P RACTICA. 1 Opera y simplifica las siguientes expresiones: 2 Efectúa las siguientes operaciones y simplifica el resultado:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "P RACTICA. 1 Opera y simplifica las siguientes expresiones: 2 Efectúa las siguientes operaciones y simplifica el resultado:"

Transcripción

1 P RACTICA Operaciones con polinomios Opera y simplifica las siguientes epresiones ( ) ( )( ) ( ) ( ) ( )( ) ( 5) 4 ( ) ( )( ) (4 5) ( 6 9) (9 ) (4 5) Efectúa las siguientes operaciones y simplifica el resultado (y )(y ) ( y) (y ) ( y) ( y) ( y)y (y )( y) ( y)( y) 4y y y y 5y y y y y y y 8y y 4y y y 4y y Multiplica cada epresión por el mín.c.m. de los denominadores y simplifica ( 5) ( ) ( 4)( 4) 5 4 (8 )( ) ( ) ( )( ) ( 5) ( ) ( 4)( 4) [ 5 4 ] 60 5(4 4 ) 0( 6) (8 4 5 ) (9 4 4) 5(4 9)

2 4 Halla el cociente y el resto de cada una de estas divisiones (7 5 ) ( ) ( 7 5 ) ( ) ( 5 4)( ) COCIENTE RESTO COCIENTE RESTO COCIENTE 4 8 RESTO 8 5 Calcula el cociente y el resto de las divisiones siguientes ( 5 4 ) ( ) ( 4 5 ) ( ) (4 5 ) ( ) COCIENTE 4 5 RESTO COCIENTE 5 8 RESTO 8

3 COCIENTE RESTO 6 6 Divide y comprueba que Dividendo divisor Ò cociente resto ( 5 )( 5 ) ( 5 ) Epresa las siguientes divisiones de la forma D d c r. (6 5 9) ( ) ( 4 4 9) ( ) ( ) ( 5) ( )( ) ( )( )

4 ( 5)( ) Factor común e identidades notables 8 Epresa como cuadrado de un binomio y 60y 9 4 y 6 y y 4 y (4 ) (6 5y) ( y) (y ) 9 Epresa como producto de dos binomios y e) 00 f) 5 (7 4)(7 4) ( y)( y) (9 8)(0 8) (5 )(5 ) e) ( 0)( 0) f) ( 5 )( 5 ) 0 Saca factor común e identifica los productos notables como en el ejemplo. 4 8 ( 6 9) ( ) y 6 y y y 5(4 9) 5( ) (9 y ) ( y)( y) ( y y ) ( y) (4 8y ) ( 9y)( 9y)

5 Regla de Ruffini. Aplicaciones Aplica la regla de Ruffini para hallar el cociente y el resto de las siguientes divisiones (5 ) ( ) ( )( ) ( 4) ( ) ( 4 5) ( ) 5 COCIENTE RESTO COCIENTE RESTO COCIENTE RESTO COCIENTE RESTO Utiliza la regla de Ruffini para calcular P(), P(5) y P(7) en los siguientes casos P() 5 7 P() P () P (5) 407 P(7) 49 P() 6 P(5) 557

6 P(7) 6 Averigua cuáles de los números,,,,, son raíces de los polinomios siguientes P() 5 6 Q() Recuerda que a es raíz de P() si P( ? ? ? 0 Son raíces de P(), y. 4? ? ? 0 es una raíz de Q() (no probamos con y porque no son divisores de ). 4 Comprueba si los polinomios siguientes son divisibles por o. P () P () 4 0 P () ? 0 P es divisible por ? P es divisible por.

7 P es divisible por. No puede ser divisible por porque no es múltiplo de. 5 El polinomio 4 4 es divisible por a para dos valores enteros de a. Búscalos y da el cociente en ambos casos Es divisible por 4. Es divisible por 6. COCIENTE 6 6 COCIENTE Prueba si el polinomio es divisible por a para algún valor entero de a Es divisible por. 7 Si P() 8 45, halla los valores P(8,75), P(0,5) y P(7) con ayuda de la calculadora. Describe el proceso como en el ejemplo 8.75m *Ñ-*Ñ-8*Ñ45{ «} P(8,75) 70, ,5 m *Ñ- *Ñ- 8 *Ñ 45 { Ÿ «} P (0,5) 489,7 7 ±m *Ñ- *Ñ- 8 *Ñ 45 { \} P (7) 756

8 Factorización de polinomios 8 Factoriza los siguientes polinomios , 4 5 ( 5)( ) , 8 5 ( 5)( ) , ( 8)( 5) , ( 0)( 7) 9 Busca, en cada caso, una raíz entera y factoriza, después, el polinomio ( 5)( ) 5 ( )( 5) ( )(4 5) 7 7 ( 8)( 9) 0 Saca factor común y utiliza las identidades notables para factorizar los siguientes polinomios e) 6 6 f)6 4 9 ( 4) ( )( ) ( 6 9) 4( ) (9 ) 5 ( )( ) 4 ( ) ( ) e) 6 6 ( 4 6) ( 4)( 4) ( 4)( )( ) f) (4 )(4 ) (4 )( )( ) Completa la descomposición en factores de los polinomios siguientes ( 5)( 6 9) ( 7)( 40) ( 5)( 6 9) ( 5)( 5)( ) ( 7)( 40) ( 7)( 8)( 5)

9 Descompón en factores y di cuáles son las raíces de los siguientes polinomios ( )( )( ) Sus raíces son, y ( )( 4) Sus raíces son 0, y ( ) ( 7) 8 7 Sus raíces son y ; ; ; 4 6 ( )( )( )( ) Sus raíces son,, y. Factoriza los siguientes polinomios y di cuáles son sus raíces ( )( ) Raíz ( )( 4)( 5) Raíces, 4 y ( )( ) 4 6 Raíz 0

10 ( )( )(4 4 ) ( )( )( ) 4 4 Raíces, y Fracciones algebraicas 4 Comprueba, en cada caso, si las fracciones dadas son equivalentes 4 y y y y y y y Sí son equivalentes, porque ( 4). No son equivalentes, ya que ( )?. Sí son equivalentes, porque ( y)( y) y. Sí son equivalentes, porque ( ). 5 Descompón en factores y simplifica. 9 ( ) y 5 y y e) f) y y 6 y 9 ( )( ) ( ) ( )( ) 4 ( )( ) 5 0 ( 5) 5 ( 5)( 5) y ( y) y y ( y) e) 6 ( )( ) y f) y y y( y) y y y y 5 5

11 6 Reduce a común denominador y opera ( ) 4 4 ( )( ) Efectúa. 6 6 ( ) 6 ( ) 9 ( ) ( )( ) ( ) ( )( ) Opera. 4 6

