3 = x on Existen diversos métodos de hallar

Más detalles

Si R=1.00 [kω] y ε=250 [V] en la figura 1, determine la dirección y magnitud de la corriente en el alambre horizontal entre a y e.

Si R=1.00 [kω] y ε=250 [V] en la figura 1, determine la dirección y magnitud de la corriente en el alambre horizontal entre a y e. 0.1. Ciruito. Si R=1.00 [kω] y ε=250 [V] en la figura 1, determine la direión y magnitud de la orriente en el alambre horizontal entre a y e. b R 2R d ε 4R 3R 2ε a e Soluión: Dibujemos las orrientes Figura

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química UNIVERSIDAD NACIONAL EXERIMENTAL OLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEARTAMENTO DE INGENIERÍA QUÍMICA Ingeniería Químia Unidad III. Balane de materia Sistemas Monofásios Clase

Más detalles

Ley del Coseno 1. Ley del Coseno. Dado un triángulo ABC, con lados a, b y c, se cumple la relación:

Ley del Coseno 1. Ley del Coseno. Dado un triángulo ABC, con lados a, b y c, se cumple la relación: Ley del Coseno 1 Ley del Coseno Dado un triángulo ABC, on lados a, b y, se umple la relaión: = a + b abosc (Observe que la relaión es simétria para los otros lados del triángulo.) Para demostrar este teorema,

Más detalles

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales.

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales. LEY DE SENOS Ya hemos visto omo resolver triángulos retángulos ahora veremos todas las ténias para resolver triángulos generales a γ α Este es un triángulo el ángulo α se esrie en el vértie de, el ángulo

Más detalles

Estudio de Caso de la Empresa Celanese Corporation y el uso del Modelo de Transporte para Minimizar costos

Estudio de Caso de la Empresa Celanese Corporation y el uso del Modelo de Transporte para Minimizar costos Estudio de Caso de la Empresa Celanese Corporation y el uso del Modelo de Transporte para Minimizar ostos Elba Vitoria Guzmán Avalos Universidad de Guadalajara, Centro Universitario de los Valles. eviguzman@hotmail.om

Más detalles

y ' a x a y a z a t z' a x a y a z a t t' = a x + a y + a z + a t

y ' a x a y a z a t z' a x a y a z a t t' = a x + a y + a z + a t Transformaión de Galileo Supongamos dos sistemas de referenia: uno fijo (XYZ) on origen en O y otro móil (X Y Z ) on respeto al primero que tiene su origen en O. Para simplifiar las osas, amos a suponer

Más detalles

COMPARACIÓN TEÓRICO-EXPERIMENTAL DE LOS SISTEMAS DE FRENO CANTILEVER Y V-BRAKE EMPLEADOS EN BICICLETAS

COMPARACIÓN TEÓRICO-EXPERIMENTAL DE LOS SISTEMAS DE FRENO CANTILEVER Y V-BRAKE EMPLEADOS EN BICICLETAS COMPARACIÓN TEÓRICO-EXPERIMENTAL DE LOS SISTEMAS DE FRENO CANTILEVER Y V-BRAKE EMPLEADOS EN BICICLETAS D. Martinez Krahmer (1). (1) Instituto Naional de Tenología Industrial, Centro de Investigaión y Desarrollo

Más detalles

DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS DE CONSUMO. 1 2 3 n-1

DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS DE CONSUMO. 1 2 3 n-1 DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS DE CONSUMO Edpyme Raíz utiliza, para el álulo de su ronograma de pagos, el método de la uota fija. Esto signifia que ada pago periódio

Más detalles

Momentos de Inercia de cuerpos sólidos: EJE. Varilla delgada. Disco. Disco. Cilíndro. Esfera. Anillo I = MR

Momentos de Inercia de cuerpos sólidos: EJE. Varilla delgada. Disco. Disco. Cilíndro. Esfera. Anillo I = MR 91 Momentos de Ineria de uerpos sólidos: EJE Varilla delgada 1 I = ML 1 Diso 1 I = M Diso 1 I = M 4 ilíndro 1 I = M Esfera I = M 5 Anillo I = M 9 Observaión: Los momentos de ineria on respeto a ejes paralelos

Más detalles

Esta es la relatividad de Galileo.