12 9 Opera y simplifica si es posible. ( ) ( ) ( ) ( ) 4 4 ( ) ( ) ( ) ( )( ) Descompón en factores el dividendo y el divisor, y, después, simplifica ( ) 5 6 ( )( ) 4 ( )( 4) ( ) ( ) 9 6 ( ) 4 ( 6)( 7) 8 7 ( )( 7) 4 6 P IENSA Y RESUELVE Sustituye, en cada caso, los puntos suspensivos por la epresión adecuada para que las fracciones sean equivalentes 9 ( ) ( ) ( ) 4 4

13 Halla, en cada caso, el mínimo común múltiplo y el máimo común divisor de los polinomios siguientes ; ; ; 9; 6 9 ; 6; ; ; 4 9 ( )( ) 6 9 ( ) ( ) ( )( ) 6 ( ) ( )( ) 4 ( )( ) má.c.d. [,, ] mín.c.m. [,, ] ( )( ) má.c.d. [, 9, 6 9] mín.c.m. [, 9, 6 9] ( ) ( ) má.c.d. [, 6, ] mín.c.m. [, 6, ] ( )( ) má.c.d. [,, 4 ] mín.c.m. [,, 4 ] (4 ) Resuelto en el libro de teto. 4 Opera y simplifica. ( ) ) ( ( ) ( ) [( ) ( )] ( ) 9 9 ( )( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) [( ) ( )] ( ) ( ) ( ) ( ) ( )

14 5 Efectúa. 5 4 ( )( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( 4)( ) ( )( ) ( )( ) ( )( ) ( )( ) 4 4 ( )( ) ( )( ) 4 ( )( )( ) ( )( ) ( )( ) ( )( ) ( 4)( ) 4 ( )(4 ) (4 ) (4 ) (4 )

15 6 Opera y simplifica. ( ) ( ) 4 ( ) ) ( ) ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 7 Efectúa. 9 ( ) ( ) 4 ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) 8 Resuelto en el libro de teto.

16 9 Calcula m para que el polinomio P() m 5 sea divisible por. P() m 5 será divisible por si P() 0. P() () m() 5() 0 m m 8 40 El resto de la siguiente división es igual a 8 ( 4 k 7 6)( ) Cuánto vale k? LLamamos P() 4 k 7 6. El resto de la división P()( ) es P(), luego P() k k k 8 k 4 4 Halla el valor que debe tener m para que el polinomio m 5 9m sea divisible por. Llamamos P() m 5 9m. Dicho polinomio ha de ser divisible por, luego el resto ha de ser 0 P() 0 8 m() () 5 () 9m m 0 9m 0 8 m 4 Comprueba si eiste alguna relación de divisibilidad entre los siguientes pares de polinomios P() 4 4 y Q() P () 0 5 y Q() 5 P() y Q() P() ( )( ) Q() ( ) Q () es divisor de P(). P() ( 5) Q() ( 5) No hay relación de divisibilidad. P() ( )( 4) Q() Q() es divisor de P().

17 4 Tenemos un polinomio P() ( ) ( ). Busca un polinomio de segundo grado, Q(), que cumpla las dos condiciones siguientes má.c.d. [P(), Q()] mín.c.m. [P(), Q()] ( ) ( 9) Q() ( )( ) 44 Calcula el valor de k para que el polinomio P() k sea múltiplo de Q(). k k k Ha de ser k 0 8 k Traducción al lenguaje algebraico 45 Traduce a lenguaje algebraico empleando una sola incógnita El cociente entre dos números pares consecutivos. Un número menos su inverso. El inverso de un número más el inverso del doble de ese número. La suma de los inversos de dos números consecutivos. 46 Epresa mediante polinomios el área y el volumen de este ortoedro. 4 Área [( 4)( ) ( ) ( 4)] Volumen ( 4)( ) 8

18 47 Epresa, en función de, el área total de este tronco de pirámide. [ Área lateral 4 ( ) ( ) 4( ) Área de las bases ( ) Área total 4( ) ( ) 6 8 ] 48 Un grifo tarda minutos en llenar un depósito. Otro grifo tarda minutos menos en llenar el mismo depósito. Epresa en función de la parte del depósito que llenan abriendo los dos durante un minuto. 49 Se mezclan kg de pintura de 5 /kg con y kg de otra de /kg. Cuál será el precio de kg de la mezcla? Eprésalo en función de e y. 5 y y 50 En un rectángulo de lados e y inscribimos un rombo. Escribe el perímetro del rombo en función de los lados del rectángulo. y ( ) ( ) y El lado del rombo es l Perímetro 4 y y ( ) y 5 Epresa algebraicamente el área de la parte coloreada utilizando e y. Área cuadrado grande y Área cuadrado pequeño (y ) Área parte sombreada y (y ) 4y 4 y

19 5 Dos pueblos, A y B, distan 60 km. De A sale un coche hacia B con velocidad v. Al mismo tiempo sale otro de B en dirección a A con velocidad v. Epresa en función de v el tiempo que tardan en encontrarse. t 60 v 5 En el rectángulo ABCD de lados AB cm y BC 5 cm, hemos inscrito el cuadrilátero A'B'C'D' haciendo AA' BB' CC' DD'. Escribe el área de A'B'C'D' en función de. B A' B' C C' A D' D Sabiendo que AD' B'C 5 y A'B C'D, se tendrá El área del triángulo B'CC' es (5 ). El área del triángulo A'AD' es (5 ). El área del triángulo B'BA' es ( ). El área del triángulo D'DC' es ( ). El área del rectángulo ABCD es 5 5 cm. A PARALELOGRAMO 5 (5 ) ( ) 5 [(5 ) ( )] [ ] 5 ( 8) 8 5

20 54 En el triángulo de la figura conocemos BC 0 cm, AH 4 cm. Por un punto D de la altura, tal que AD, se traza una paralela MN a BC. Desde M y N se trazan perpendiculares a BC. M A D B P H Q N C Epresa MN en función de. (Utiliza la semejanza de los triángulos AMN y ABC). Escribe el área del rectángulo MNPQ mediante un polinomio en. A M D N 4 cm B P H Q 0 cm C Por la semejanza de triángulos BC MN 8 MN BC 8 MN 0 8 MN 5 AH AH 4 MP 4 A RECTÁNGULO MN MP 5 (4 ) 0 5 R EFLEXIONA SOBRE LA TEORÍA 55 Escribe en cada caso un polinomio de segundo grado que tenga por raíces 7 y 7 0 y 5 y 4 (doble) Por ejemplo ( 7)( 7) 49 ( 5) 5 ( )( ) 5 6 ( 4) Escribe, en cada caso, un polinomio que cumpla la condición dada De segundo grado sin raíces. Que tenga por raíces, 0 y. De tercer grado con una sola raíz. Por ejemplo ( )( ) ( )