Esta es la relatividad de Galileo. FJC 009 Transformaión de Galileo Supongamos dos sistemas de referenia: uno fijo on origen en y otro móil on respeto al primero que tiene su origen en. Para simplifiar, amos a suponer que el móil sólo se

Más detalles

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS:

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: TEMAS: - Demostrar la euaión de la tensión de torsión, su apliaión y diseño de miembros sometidos a tensiones de torsión 5.1. Teoría de torsión simple 5..

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN Departamento de Ingeniería Mecánica Universidad de Santiago de Chile. Diego Vasco C.

TRANSFERENCIA DE CALOR POR CONVECCIÓN Departamento de Ingeniería Mecánica Universidad de Santiago de Chile. Diego Vasco C. TRANSFERENCIA DE CALOR POR CONVECCIÓN Departamento de Ingeniería Meánia Universidad de Santiago de Chile 2015 Diego Vaso C. INTRODUCCIÓN El meanismo de transferenia de alor por onveión surge por el movimiento

Más detalles

Límite de una función. Matemática

Límite de una función. Matemática Límite de una funión Matemátia 4º Año Cód. 465 P r o f. S i l v i a A m i o z z i P r o f. S i l v i a B e l l e t t i Dpto. de Matemátia LIMITE FINITO IDEA INTUITIVA DE LÍMITE: Presentamos algunas funiones

Más detalles

Capítulo 6 Acciones de control

Capítulo 6 Acciones de control Capítulo 6 Aiones de ontrol 6.1 Desripión de un bule de ontrol Un bule de ontrol por retroalimentaión se ompone de un proeso, el sistema de mediión de la variable ontrolada, el sistema de ontrol y el elemento

Más detalles

La teoría de Einstein-Infeld-Hoffmann Einstein-Infeld-Hoffmann s theory

La teoría de Einstein-Infeld-Hoffmann Einstein-Infeld-Hoffmann s theory Weneslao Segura González La teoría de Einstein-Infeld-Hoffmann Einstein-Infeld-Hoffmann s theory Weneslao Segura González Investigador independiente e-mail: weneslaoseguragonzalez@yahooes web: http://weneslaoseguragonwixom/weneslao-segura

Más detalles

Lección 3.1. Antiderivadas y La Integral Indefinida. 02/03/2016 Prof. José G. Rodríguez Ahumada 1 de 20

Lección 3.1. Antiderivadas y La Integral Indefinida. 02/03/2016 Prof. José G. Rodríguez Ahumada 1 de 20 Leión. Antiderivadas y La Integral Indefinida 0/0/06 de 0 Atividades. Referenia del Teto: Seión. Antiderivadas y la Integral Indefinida, Ver ejemplos al 9 Ejeriios de Prátia: Impares Asignaión.: Seión.

Más detalles

Radiación electromagnética

Radiación electromagnética C A P Í T U L O Radiaión eletromagnétia.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS 1. El ampo elétrio de una onda eletromagnétia plana en el vaío viene dado, en unidades del sistema internaional (SI),

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO

ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO ORDEN. RESOLUCIÓN REDUCIÉNDOLA A UNA ECUACIÓN DIFERENCIAL ORDINARIA DE PRIMER ORDEN Miguel Angel Nastri, Osar Sardella miguelangelnastri@ahoo.om.ar, osarsardella@ahoo.om.ar

Más detalles

1. Espacio producto tensorial

1. Espacio producto tensorial ENTRELAZAMIENTO Espaio produto tensorial. Sistemas Compuestos. Entrelazamiento. Sistema de n qubits. La base de Bell. Fotones entrelazados: La Conversión Paramétria a la baja. . Espaio produto tensorial

Más detalles

SESIÓN DE APRENDIZAJE

SESIÓN DE APRENDIZAJE INSTITUCIÓN EDUCATIVA INMACULADA DE LA MERCED SESIÓN DE APRENDIZAJE APRENDIZAJE ESPERADO Determina la regla de orrespondenia de una funión Representa e Identifia funiones Resuelve operaiones on funiones