21 57 Las raíces de P() son 0, y. Escribe tres divisores de P() de primer grado. Escribe un divisor de P() de segundo grado. ; ; Por ejemplo ( ) 58 Inventa dos polinomios de segundo grado que cumplan la condición indicada en cada caso mín.c.m. [P(), Q()] ( )( ) má.c.d. [P(), Q()] Por ejemplo P() ; Q() ( )( ) Por ejemplo P() ( ); Q() ( )( ) 59 Cuál es el mín.c.m. de los monomios A b; B a b ; C 5a? Escribe otros tres monomios D, E, F tales que mín.c.m. (A, B, C, D, E, F ) 0a b A b B a b C 5a mín.c.m. (A, B, C ) 0a b Tomamos, por ejemplo D b E 5a F 0ab mín.c.m. (A, B, C, D, E, F) 0a b 60 Si la división P() ( ) es eacta, qué puedes afirmar del valor P()? Si 5 es una raíz del polinomio P(), qué puedes afirmar de la división P() ( 5)? En qué resultado te has basado para responder a las dos preguntas anteriores? Si la división es eacta, el resto es 0, luego P() 0. La división P()( 5) es eacta, el resto es 0. En el teorema del resto. 6 Prueba que el polinomio (a ab es divisible por a y por b para cualquier valor de a y b. Cuál será su descomposición factorial? a b ab a a ab b 0 (a ab ( ( a b ab b b ab a 0

22 6 En una división conocemos el dividendo, D(), el cociente, C(), y el resto, R(). D() 5 ; C() ; R() 7 7 Calcula el divisor. D d c R 8 Dividendo Resto divisor Cociente D R El divisor es. 6 Cuál es la fracción inversa de? Justifícalo. Inversa El producto de ambas debe ser igual a P ROFUNDIZA 64 Saca factor común en las siguientes epresiones ( ) ( )( ) ( 5)( ) ( 5)( ) ( y)(a (a ( y) El factor común es un binomio. ( )[ ( )] ( )( ) ( )[( 5)( 5)] ( )() ( y)[(a (a ] ( y)( 65 Descompón en factores a y a. Prueba si son divisibles por a o por a. 0 0 a a a a a a a a a a a a a a 0 a ( ( a a ) a ( ( a a )

23 66 Factoriza las siguientes epresiones como en el ejemplo. a ay b by a( y) b( y) ( y)(a a ay b by y y y y y y ab ab b a( y)b( y) ( y)(a y( )( ) ( )(y ) y( )y ( ) ( )(y y) ( )( )y ab(b ) (b ) (b )(ab ) 67 Simplifica las siguientes fracciones algebraicas y y a b 6ab 4a b a b 0 5y a b 6a b ab a b 4b y y y( y) 0 5y 5( y) y 5 a b 6ab ab (a b a b 6a b a b(a a 4a b a b a b(b ) ab a b 4b b(a a a (b ) a a b 68 Efectúa y simplifica. y ( ) y y a ab ab b ab b a ab a (a ab b ab ( ) b a y y y ( y)( y) y y y y ( y)( y) a ab a ab b (a a a(a a a 4 a b (a b ) ab b a ab (ab b )(ab b ) a b b 4 b (a b ) b a (a b a (a b ab b ab a ab ( ) a b a b ab ab ab ab

24 69 Opera y simplifica. a b a ab 8b a b a b a 9b b b b y ( y y y ) y y ( ) ( y y a b a ab 8b a b a b a 9b a(a b(a (a ab 8b ) a 9b a 6ab ab 9b a ab 8b a 9b a 9b a 9b b b b b b b b( )( ) b( ) (b b b( )b b b b b b b b b b b b b( ) b [ y y y ( y) ( y) y ( ) ] y y y y y y y y y y 4y y y y y y y y y ( y) ( y) ( ) ( ) ( ) [ ] y y y y ( y)( y) [ b b b y y y ) y y y y y y y 4y y ( y)( y) y ( y)( y) y( y)( y) y y 4y( y) ]

2Soluciones a los ejercicios y problemas PÁGINA 53

2Soluciones a los ejercicios y problemas PÁGINA 53 Soluciones a los ejercicios y problemas PÁGINA 5 Pág. P RACTICA Operaciones con polinomios Opera y simplifica las siguientes epresiones ( ) ( )( ) ( ) ( ) ( )( ) ( 5) 4 ( ) ( )( ) (4 5) 6 9 4 4 6 7 4 4

Más detalles

P RACTICA. 1 Opera y simplifica las siguientes expresiones: a) 3x(2x 1) (x 3)(x + 3) + (x 2) 2 b)(2x 1) 2 +(x 1)(3 x) 3(x +5) 2

P RACTICA. 1 Opera y simplifica las siguientes expresiones: a) 3x(2x 1) (x 3)(x + 3) + (x 2) 2 b)(2x 1) 2 +(x 1)(3 x) 3(x +5) 2 Pág. P RACTICA Operaciones con polinomios Opera y simplifica las siguientes epresiones: 3( ) ( 3)( + 3) + ( ) ( ) +( )(3 ) 3( +5) 4 ( 3) (3 )(3 + ) (4 3 + 35) 3 3 3 Efectúa las siguientes operaciones y

Más detalles

2Soluciones a las actividades de cada epígrafe PÁGINA 42

2Soluciones a las actividades de cada epígrafe PÁGINA 42 Soluciones a las actividades de cada epígrafe PÁGINA 4 Pág. 0 cm r r l l 0 cm Amparo quiere fabricar las cuatro velas que ha diseñado sobre el lienzo, pero aún no se ha decidido sobre alguna de sus dimensiones.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 75 PRACTICA Operaciones con polinomios Efectúa las operaciones y simplifica las siguientes epresiones: ( ) ( ) ( ) ( ) ( ) 6( ) 4( 4) ( ) ( 5) ( ) ( ) ( ) 9 ( 4 ) 9 4 4 4 5 8 ( ) ( ) 6( ) 6

Más detalles

Unidad 2. Polinomios y fracciones algebraicas

Unidad 2. Polinomios y fracciones algebraicas Unidad. Polinomios y fracciones algebraicas Página 5 Resuelve. Epresa con nuestra notación el siguiente polinomio dado con la nomenclatura de Diofanto: 4 8 + 5 9 ss s5 M c8 9 u. Epresa con la nomenclatura

Más detalles

5.- Calcula el cociente y el resto de las divisiones siguientes:

5.- Calcula el cociente y el resto de las divisiones siguientes: 1.- Opera y simplifica las siguientes expresiones: 2.- Efectúa las siguientes operaciones y simplifica el resultado: 3º.- Multiplica cada expresión por el mín.c.m. de los denominadores y simplifica: 4.-

Más detalles

TEMA 2: POLINOMIOS IDENTIDADES NOTABLES. Ejercicios: 1. Desarrolla las siguientes identidades: 2. Expresa como producto de factores:

TEMA 2: POLINOMIOS IDENTIDADES NOTABLES. Ejercicios: 1. Desarrolla las siguientes identidades: 2. Expresa como producto de factores: IDENTIDADES NOTABLES TEMA : POLINOMIOS a b a b ab a b a b ab a ba b a b Ejercicios:. Desarrolla las siguientes identidades: a y 5 b 5 4y c 5 5. Epresa como producto de factores: 4 a 9 0 0 b 9 6 c 5 9y

Más detalles

8 "f\1\l Expresa como cuadrado de un binomio. a) 16x x b) 36x y xy. 9 "f'vv Expresa como producto de dos binomios.