Más detalles

Múltiplos de un número

Múltiplos de un número 12 Múltiplos de un número Feha Reuerda Los múltiplos de un número se obtienen multipliando diho número por los números naturales: 0, 1, 2, 3, 4 Un número a es múltiplo de otro b si la división a : b es

Más detalles

Serie 11. Sistemas de control más elaborados

Serie 11. Sistemas de control más elaborados Serie Sistemas de ontrol más elaborados Sistemas de ontrol más elaborados Se utilizan uando los lazos de ontrol onvenionales no son sufiientemente apropiados, debido a difiultades omo proesos on grandes

Más detalles

DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS HIPOTECARIOS. 1 2 3 n-1

DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS HIPOTECARIOS. 1 2 3 n-1 DETERMINAION DEL VALOR DE LA UOTA Y EL RONOGRAMA DE PAGOS DE REDITOS HIPOTEARIOS Edpyme Raíz utiliza, para el álulo de su ronograma de pagos, el método de la uota fija. Esto signifia que ada pago periódio

Más detalles

Incertidumbres. Tipos de instrumentos. Algunas formas de expresar las incertidumbres

Incertidumbres. Tipos de instrumentos. Algunas formas de expresar las incertidumbres Inertidumres Es posile otener el valor real (exato) de una magnitud a través de mediiones? Aunque pareza sorprende, la respuesta a esta pregunta es NO. El proeso de mediión involura neesariamente el uso

Más detalles

Controles de Calidad en la Fabricación de un Rodete Pelton. Murray Garcia, Harry Ernesto CAPITULO II MARCO TEORICO

Controles de Calidad en la Fabricación de un Rodete Pelton. Murray Garcia, Harry Ernesto CAPITULO II MARCO TEORICO CAPITULO II MARCO TEORICO Reordemos que las Turbinas Pelton son Turbinas de Aión, y son apropiadas para grandes saltos y pequeños audales; por lo ual sus números espeífios son bajos. Referente a las partes

Más detalles

Cálculo Integral: Guía I

Cálculo Integral: Guía I 00 Cálulo Integral: Guía I Profr. Luis Alfonso Rondero Garía Instituto Politénio Naional Ceyt Wilfrido Massieu Unidades de Aprendizaje del Área Básia 0/09/00 Introduión Esta guía tiene omo objetivo darte

Más detalles

Soluciones Hoja 1: Relatividad (I)

Soluciones Hoja 1: Relatividad (I) Souiones Hoja 1: Reatividad I) 1) Un desteo de uz es emitido en e punto O y se absorbe después en e punto P ver a figura). En e sistema de referenia S a ínea OP tiene una ongitud y forma un ánguo θ on

Más detalles

Anterior Número Posterior º Establece que puesto ocupa cada una de las siguientes personas:

Anterior Número Posterior º Establece que puesto ocupa cada una de las siguientes personas: 1º Completa la siguiente tabla: Anterior Número Posterior.899 18.099.009 0.00 0.001.00.000 º Establee que puesto oupa aa una e las siguientes personas: a Tiene elante a personas b Tiene elante a 9 personas

Más detalles

Estados extendidos en cadenas acopladas con desorden de Fibonacci en la distribución del hopping transversal. E. Lazo

Estados extendidos en cadenas acopladas con desorden de Fibonacci en la distribución del hopping transversal. E. Lazo Estados extendidos en adenas aopadas on desorden de Fibonai en a distribuión de hopping transversa E. Lazo Departamento de Físia, Fautad de Cienias, U. de Tarapaá, ria, Chie Emai: eazo@uta. Resumen En

Más detalles

Controlador basado en redes neuronales para sistemas mecánicos

Controlador basado en redes neuronales para sistemas mecánicos Controlador basado en redes neuronales para sistemas meánios Martha I Aguilera Hernández * Jesús de León Morales ** Resumen: Este artíulo presenta un estudio experimental de un ontrolador basado en redes