8 f\1\l Expresa como cuadrado de un binomio. a) 16x x b) 36x y xy. 9 f'vv Expresa como producto de dos binomios. E ercicios Practica Operaciones con polinomios "f'vv Opera y simplifica las siguientes expresiones: a) 3x(2x- )- (x- 3)(x + 3) + (x- 2) 2 b) (2x- ) 2 + (x- )(3 -x)- 3(x + 5) 2 e) i(x- 3) 2 - _!_(3x- )(3x

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIOS

POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIOS ESO POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIOS EXPRESIONES ALGEBRAICAS - Traduce los siguientes enunciados a epresiones algebraicas El doble de un número menos su tercera parte. El doble del resultado

Más detalles

POLINOMIOS. 1. Si P(x)= 4x 3-3x 2 +1 y Q(x)= 3x 2-3x+2, opera: a) P-Q b) 3P+2Q c) P+Q d) P.Q. b) 3P+2Q= 12x 3-3x 2-6x+7. Sol: a) P-Q= 4x 3-6x 2 +3x-1

POLINOMIOS. 1. Si P(x)= 4x 3-3x 2 +1 y Q(x)= 3x 2-3x+2, opera: a) P-Q b) 3P+2Q c) P+Q d) P.Q. b) 3P+2Q= 12x 3-3x 2-6x+7. Sol: a) P-Q= 4x 3-6x 2 +3x-1 POLINOMIOS 1. Si P()= +1 y Q()= +, opera: a) PQ b) P+Q c) P+Q d) P.Q Sol: a) PQ= 6 +1 b) P+Q= 1 6+7 c) P+Q= + d) P.Q= 1 5 1 +17 +. Si P()= +1, Q()= +1 y R()= 6 +61, opera: a) P+Q; b) PQ+R; c) PR; d) P.QR;

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

PÁGINA 38. Son ecuaciones a) y d). Son identidades b) y c).

PÁGINA 38. Son ecuaciones a) y d). Son identidades b) y c). PÁGINA 38 Entrénate 1 Indica, de estas epresiones algebraicas, cuáles son identidades y cuáles ecuaciones: a) + 3 = 8 b) ( + 3) = + 6 c) + 5 (1 ) = + 4 d) + 4 = + 4 Son ecuaciones a) y d). Son identidades

Más detalles

4 ESO. Mat B. Polinomios y fracciones algebraicas

4 ESO. Mat B. Polinomios y fracciones algebraicas «El que pregunta lo que no sabe es ignorante un día. El que no lo pregunta será ignorante toda la vida» 4 ESO Mat B Polinomios y fracciones algebraicas ÍNDICE: 0. EL LENGUAJE SIMBÓLICO O ALGEBRAICO 1.

Más detalles

Comprueba que 5 2 es una raíz del polinomio 2x3 9x x 5. EJERCICIO RESUELTO. Entonces: x 3 + 2x x + 3 = ( x + 1) ( x 2 + x + 3)

Comprueba que 5 2 es una raíz del polinomio 2x3 9x x 5. EJERCICIO RESUELTO. Entonces: x 3 + 2x x + 3 = ( x + 1) ( x 2 + x + 3) Polinomios 7. Teorema del resto. Factorización Polinomios Actividades Aprenderás a Identificar el resto de la división de un polinomio por un binomio de la forma a como el valor numérico para = a. Aplicar

Más detalles

Polinomios y fracciones

Polinomios y fracciones 3 Polinomios y fracciones algebraicas Ejercicios y problemas. Binomio de Newton 6 Desarrolla el siguiente binomio aplicando la fórmula de Newton: ( y) 3 8 3 y + 6y y 3 7 Desarrolla el siguiente binomio

Más detalles

Polinomios y fracciones

Polinomios y fracciones 3 Polinomios y fracciones algebraicas. Binomio de Newton Desarrolla mentalmente: a) ( + ) b)( ) c) ( + )( ) P I E N S A Y C A L C U L A a) + + b) + c) ( + ) 3 A P L I C A L A T E O R Í A 6 3 5 y 5 4 y

Más detalles

1 Expresiones algebraicas

1 Expresiones algebraicas 1 Epresiones algebraicas Página 7 1. Epresa en lenguaje algebraico. El doble de un número menos su tercera parte. b) El doble del resultado de sumarle tres unidades a un número. c) La edad de Alberto ahora

Más detalles

Ecuaciones. Son igualdades algebraicas que se cumplen solo para algunos valores de la letra.

Ecuaciones. Son igualdades algebraicas que se cumplen solo para algunos valores de la letra. TEMA 4: EL LENGUAGE ALGEBRAICO. POLINOMIOS EXPRESIONES ALGEBRAICAS Para obtener las epresiones algebraicas hay que utilizar el lenguaje algebraico. Hay epresiones algebraicas de varios tipos: Monomios.

Más detalles

TEMA 4 EL LENGUAJE ALGEBRAICO

TEMA 4 EL LENGUAJE ALGEBRAICO 4.1 Epresiones algebraicas TEMA 4 EL LENGUAJE ALGEBRAICO PÁGINA 78 ACTIVIDADES 1. Describe mediante una epresión algebraica los enunciados siguientes: d Gasté en un traje 3 de lo que tenía y 0 euros en

Más detalles

Notas teóricas. a) Suma y resta Se agrupan los monomios del mismo grado y se opera.

Notas teóricas. a) Suma y resta Se agrupan los monomios del mismo grado y se opera. MATEMÁTICAS EJERCICIOS RESUELTOS DE POLINOMIOS POLINOMIOS A. Introducción Teoría B. Ejercicios resueltos B.. Sumas y restas B.. Multiplicación B.3. División B.4. Sacar factor común B.5. Simplificar fracciones

Más detalles

2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)

2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1) . Un polinomio con raíces únicas, 0, 2, 2, 3 es: a) 4 +4 3 + 2 6 b) 4 +6 3 +9 2 42 c) 5 6 4 +9 3 +4 2 2 d) 5 +6 4 +9 3 4 2 2 e) 4 4 3 + 2 +6 2. Calcula cociente y resto en la siguiente división de polinomios:

Más detalles

cada uno de los términos que lo forman:

cada uno de los términos que lo forman: Curso 016-017 Pág. 1 de 11 UNIDAD 5 EL LENGUAJE ALGEBRAICO 1. MONOMIOS Y POLINOMIOS Actividades de clase 1.1. Identifica el coeficiente, la parte literal y el grado de los siguientes monomios: a. 6 b.