Más detalles

2. Efectúa las operaciones, expresando las soluciones en forma irreducible:

2. Efectúa las operaciones, expresando las soluciones en forma irreducible: REFUERZO DE VERANO. º ESO FICHA OPERACIONES CON FRACCIONES Sumas y restas on el mismo denominador b a b a ) ( Sumas y restas on distinto denominador Igual, pero primero se redue a denominador omún 0 0

Más detalles

Una inecuación lineal con 2 incógnitas puede tener uno de los siguientes aspectos:

Una inecuación lineal con 2 incógnitas puede tener uno de los siguientes aspectos: TEMA 3: PROGRAMACIÓN LINEAL ÍNDICE 3.1.- Ineuaiones lineales on 2 inógnitas. 3.2.- Sistemas de ineuaiones lineales on 2 inógnitas. 3.3.- La programaión lineal. 3.4.- Soluión gráfia de un problema de programaión

Más detalles

Mecanismos y Elementos de Máquinas. Cálculo de uniones soldadas. Sexta edición - 2013. Prof. Pablo Ringegni

Mecanismos y Elementos de Máquinas. Cálculo de uniones soldadas. Sexta edición - 2013. Prof. Pablo Ringegni Meanismos y Elementos de Máquinas álulo de uniones soldadas Sexta ediión - 013 Prof. Pablo Ringegni álulo de uniones soldadas INTRODUIÓN... 3 1. JUNTAS SOLDADAS A TOPE... 3 1.1. Resistenia de la Soldadura

Más detalles

Dimensionado de soportes de acero secciones TUBULARES clase 1 y 2 a pandeo solicitadas a flexocompresión con un My,Ed

Dimensionado de soportes de acero secciones TUBULARES clase 1 y 2 a pandeo solicitadas a flexocompresión con un My,Ed Dimensionao e soportes e aero seiones TUULRES lase 1 a paneo soliitaas a flexoompresión on un M,E pellios, nombre rianna Guariola Víllora (aguario@mes.upv.es) Departamento Centro Meánia el Meio Continuo

Más detalles

SISTEMA DE MONOMIOS PARA UN CUERPO RESIDUAL REAL CERRADO

SISTEMA DE MONOMIOS PARA UN CUERPO RESIDUAL REAL CERRADO SISTEMA DE MONOMIOS PARA UN CUERPO RESIDUAL REAL CERRADO Francisco Ugarte Guerra 1,2 Mayo, 2011 Resumen Para etender técnicas tipo Polígono de Newton a ecuaciones algebraicas con coeficientes en cuerpos

Más detalles

Tema 1: Introducción a las radiaciones

Tema 1: Introducción a las radiaciones Tema 1: Introduión a las radiaiones 1. Introduión La radiatividad es un fenómeno natural que nos rodea. Está presente en las roas, en la atmósfera y en los seres vivos. Un fondo de radiatividad proveniente

Más detalles

NOTAS SOBRE LOS MÉTODOS DE INTEGRACIÓN

NOTAS SOBRE LOS MÉTODOS DE INTEGRACIÓN NOTAS SOBRE LOS MÉTODOS DE INTEGRACIÓN Alberto Gómez-Lozano Universidad Cooperativa de Colombia Sede Ibagué Doumentos de doenia Course Work oursework.u.e.o No. 5. Nov, 05 http://d.doi.org/0.695/greylit.6

Más detalles

SECCIÓN 2: CÁLCULO DEL GOLPE DE ARIETE

SECCIÓN 2: CÁLCULO DEL GOLPE DE ARIETE SECCIÓN : CÁCUO DE GOPE DE ARIETE CÁCUO DE GOPE DE ARIETE SEGÚN AIEVI El impato de la masa líquida ante una válvula no es igual si el ierre es instantáneo o gradual. a onda originada no tendrá el mismo

Más detalles

Diseño e Implementación de Controladores Digitales Basados en Procesadores Digitales De Señales

Diseño e Implementación de Controladores Digitales Basados en Procesadores Digitales De Señales Congreso Anual 010 de la Asoiaión de Méxio de Control Automátio. Puerto Vallarta, Jaliso, Méxio. Diseño e Implementaión de Controladores Digitales Basados en Proesadores Digitales De Señales Barrera Cardiel

Más detalles

Trabajo Práctico 1 Implementación de AFDs

Trabajo Práctico 1 Implementación de AFDs Trabajo Prátio 1 Implementaión de AFDs Teoría de Lenguajes 1 er uatrimestre 01 Feha de entrega: 9 de abril 1. Objetivos Este trabajo tiene omo objetivos prinipales: Familiarizarse on la implementaión de

Más detalles

1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo.

1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo. Capítulo 5 Campos finitos 5.1. Introducción Presentaremos algunos conceptos básicos de la teoría de los campos finitos. Para mayor información, consultar el texto de McEliece [61] o el de Lidl y Niederreiter

Más detalles

El efecto Sagnac y el gravitomagnetismo

El efecto Sagnac y el gravitomagnetismo 17 El efeto Sagna y el gravitomagnetismo 1.17 El efeto Sagna lásio Consideremos una guia de ondas irular (o un montaje de espejos que permita que un rayo de luz realie un reorrido errado) que está rotando

Más detalles

Para aprender Termodinámica resolviendo problemas

Para aprender Termodinámica resolviendo problemas GASES REAES. Fator de ompresibilidad. El fator de ompresibilidad se define omo ( ) ( ) ( ) z = real = real y es funión de la presión, la temperatura y la naturaleza de ada gas. Euaión de van der Waals.

Más detalles

Guía # 5. Pruebas de hipótesis

Guía # 5. Pruebas de hipótesis INSTITUCION UNIVERSITARIA ANTONIO JOSÉ CAMACHO Asignatura: ESTADÍSTICA APLICADA 010-1 Guía # 5. Pruebas de hipótesis Temas: Pruebas de hipótesis para la media poblaional (µ) Pruebas de hipótesis para la

Más detalles

Tutorial MT-b8. Matemática 2006. Tutorial Nivel Básico. Triángulos II

Tutorial MT-b8. Matemática 2006. Tutorial Nivel Básico. Triángulos II 134567890134567890 M ate m átia Tutorial MT-b8 Matemátia 006 Tutorial Nivel Básio Triángulos II Matemátia 006 Tutorial Triángulos II Maro teório: 1. Triángulo retángulo: Es aquel triángulo que posee un

Más detalles

DIRECCIÓN REGIONAL DE EDUCACIÓN DE LIMA METROPOLITANA OGPEBTP 2017 Matriz de Evaluación Diagnóstica Matemática Segundo Grado - Primaria

DIRECCIÓN REGIONAL DE EDUCACIÓN DE LIMA METROPOLITANA OGPEBTP 2017 Matriz de Evaluación Diagnóstica Matemática Segundo Grado - Primaria DIRECCIÓN REGIONAL DE EDUCACIÓN DE LIMA METROPOLITANA OGPEBTP 2017 Matriz de Evaluaión Diagnóstia Matemátia Segundo Grado - Primaria Estándar de aprendizaje de la ompetenia: PROBLEMAS DE CANTIDAD Resuelve

Más detalles

MATEMÁTICAS 5º E.P. Vacaciones

MATEMÁTICAS 5º E.P. Vacaciones MATEMÁTICAS º E.P. Vaaiones C.E.I.P. SAN PIO X LOGROÑO Números de más de siete ifras PLAN DE MEJORA. Fiha Esribe la desomposiión de ada número. 9.40.90 D. de millón U. de millón CM DM C D 0.000.000 47..008

Más detalles

4. Cubicación de materiales e insumos

4. Cubicación de materiales e insumos 4. Cubiaión de materiales e insumos INTRODUCCIÓN Este módulo de 76 horas pedagógias tiene omo propósito que los y las estudiantes desarrollen los onoimientos neesarios para la orreta ubiaión de diversas

Más detalles

8 Redistribución de los Momentos

8 Redistribución de los Momentos 8 Redistribuión de los Momentos TULIZIÓN PR EL ÓIGO 00 En el ódigo 00, los requisitos de diseño unifiado para redistribuión de momentos ahora se enuentran en la Seión 8.4, y los requisitos anteriores fueron

Más detalles

Se le presentará a los alumnos el siguiente juego. Se llevaran cuatro fichas como estas.