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas Polinomios y fracciones algebraicas LITERATURA Y MATEMÁTICAS La máquina de leer los pensamientos Dumoulin, conoce usted al profesor Windbag? Vagamente... Sólo le vi el día que le devolvimos la visita...

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

UNIDAD 2 Polinomios y fracciones algebraicas

UNIDAD 2 Polinomios y fracciones algebraicas Pág. 1 de 3 I. Sabes operar polinomios con agilidad y obtener el cociente y el resto de una división? 1 Multiplica y simplifica las siguientes epresiones: 4( 4) 2 + 3( 2 2 + 3) 2( 2 + 5) = b) (3y 1)(3y

Más detalles

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores. -PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y

Más detalles

UNIDAD 2 Polinomios y fracciones algebraicas

UNIDAD 2 Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas.. Operaciones básicas con polinomios. Realiza las siguientes sumas y restas: a) ( + + ) + ( 4 + + ) b) ( 4 + + ) + ( 4 + + ) c) ( 4 + + ) (5 + + ) d) ( + + 6)

Más detalles

Tema 2. Polinomios y fracciones algebraicas

Tema 2. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Polinomios.... Definiciones.... Operaciones con polinomios.... Factorización de un polinomio.... Teorema del resto. Criterio de divisibilidad por -a.... Propiedades

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

División de polinomios

División de polinomios División de polinomios. Realiza las siguientes divisiones de monomios. 7 6 6 7 7 7. Dados los polinomios P 6, Q 0 y R 6 P P Q R P Q R R 6 calcula. Calcula el cociente y el resto de las siguientes divisiones.

Más detalles

IMPORTANTE SOLO IMPRIMA LO QUE CORRESPONDA A EJERCICIOS, LAS EXPLICACIONES SON OPCIONALES

IMPORTANTE SOLO IMPRIMA LO QUE CORRESPONDA A EJERCICIOS, LAS EXPLICACIONES SON OPCIONALES TRABAJO DE REFUERZO OPERACIONES CON EXPRESIONES ALGEBRAICAS Y GEOMETRIA PERIODO Chía, Mayo de 07 Señores Estudiantes Grados 0,07,0, a continuación encontrarán una serie de ejercicios que han sido bajados

Más detalles

Además habrá operaciones de fracciones algebraicas del tipo que hemos realizado en clase y que os aparecen en la hoja de ejercicios nº2.

Además habrá operaciones de fracciones algebraicas del tipo que hemos realizado en clase y que os aparecen en la hoja de ejercicios nº2. Modelo examen tema 2 Además habrá operaciones de fracciones algebraicas del tipo que hemos realizado en clase y que os aparecen en la hoja de ejercicios nº2. Ejercicio nº 1.- a) Halla el valor numérico

Más detalles

EJERCICIOS DE EXPRESIONES ALGEBRAICAS

EJERCICIOS DE EXPRESIONES ALGEBRAICAS EJERCICIOS DE EXPRESIONES ALGEBRAICAS Ejercicio nº.- Epresa en lenguaje algebraico cada uno de los siguientes enunciados: a El 0% de un número. b El área de un rectángulo de base cm y altura desconocida.

Más detalles

Polinomios. 100 Ejercicios para practicar con soluciones

Polinomios. 100 Ejercicios para practicar con soluciones Polinomios. 00 Ejercicios para practicar con soluciones El perímetro de un paralelogramo mide 70 cm. Si dos lados miden cm y los otros dos y cm, escribe la epresión de y en función de. + y 70 + y 5 y 5.

Más detalles

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores. Resolución Aprobación de Estudios No. 0-0 de Noviembre de 008 Código DANE No. 7900079 Nit: 8980- GU-PA-0 /07/08-V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto

Más detalles

Indica el coeficiente, parte literal y grado de estos monomios.

Indica el coeficiente, parte literal y grado de estos monomios. Polinomios EJERCICIOS 001 Indica el coeficiente, parte literal y grado de estos monomios. a) y z 4 b) 5b c c) 15 y d) y 5 a) Coeficiente: Parte literal: y z 4 Grado: + + 4 9 b) Coeficiente: 5 Parte literal:

Más detalles

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5 Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual

Más detalles

4 Operaciones. con polinomios. 1. Operaciones con polinomios. Desarrolla mentalmente: a) (x + 1) 2 b)(x 1) 2 c) (x + 1)(x 1)

4 Operaciones. con polinomios. 1. Operaciones con polinomios. Desarrolla mentalmente: a) (x + 1) 2 b)(x 1) 2 c) (x + 1)(x 1) 4 Operaciones con polinomios 1. Operaciones con polinomios Desarrolla mentalmente: a) ( + 1) 2 b)( 1) 2 c) ( + 1)( 1) P I E N S A Y C A L C U L A a) 2 + 2 + 1 b) 2 2 + 1 c) 2 1 1 Dados los siguientes polinomios:

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (

Más detalles

Ejercicio nº 2.-Efectúa estas operaciones y simplifica el resultado:

Ejercicio nº 2.-Efectúa estas operaciones y simplifica el resultado: ALGEBRAIC LANGUAGE. POLYNOMIAL (ACTIVIDADES AMPLIACION 2 ESO) Ejercicio nº 1.-Efectúa las siguientes operaciones: Ejercicio nº 2.-Efectúa estas operaciones y simplifica el resultado: (3x 2 1) (2x 2 + 5x)

Más detalles

Unidad 5. El lenguaje algebraico

Unidad 5. El lenguaje algebraico a las Enseñanzas Académicas Página 8 Resuelve 1. Cuál de estas igualdades asocias al enunciado del montón de trigo que aparece en el papiro egipcio? Cuántas medidas tiene ese montón? I 1 1 II III + La

Más detalles

Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.

Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2

Más detalles

Ejercicios Resueltos del Tema 4

Ejercicios Resueltos del Tema 4 70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la

Más detalles

1Soluciones a las actividades de cada epígrafe PÁGINA 20

1Soluciones a las actividades de cada epígrafe PÁGINA 20 Soluciones a las actividades de cada epígrafe PÁGINA 0 RACIONALES Q ENTEROS Z NO RACIONALES 8,, 8,, NATURALES N ENTEROS NEGATIVOS FRACCIONARIOS (racionales no enteros) 8 0, 7,,, 8, 8,, 7 8 8,9;,8; ) 7

Más detalles

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos. 4 POLINOMIOS EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su epresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 5 3

Más detalles

EJERCICIOS PROPUESTOS. Calcula el valor numérico pedido para las siguientes expresiones algebraicas.