Se le presentará a los alumnos el siguiente juego. Se llevaran cuatro fichas como estas. Aión Nº4 y 5: Funión arítmia. Definiión. Logaritmo de un número. Logaritmo deimal y aritmo natural. Núleo temátio: Funión exponenial y arítmia. Feha: Junio 0 Espaio de apaitaión. CIE. Doente: De Virgilio,

Más detalles

TEMA: TEOREMA DE PITÁGORAS

TEMA: TEOREMA DE PITÁGORAS TEMA: TEOREMA DE PITÁGORAS Atividades iniio: Ejeriios de alentamiento Traajo en grupo Entregar opia del ejeriio de exploraión a ada estudiante Disutir ejeriio de exploraión Llegar a una onjetura Calentamiento

Más detalles

5. Tríadas secundarias o sustitutivas La subdominante II6. La subdominante más frecuente en la música clásica aw produce sobre el acorde de sexta.

5. Tríadas secundarias o sustitutivas La subdominante II6. La subdominante más frecuente en la música clásica aw produce sobre el acorde de sexta. Tríadas seundarias o sustitutivas La subdominante La subdominante más freuente en la músia lásia a produe sobre el aorde de sexta V El aorde se obtiene a partir de la primera inversión de la tríada sobre

Más detalles

Números de Bernoulli: Algunas aplicaciones a la. David J. Fernández Bretón. Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional,

Números de Bernoulli: Algunas aplicaciones a la. David J. Fernández Bretón. Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Números de Bernoulli: Algunas aplicaciones a la Teoría de Números David J. Fernández Bretón. Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, México. Definición Se define la sucesión

Más detalles

ALGUNOS RESULTADOS INTERESANTES DE LA TEORÍA DE LA MEDIDA. Some interesting results of the measurement theory

ALGUNOS RESULTADOS INTERESANTES DE LA TEORÍA DE LA MEDIDA. Some interesting results of the measurement theory Scientia et Technica Año XVII, No 47, Abril 2011 Universidad Tecnológica de Pereira ISSN 0122-1701 190 ALGUNOS RESULTADOS INTERESANTES DE LA TEORÍA DE LA MEDIDA Some interesting results of the measurement

Más detalles

Un paralelogramo es un cuadrilátero con sus lados opuestos paralelos. Los paralelogramos gozan de las siguientes propiedades PROPIEDAD 1

Un paralelogramo es un cuadrilátero con sus lados opuestos paralelos. Los paralelogramos gozan de las siguientes propiedades PROPIEDAD 1 1.1. PARALELOGRAMO Definiión Un paralelogramo es un uadrilátero on sus lados opuestos paralelos o Los paralelogramos gozan de las siguientes propiedades PROPIEDAD 1 En todo paralelogramo, los lados opuestos

Más detalles

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN CAPÍTULO V: 5.. INTRODUCCIÓN Las seiones estruturales, sean laminadas o armadas, se pueden onsiderar omo un onjunto de hapas, algunas son internas (p.e. las almas de las vigas aiertas o las alas de las

Más detalles

Modelación del flujo en una compuerta a través de las pérdidas de energía relativas de un salto hidráulico sumergido.

Modelación del flujo en una compuerta a través de las pérdidas de energía relativas de un salto hidráulico sumergido. INGENIERÍA HIDRÁULICA Y AMBIENTAL VOL. XXIII No. 3 Modelaión del flujo en una ompuerta a través de las pérdidas de energía relativas de un salto idráulio sumergido. Primera Parte INTRODUCCIÓN El análisis

Más detalles

Soluciones Problemas Capítulo 1: Relatividad I

Soluciones Problemas Capítulo 1: Relatividad I Soluiones Problemas Capítulo 1: Relatividad I 1) (a) La distania, d, a la que se enuentra el ohete de la Tierra viene dada por t 1 = 2s = 2d d = t 1 2 = 3 11 m = 3 1 7 km. (b) El tiempo que tarda la primera

Más detalles