EJERCICIOS PROPUESTOS. Calcula el valor numérico pedido para las siguientes expresiones algebraicas. POLINOMIOS EJERCICIOS PROPUESTOS.1 Calcula el valor numérico pedido para las siguientes epresiones algebraicas. 3 a) f() ; b) g(a, b) 3a 5ab; a 1, b c) h(, y) (y 3) y ;, y 0 3 a) f () 3 1 3 8 b) g(1, )

Más detalles

Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado

Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado Soluciones a los ejercicios de Álgebra, primera parte: Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado 3xz 3 xz 3 1x zy 1 4 abc 1 5 x 5 3 x zy 6 4 abc 6 x 1 Ejercicio Halla el valor numérico

Más detalles

CUADERNO DE VERANO MATEMÁTICAS B 4º E.S.O.

CUADERNO DE VERANO MATEMÁTICAS B 4º E.S.O. CUADERNO DE VERANO COLEGIO MAESTRO ÁVILA Y SANTA TERESA ALUMNO: TEMA NÚMEROS REALES. Completa el siguiente cuadro: 0 [ ] [ ) > (0) < ( ) 0 [/) < < >. Calcula en los casos que sea posible las siguientes

Más detalles

ECUACIONES. Ejercicio nº 1.- Dada la ecuación: responde razonadamente:

ECUACIONES. Ejercicio nº 1.- Dada la ecuación: responde razonadamente: ECUACIONES Ejercicio nº 1.- Dada la ecuación: x 1 x 1 x 5 3x 7 responde razonadamente: a Qué valor obtienes si sustituyes x 3 en el primer miembro? b Qué obtienes si sustituyes x 3 en el segundo miembro?

Más detalles

Ejercicios de números reales

Ejercicios de números reales Ejercicios de números reales Ejercicio nº.- Clasifica los siguientes números como naturales, enteros, racionales o reales:,7 7 4 7 Ejercicio nº.- Considera los siguientes números: 9,000000..., 8,... Clasifícalos

Más detalles

EJERCICIOS DE POLINOMIOS

EJERCICIOS DE POLINOMIOS EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:

Más detalles

Ecuaciones segundo F H G I K J H G I K J. Cómo se llama al nº que está dentro de la raíz? Despeja x en las siguientes ecuaciones:

Ecuaciones segundo F H G I K J H G I K J. Cómo se llama al nº que está dentro de la raíz? Despeja x en las siguientes ecuaciones: Ecuaciones segundo 1 Cuadrado Raíz 1 Qué es el cuadrado de un número? Calcula: a)( ) b) 7 c) 16 d) 0 e) 4 f ) 0 g) 4 Cómo se llama al nº que está dentro de la raíz? Despeja en las siguientes ecuaciones:

Más detalles

ECUACIONES. Ejercicio nº 1.- Dada la ecuación: responde razonadamente:

ECUACIONES. Ejercicio nº 1.- Dada la ecuación: responde razonadamente: ECUACIONES Ejercicio nº 1.- Dada la ecuación: x 1 x 1 5 3x 7 responde razonadamente: a Qué valor obtienes si sustituyes x 3 en el primer miembro? b Qué obtienes si sustituyes x 3 en el segundo miembro?

Más detalles

Tema 3: Expresiones algebraicas

Tema 3: Expresiones algebraicas .1 Polinomios Tema : Expresiones algebraicas Determina cuáles de las siguientes expresiones son polinomios. Cuando lo sean, dí cuáles son sus monomios(términos), su grado, término principal, término independiente,

Más detalles

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio.

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio. 1 P() 8 El polinomio es el producto de tres factores, siendo dos de ellos los correspondientes a las raíces =1 = - Halla mediante dos divisiones consecutivas por el método de Ruffini el tercer factor Comprobar

Más detalles

Ficha de trabajo A. 2 Polinomios y fracciones algebraicas. 1 Divide los polinomios (x 5 6x 3 25x) : (x 2 + 3x).

Ficha de trabajo A. 2 Polinomios y fracciones algebraicas. 1 Divide los polinomios (x 5 6x 3 25x) : (x 2 + 3x). Polinomios y fracciones algebraicas Ficha de trabajo A Curso:... Fecha:... Divide los polinomios 5 6 5) : + ). Realiza estas divisiones por la regla de Ruffini. Indica el polinomio cociente P) y el resto

Más detalles

3 Lenguaje algebraico

3 Lenguaje algebraico Lenguaje algebraico Qué tienes que saber? QUÉ tienes que saber? Actividades Finales Ten en cuenta El lenguaje algebraico epresa la información con letras, números operaciones matemáticas. El valor numérico

Más detalles

TEMA 5 EXPRESIONES ALGEBRAICAS

TEMA 5 EXPRESIONES ALGEBRAICAS 5.1 Monomios TEMA 5 EXPRESIONES ALGEBRAICAS Di si las siguientes expresiones matemáticas son monomios o no. En caso de serlo, determina su parte literal, su coeficiente y su grado. 6x 4 6 1 x 4 6 x 4 no

Más detalles

1Soluciones a los ejercicios y problemas PÁGINA 36

1Soluciones a los ejercicios y problemas PÁGINA 36 PÁGINA 6 Pág. P RACTICA Números reales a) Cuáles de los siguientes números no pueden expresarse como cociente de dos números enteros? ;,7; ;, ; ),7; ) π; b)expresa como fracción aquellos que sea posible.

Más detalles

Tema 2 Polinomios y fracciones algebraicas 1

Tema 2 Polinomios y fracciones algebraicas 1 Tema Polinomios y fracciones algebraicas 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIO 1 : Desarrolla y simplifica: b) 4 1 a) 1 5 5 4 c) 1 4 1 d) 1 6 1 1 5 4 4 5 4 a) 1 5 1 5 5 6 5 4 4 5 4 4 b)

Más detalles

TEMA 5. FACTORIZACIÓN DE POLINOMIOS.

TEMA 5. FACTORIZACIÓN DE POLINOMIOS. TEMA 5. FACTORIZACIÓN DE POLINOMIOS. 1. SACAR FACTOR COMÚN Cuando todos los términos de un polinomio, P(x), son múltiplos de un mismo monomio, M(x), podemos extraer M(x) como factor común. Por ejemplo:

Más detalles

Colegio C. C. Mª Auxiliadora II Marbella Urb. La Cantera, s/n EJERCICIOS RESUELTOS

Colegio C. C. Mª Auxiliadora II Marbella Urb. La Cantera, s/n EJERCICIOS RESUELTOS Colegio C. C. Mª Auiliadora II Marbella Urb. La Cantera, s/n. 988 http:/www.mariaauiliadora.com º ESO EJERCICIOS RESUELTOS Ejercicio a Define lo que es un monomio. b A qué llamamos grado de un monomio?

Más detalles

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes

Más detalles

Colegio C. C. Mª Auxiliadora II Marbella Urb. La Cantera, s/n EJERCICIOS RESUELTOS

Colegio C. C. Mª Auxiliadora II Marbella Urb. La Cantera, s/n EJERCICIOS RESUELTOS Colegio C. C. Mª Auiliadora II Marbella Urb. La Cantera, s/n. 988 http:/www.mariaauiliadora.com º ESO EJERCICIOS RESUELTOS Ejercicio a Define lo que es un monomio. b A qué llamamos grado de un monomio?

Más detalles

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO Página 1 de 12 Entregar el día del examen de recuperación de matemáticas. Será condición indispensable para aprobar la asignatura. 1. Calcula: NUMEROS ENTEROS. FRACCIONES.

Más detalles

1. FACTOR COMUN MONOMIO :

1. FACTOR COMUN MONOMIO : Área de IPA. CONTENIDO 1. NOCION :. FACTORIZACIÓN Factorizar un número consiste en expresarlo como producto de dos de sus divisores. Ejemplo : Factoriza 0 en dos de sus divisores :, es decir 0 = Y en álgebra,

Más detalles

2Soluciones a las actividades de cada epígrafe PÁGINA 42

2Soluciones a las actividades de cada epígrafe PÁGINA 42 PÁGINA 42 Pág. 20 cm r r l l 20 cm Amparo quiere fabricar las cuatro velas que ha diseñado sobre el lienzo, pero aún no se ha decidido sobre alguna de sus dimensiones. Para hacerlo necesita saber su volumen

Más detalles

2. A continuación se presentan un grupo de polinomios y monomios:

2. A continuación se presentan un grupo de polinomios y monomios: República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Unidad Educativa Colegio Roraima Cátedra Matemática Profesora María Eugenia Benítez 2do año Guía 3 1. Efectúa los siguientes

Más detalles

2. Si P(x)= x 3 -x 2-3x+1, Q(x)= 2x 2-2x+1 y R(x)= 2x 3-6x 2 +6x-1, opera: a) P+Q; b) P-Q+R; c) 2P-3R; d) P.Q-R; e) P+Q-R; f) Q.

2. Si P(x)= x 3 -x 2-3x+1, Q(x)= 2x 2-2x+1 y R(x)= 2x 3-6x 2 +6x-1, opera: a) P+Q; b) P-Q+R; c) 2P-3R; d) P.Q-R; e) P+Q-R; f) Q. ejerciciosyeamenes.com POLINOMIOS 1. Si P()= - +1 y Q()= -+, opera: a) P-Q b) P+Q c) P+Q P.Q Sol: a) P-Q= -6 +-1 b) P+Q= 1 - -6+7 c) P+Q= -+ P.Q= 1 5-1 +17 - -+. Si P()= - -+1, Q()= -+1 y R()= -6 +6-1,

Más detalles

2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)

2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1) 1. Un polinomio con raíces únicas 1, 0, 2, 2, 3 es: a) x 4 + 4x 3 + x 2 6x b) x 4 + 6x 3 + 9x 2 4x 12 c) x 5 6x 4 + 9x 3 + 4x 2 12x d) x 5 + 6x 4 + 9x 3 4x 2 12x e) x 4 4x 3 + x 2 + 6x 2. Calcula cociente

Más detalles

Trabajo de Matemáticas AMPLIACIÓN 3º ESO

Trabajo de Matemáticas AMPLIACIÓN 3º ESO Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito

Más detalles

1.- Sean los polinomios:

1.- Sean los polinomios: . EJERCICIOS DE POLINOMIOS 1.- Sean los polinomios: A(x) = 6x 5-4x 4-4x - x + x + 8 B(x) = 5x 5 + 4x 4 - x - x + 5x - 8 C(x) = - 8x 6 + 4x 5 + x 4 - x + 4 Hallar: 1.- A(x) + B(x).- A(x) - C(x).- A(x) -

Más detalles

6. Usa el teorema del resto para comprobar si los siguientes polinomios son divisibles por (x 2)

6. Usa el teorema del resto para comprobar si los siguientes polinomios son divisibles por (x 2) 1. Halla el cociente y el resto de la división: (3x 2 7x + 5) : (x 2 ) 2. Halla el cociente y el resto de la división: (x 3 3x 2 2) : (x 2 + 1) 3. Calcula y simplifica: a) 3x(x + 7) 2 + (2x 1)( 3x + 2)

Más detalles

Tema 5. Factorización de Polinomios y fracciones algebraicas.

Tema 5. Factorización de Polinomios y fracciones algebraicas. Tema. Factorización de Polinomios y fracciones algebraicas.. Polinomio múltiplo y divisor. Factor de un polinomio. Ruffini. Valor numérico de un polinomio. Raíz del polinomio.. Factorización de un polinomio..

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Polinomios y Fracciones Algebraicas UNIDAD DIDÁCTICA 2 1 o de Bachillerato CCSS Diana Barredo Blanco 1 1 Profesora de Matemáticas 1 o Bachiller (CCSS) 1. POLINOMIOS 1. POLINOMIOS Polinomio: Un polinomio

Más detalles

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,

Más detalles

Dado el cubo de la figura siguiente, halla su área y su volumen en función de x. Solución: Solución: a) 5x 3, 9x 3,x 3 b) 7x 2,8x 2 c) 7x, 9x

Dado el cubo de la figura siguiente, halla su área y su volumen en función de x. Solución: Solución: a) 5x 3, 9x 3,x 3 b) 7x 2,8x 2 c) 7x, 9x 7 Polinomios 1. Lenguaje algebraico Dado el cubo de la figura siguiente, halla su área y su volumen en función de x P I E N S A Y C A L C U L A A(x) = 6x V(x) = x 3 x x x Carné calculista 36 : 0,79 C =

Más detalles

Polinomios y fracciones

Polinomios y fracciones BLOQUE II Álgebra 3. Polinomios y fracciones algebraicas 4. Resolución de ecuaciones 5. Sistemas de ecuaciones 6. Inecuaciones y sistemas de inecuaciones 3 Polinomios y fracciones algebraicas. Binomio

Más detalles

1. Divisibilidad y números enteros

1. Divisibilidad y números enteros CURSO 2015-2016. ASIGNATURA: MATEMATICAS CURSO-NIVEL: 2º ESO CONTENIDOS MÍNIMOS 1. Divisibilidad y números enteros La relación de divisibilidad. - Múltiplos y divisores: - Los múltiplos de un número. -

Más detalles

SOLUCIONES A LOS EJERCICIOS BÁSICOS POLINOMIOS. VALOR NUMÉRICO

SOLUCIONES A LOS EJERCICIOS BÁSICOS POLINOMIOS. VALOR NUMÉRICO Unidad : Polinomios y fracciones algebraicas SOLUCIONES A LOS EJERCICIOS BÁSICOS POLINOMIOS. VALOR NUMÉRICO. De las siguientes epresiones indicar las que son polinomios o pueden transformarse en polinomios

Más detalles

3 Polinomios y fracciones algebráicas

3 Polinomios y fracciones algebráicas Solucionario 3 Polinomios y fracciones algebráicas ACTIVIDADES INICIALES 3.I. Para cada uno de los siguientes monomios, indica las variables, el grado y el coeficiente, y calcula el valor numérico de los

Más detalles

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos. EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su expresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 2x x 5 3x x 2 3

Más detalles

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos. EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su expresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 2x x 5 3x x 2 3

Más detalles

FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO

FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO Recuerde que: 1. Factorizar una expresión algebraica consiste en escribirla como un producto. 2. Existen varios casos de factorización. Revisemos

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

BLOQUE II. Álgebra. 7. Polinomios 8. Ecuaciones de 1 er y 2º grado 9. Sistemas de ecuaciones lineales

BLOQUE II. Álgebra. 7. Polinomios 8. Ecuaciones de 1 er y 2º grado 9. Sistemas de ecuaciones lineales BLOQUE II Álgebra 7. Polinomios 8. Ecuaciones de er y º grado 9. Sistemas de ecuaciones lineales 7 Polinomios. Lenguaje algebraico Dado el cubo de la figura siguiente, halla su área y su volumen en función

Más detalles

Ecuaciones y sistemas

Ecuaciones y sistemas Ecuaciones y sistemas E S Q U E M A D E L A U N I D A D.. Concepto de polinomio página. Polinomios página.. peraciones con polinomios página.. Teorema del resto página 6.. Descomposición factorial página

Más detalles

( ) 2 ( ) 3.-Indica el grado de los siguientes polinomios: x x x. ) = 2x. a) (3x 5 + 5x 2 + 3x -2 ) b) (x 4 x 2 + x-2)

( ) 2 ( ) 3.-Indica el grado de los siguientes polinomios: x x x. ) = 2x. a) (3x 5 + 5x 2 + 3x -2 ) b) (x 4 x 2 + x-2) CUADERNILLO ALGEBRA: ALGEBRA Y LAS ECUACIONES CURSO: 2 FECHA: 2-2-2 NOMBRE Y APELLIDOS:.- En los siguientes monomios, indica cuál es la incógnita, cuál es el grado del monomio y cuál el coeficiente: a)

Más detalles

TRABAJO DE VERANO DE MATEMÁTICAS DE 2º ESO

TRABAJO DE VERANO DE MATEMÁTICAS DE 2º ESO TRABAJO DE VERANO DE MATEMÁTICAS DE º ESO OPERACIONES CON DECIMALES. Coloca y efectúa estas divisiones sacando decimales si fuese necesario,89 6,7 b),6,,96 7, d),9,6 e),8,9 f) 6 7 g),9 6, 8 h) 8,96 9,

Más detalles

Ejercicios y problemas

Ejercicios y problemas 1. Ecuaciones de 1 er y 2º grado 45. Resuelve las siguientes ecuaciones: + + + = 25 2 3 4 2 3 5 + 1 1 4 6 12 3 1 2 + 5 8 c) = 4 6 8 3 2 5 3 + 7 8 d) + + 2 = 3 5 5 2 /5 c) /2 d) 46. Resuelve las siguientes

Más detalles

EJERCICIOS Y PROBLEMAS RESUELTOS

EJERCICIOS Y PROBLEMAS RESUELTOS Ecuaciones de Segundo Grado -- página 1 EJERCICIOS Y PROBLEMAS RESUELTOS Ejercicio 1: Indica si son ecuaciones de segundo grado las siguientes ecuaciones: a) 5 + 8 + b) + + ( )( + ) c) + 1 a) El primer

Más detalles

1. NÚMEROS NATURALES 2. POTENCIAS

1. NÚMEROS NATURALES 2. POTENCIAS . NÚMEROS NATURALES. Aplica la propiedad distributiva y opera: a) 5 (9 5)= b) (8 5+4) 6= c) (9 6) = d) (9+4 0+) =. Opera: a) (6 4) 5+6 (7 5)= b) (0 5 4) 7 (8 4):= c) (6+5 ) 8 (4 ) (5 )= d) 5+(6 8) (0 )

Más detalles

UNIDAD 4 El lenguaje algebraico

UNIDAD 4 El lenguaje algebraico . Ayuda para calcular sumas y restas de polinomios 1 Dados los siguientes polinomios, realiza las operaciones que se detallan a continuación: A 3 7 1 B 5 4 C 4 3 5 A B 3 7 4 1 5 4 3 b) B C 5 4 4 3 5 3

Más detalles

NÚMEROS REALES. El número áureo Para hallar la relación entre la diagonal y el lado del pentágono regular, da los siguientes

NÚMEROS REALES. El número áureo Para hallar la relación entre la diagonal y el lado del pentágono regular, da los siguientes NÚMEROS REALES Página PARA EMPEZAR, REFLEXIONA Y RESUELVE El número áureo Para hallar la relación entre la diagonal y el lado del pentágono regular, da los siguientes pasos: a) Demuestra que los triángulos

Más detalles

Polinomios y Fracciones algebraicas

Polinomios y Fracciones algebraicas Polinomios y Fracciones algebraicas 1. Polinomios 1.1. Expresiones algebraicas: Polinomios y elementos de un polinomio. 1.2. Valor numérico de un polinomio. 1.3. Operaciones con polinomios: suma, resta,

Más detalles

POLINOMIOS. Sol: a) 19; b) 0; c) -3; d) 37; e) 3; f) 133; g) -4; h) Halla "a" para que la siguiente división sea exacta: x 5-3x 3 +ax 2-4 : x-2

POLINOMIOS. Sol: a) 19; b) 0; c) -3; d) 37; e) 3; f) 133; g) -4; h) Halla a para que la siguiente división sea exacta: x 5-3x 3 +ax 2-4 : x-2 POLINOMIOS 1. Si P(x)= x -x +1 y Q(x)= x -x+, opera: a) P-Q b) P+Q c) P+Q d) P.Q Sol: a) P-Q= x -6x +x-1 b) P+Q= 1x -x -6x+7 c) P+Q= x -x+ d) P.Q= 1x 5-1x +17x -x -x+. Si P(x)= x -x -x+1, Q(x)= x -x+1

Más detalles

CUADERNO DE REPASO DE VERANO

CUADERNO DE REPASO DE VERANO CUADERNO DE REPASO DE VERANO MATEMÁTICAS º ESO Las actividades deben realizarse en estos folios, si algún proceso no te cabe en el hueco destinado para ello, lo haces en otra hoja o por detrás. Hay que

Más detalles

P RACTICA. 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?

P RACTICA. 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? P RACTICA Puntos Si los puntos 6 ) 6) y ) son vértices de un cuadrado cuál es el cuarto vértice? 6) 6 ) ) P ) P Los puntos ) ) y ) son vértices de un rombo. Cuáles son las coordenadas del cuarto vértice?

Más detalles

1. EXPRESIONES ALGEBRAICAS.

1. EXPRESIONES ALGEBRAICAS. TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles