Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton"

Transcripción

1 Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes geerales de los feómeos de disolució de gases e líquidos ley de Hery presió parcial de u gas e u líquido

2 Gases perfectos o ideales U gas perfecto o ideal es aquel e el que o existe fuerzas de iteracció molecular, ya que las distacias etre las moléculas so del mismo orde de magitud que el alcace de las fuerzas itermoleculares las moléculas del gas se comporta idepedietemete uas de otras el tamaño de las moléculas es despreciable, ya que es muy pequeño e comparació co las distacias que existe etre ellas las moléculas posee masa, pero o tiee volume propio

3 Ecuació de estado de los gases ideales Desde u puto de vista macroscópico, el estado e que se ecuetra u gas, ya sea ideal o real, queda perfectamete defiido ua vez coocidos los valores que preseta la presió, el volume y la temperatura de dicho gas. Ahora bie, e cualquier gas, estas tres variables o so idepedietes etre sí, sio que se halla relacioadas mediate ua ecuació que se deomia ecuació de estado, de maera que basta co coocer los valores de dos de ellas para saber el valor que preseta la tercera. E u gas perfecto o ideal, la ecuació de estado es P V R T siedo P la presió existete e el gas, T la temperatura absoluta, e ºK, a la que se ecuetra, V el volume ocupado por el gas, el úmero de moles de gas presetes e dicho volume y R = 8,31 J ºK -1 mol -1 la costate uiversal de los gases perfectos. U mol de cualquier gas es aquella catidad de gas cuya masa es igual a su masa molecular expresada e gramos. Por tato, si m es la masa de u gas coteida e u determiado volume V y M es su masa m molecular, el úmero de moles de gas presetes e dicho volume será M

4 Ecuació de estado de los gases ideales: coclusioes P V R T A igualdad de presió y temperatura, el volume molar, es decir, el volume ocupado por V u mol v es el mismo e todos los gases ideales (e codicioes ormales de presió y temperatura, es decir, a 1 atm de presió y a 0 ºC, el volume molar de todos los gases ideales es igual a 22,4 litros) E cualquier trasformació a temperatura costate que experimeta u gas ideal P V costate E cualquier trasformació a presió costate que experimeta u gas ideal V T costate E cualquier trasformació a volume costate que experimeta u gas ideal P costate T

5 Ecuació de estado de los gases reales ECUACIÓN DE ESTADO DE LOS GASES IDEALES P V R T ECUACIÓN DE ESTADO DE LOS GASES REALES a (P )(V b ) R T 2 v siedo P la presió existete e el gas, T la temperatura absoluta a la que se ecuetra, V el volume ocupado por el gas, el úmero de moles de gas presetes e dicho volume, R la costate uiversal de los gases perfectos, a y b dos costates características del gas real cocreto que se esté cosiderado y v el volume V molar, es decir, el volume ocupado por u mol de gas (evidetemete, v ) a y b represeta los factores de correcció que hay que itroducir e los térmios de presió y de 2 v volume, respectivamete, de la ecuació de estado de los gases reales para teer e cueta que las fuerzas de iteracció molecular o so ulas y que las moléculas posee u tamaño que o se puede despreciar

6 Mezclas de gases ideales: presió parcial de u gas e ua mezcla de gases ideales Ua mezcla de gases ideales se comporta tambié como u gas ideal, de maera que P V = R T siedo P la presió total a la que se ecuetra la mezcla, T su temperatura absoluta, V el volume total ocupado por la mezcla, R la costate uiversal de los gases perfectos y el úmero total de moles existetes e la mezcla, que será igual a la suma de los úmeros de moles de los diferetes gases que la compoe, es decir = N Por defiició de gas ideal, e ua mezcla de gases ideales o existe fuerzas de iteracció molecular, i etre las moléculas de cada gas de la mezcla, i etre moléculas de gases distitos. Esto quiere decir que cada uo de los gases que compoe la mezcla se comporta idepedietemete de los demás, como si éstos o existiera. Por tato, el estudio de ua mezcla de gases ideales se puede llevar a cabo supoiedo que cada gas de la mezcla se comporta idepedietemete de los demás, como si estuviera él sólo ocupado todo el volume de la mezcla a la misma temperatura que ésta, pero ejerciedo ua presió que, lógicamete, es meor que la presió total de la mezcla. Si p i es la presió que ejerce u gas i cualquiera de la mezcla, supoiedo que se halla él sólo ocupado todo el volume de la mezcla a la misma temperatura que ésta, y i es el úmero de moles de dicho gas presetes e la mezcla, se cumplirá i p i V = i R T pi presió parcial del gas i La presió parcial de u gas e ua mezcla de gases ideales es la presió que ejerce dicho gas supoiedo que se halla él sólo ocupado todo el volume de la mezcla a la misma temperatura que ésta

7 Presioes parciales del O 2 y el CO 2 e el aire atmosférico y e el aire alveolar p (O 2 ) (mmhg) p (CO 2 ) (mmhg) aire atmosférico aire alveolar

8 Ley de Dalto La presió parcial que ejerce cualquier gas i de ua mezcla de gases ideales es siedo P la presió total a la que se ecuetra la mezcla, i el úmero de moles del gas i presetes e la mezcla y el úmero total de moles de la mezcla. E ua mezcla de N gases ideales 1 p1 2 p2 3 p3 N pn p 1 +p 2 +p p 3 i + +p P = p i N ( p2 +p3 + + pn LEY DE DALTON N ) Ley de Dalto La presió total de ua mezcla de gases ideales es igual a la suma de las presioes parciales ejercidas por los diferetes gases que la compoe

9 Leyes geerales de los feómeos de disolució de gases e líquidos Cuado u gas se halla e cotacto co u líquido, tiede a disolverse e él e mayor o meor medida, depediedo de cual sea la solubilidad del gas e el líquido. Los feómeos de disolució de gases e líquidos, idepedietemete de que sea gases ideales o reales, se rige por dos leyes geerales: 1.- A ua temperatura dada, la solubilidad de u gas e u líquido aumeta a medida que aumeta la presió ejercida por el gas e cotacto co el líquido 2.- La solubilidad de u gas e u líquido dismiuye al aumetar la temperatura a la que se ecuetra el líquido

10 Ley de Hery E el caso particular de u gas ideal e cotacto co u líquido, se comprueba experimetalmete que la cocetració molar C m del gas disuelto e el líquido, es decir, el úmero de moles de gas que se disuelve por uidad de volume de líquido es directamete proporcioal a la presió P ejercida por el gas e cotacto co el líquido, de modo que C m = K P Ley de Hery siedo la costate de proporcioalidad K la deomiada costate de Hery. La costate de Hery que caracteriza la solubilidad de u gas ideal e u líquido represeta el úmero de moles de gas que se disuelve por uidad de volume de líquido cuado la presió ejercida por el gas e cotacto co el líquido es igual a ua uidad (P=1). Su valor depede, lógicamete, del gas y el líquido cocretos que se cosidere e cada caso y dismiuye a medida que aumeta la temperatura a la que se ecuetra el líquido e que se disuelve el gas. E el caso de ua mezcla de gases ideales e cotacto co u líquido, la ley de Hery establece que la cocetració molar C m de cada gas de la mezcla disuelto e el líquido, es decir, el úmero de moles de cada gas de la mezcla que se disuelve por uidad de volume de líquido es directamete proporcioal a la presió parcial p que dicho gas ejerce e la mezcla gaseosa, de maera que C m = K p siedo K la costate de Hery que caracteriza la solubilidad del gas e el líquido.

11 Presió parcial de u gas e u líquido (1) La presió parcial de u gas e u líquido es u cocepto que se emplea habitualmete para expresar la catidad de gas que se halla disuelta por uidad de volume de líquido cuado e el líquido hay varios gases disueltos La presió parcial de u gas e u líquido se defie como el cociete etre el úmero de moles de gas que hay disueltos por uidad de volume de líquido y la costate de Hery que caracteriza la solubilidad del gas e el líquido Cm pl K pl :presió parcial del gas e el líquido Cm : cocetració molar del gas e el líquido K: costatede Hery del gas e el líquido

12 Presió parcial de u gas e u líquido (2) E el istate iicial e que el líquido etra e cotacto co la mezcla gaseosa C m (iicial) = K p L E la situació fial de equilibrio (de acuerdo co la ley de Hery) C m (equilibrio) = K p Cuado u líquido etra e cotacto co ua mezcla de gases ideales, se puede dar tres casos distitos para cada gas de la mezcla: si la presió parcial del gas e el líquido p L es meor que su presió parcial e la mezcla gaseosa p, el gas se disolverá e el líquido hasta que fialmete, de acuerdo co la ley de Hery, ambas presioes parciales se iguale si la presió parcial del gas e el líquido p L es mayor que su presió parcial e la mezcla gaseosa p, el gas se desprederá del líquido hasta que fialmete, de acuerdo co la ley de Hery, ambas presioes parciales se iguale si la presió parcial del gas e el líquido p L es igual que su presió parcial p e la mezcla gaseosa, el gas i se disolverá i se desprederá del líquido

13 Presioes parciales del O 2 y el CO 2 e la sagre arterial y e la sagre veosa p (O 2 ) (mmhg) p (CO 2 ) (mmhg) aire alveolar sagre arterial sagre veosa 40 46

Estado Gaseoso. Prf. María Peiró

Estado Gaseoso. Prf. María Peiró Estado Gaseoso rf. María eiró Gas, es u estado de la materia formado por éculas que tiede a expadirse porque se mueve a a velocidad debido a su altísima eergía ciética, mateiedo a espacio etre ellas. ropiedades

Más detalles

DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal

DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal DISOLUCIONES CONTENIDOS 1.- Sistemas materiales. 2.- Disolucioes. Compoetes. Clasificacioes. 3.- Cocetració de ua disolució 3.1. E g/l (repaso). 3.2. % e masa (repaso). 3.3. % e masa/volume. 3.4. Molaridad.

Más detalles

Soluciones de Ecuación de estado de los gases ideales

Soluciones de Ecuación de estado de los gases ideales Solucioes de Ecuació de estado de los gases ideales 1. 8 gramos de itrógeo (N ) gaseoso se ecuetra e u taque de 0 L a ua temperatura de 8ºC. Qué presió ejerce? M(N) = 14/g/mol R = 0,08 atm L/ mol La ecuació

Más detalles

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases Ejercicios sobre la aplicació de las diferetes leyes que caracteriza a los gases 1. g de oxígeo se ecuetra ecerrados e u recipiete de L, a ua presió de 1,5 atm. Cuál es la temperatura del gas si se supoe

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA Juio, Ejercicio 4, Opció A Juio, Ejercicio 5, Opció B Reserva 1, Ejercicio 2, Opció B Reserva 2, Ejercicio 5, Opció

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

NOMBRE: CURSO: FECHA:

NOMBRE: CURSO: FECHA: AMLIACIÓN co solucioes. EJERCICIO RESUELTO E ua jeriguilla cogemos 3 cm 3 de aire. E ese mometo la presió que ejerce dicho gas es de a. a) Escribe el valor de la presió e atmósferas, e milímetros de mercurio,

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

09/05/2011. Fuerzas intermoleculares pequeñas. Movimientos rápidos e independientes

09/05/2011. Fuerzas intermoleculares pequeñas. Movimientos rápidos e independientes ESTADO GASEOSO Gases Fuerzas itermoleculares pequeñas Movimietos rápidos e idepedietes Volume El comportamieto de u gas se defie por medio de variable : Temperatura Presió N de moles 1 Medidas e gases

Más detalles

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO Diplomatura e Óptica y Optometría Adelia Felipe Marcet TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO I Adaptació de las relacioes paraiales II.- Proimidades y potecias III.- Ecuació de Gauss IV.- Ecuació de

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Estimación de parámetros. Biometría

Estimación de parámetros. Biometría Estimació de parámetros Biometría Estimació Las poblacioes so descriptas mediate sus parámetros Para variables cuatitativas, las poblacioes so descriptas mediate y Para variables cualitativas, las poblacioes

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula,

Más detalles

Destilación. Columna de destilación

Destilación. Columna de destilación estilació Columa de destilació Plato Reboiler estilació mezclas biarias a separació requiere Ua seguda fase debe ser formada tal que las fases de liquido vapor está presetes pueda estar e cotacto e cada

Más detalles

TEMA 6: DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal

TEMA 6: DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal TEMA : DISOLUCIONES Sistema material Sustacias puras Elemeto Compuesto Homogéea Heterogéea coloidal Suspesió 1.- DISOLUCIÓN (CONCEPTO) Es ua mezcla homogéea de dos o mas sustacias químicas tal que el tamaño

Más detalles

UNIVERSIDAD DE VALENCIA DEPARTAMENTO DE ECONOMÍA FINANCIERA Y ACTUARIAL

UNIVERSIDAD DE VALENCIA DEPARTAMENTO DE ECONOMÍA FINANCIERA Y ACTUARIAL UNIVERSIDAD DE VALENCIA DEPARTAMENTO DE ECONOMÍA FINANCIERA Y ACTUARIAL Asigatura: 1141 MATEMÁTICA FINANCIERA NOTAS DEL TEMA 1 CURSO ACADÉMICO 008-009 TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a

Más detalles

E a RT. b. Verdadero. El orden total de la reacción es la suma de los exponentes de las concentraciones de la ecuación de velocidad (n = = 3)

E a RT. b. Verdadero. El orden total de la reacción es la suma de los exponentes de las concentraciones de la ecuación de velocidad (n = = 3) Modelo 04. Preguta A.- La ecuació de velocidad para la reacció A + B C viee dada por la v k A B. Justifique si las siguietes afirmacioes so verdaderas o falsas: a) Duplicar la cocetració de B hace que

Más detalles

b) C es una disolución saturada

b) C es una disolución saturada SOUBIIDAD 1. 1*.El cloruro sódico, cuado se disuelve e el agua, sus ioes iteraccioa co los dipolos del agua, como se observa e la figura. Geeralizado cuado ua sal se disuelve e el agua, deberá teerse e

Más detalles

Unidad 3. Construcción de números índice y aplicaciones al análisis económico

Unidad 3. Construcción de números índice y aplicaciones al análisis económico Uidad 3. Costrucció de úmeros ídice y aplicacioes al aálisis ecoómico Los úmeros ídices, utilizados co frecuecia e Ecoomía, Demografía y diferetes campos de la estadística aplicada, so valores coveietes

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

CANTIDAD EN QUÍMICA QCA 07

CANTIDAD EN QUÍMICA QCA 07 .- Razoe: a) Qué volume es mayor el de u mol de itrógeo o el de u mol de oxígeo, ambos medidos e las mismas codicioes de presió y temperatura? b) Qué masa es mayor la de u mol de itrógeo o la de uo de

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

1. Óptica geométrica: conceptos básicos y convenio de signos.

1. Óptica geométrica: conceptos básicos y convenio de signos. . Óptica geométrica: coceptos básicos y coveio de sigos. Tal y como habíamos defiido previamete al estudio de las reyes de la reflexió y de la refracció, llamamos rayo a ua líea imagiaria perpedicular

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado

Más detalles

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5 Ezimología Efecto cooperatio 1 EFECTO COOPERATIVO El efecto cooperatio ocurre e ezimas oligoméricas que posee arios sitios para la uió de sustrato y es el feómeo por el cual la uió de u ligado a ua ezima

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS

OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS Ley de Sell 1-1 U haz lumioso icide sobre ua lámia de vidrio bajo u águlo de 60, siedo e parte reflejado y e parte refractado. Se observa

Más detalles

Ecuaciones en Diferencias Recíprocas y Semirrecíprocas

Ecuaciones en Diferencias Recíprocas y Semirrecíprocas Ecuacioes e Diferecias Recíprocas y Gustavo Adolfo Juárez; Silvia Iés Navarro Facultad de Ciecias Exactas y Naturales, Uiversidad Nacioal de Catamarca. E-mail: juarez.catamarca@gmail.com Recepció: 20/05/2014

Más detalles

MATEMÁTICA FINANCIERA

MATEMÁTICA FINANCIERA C O L E C C I Ó N A P U N T E S U N I V E R S I T A R I O S MATEMÁTICA FINANCIERA GRADO ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS 6 Créditos GRADO FINANZAS Y CONTABILIDAD 6 Créditos DOBLE GRADO ADE- DERECHO

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química UNIERSIDAD NACIONAL EXERIMENAL OLIECNICA ANONIO JOSÉ DE SUCRE ICERRECORADO BARQUISIMEO DEARAMENO DE INGENIERÍA QUÍMICA Igeiería Química Uidad III. Balace de materia Sistemas Moofásicos Clase Nº0 Autor:

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

CAPITULO 4 COMPARACIÓN DE REACTORES IDEALES Y REACTORES MÚLTIPLES

CAPITULO 4 COMPARACIÓN DE REACTORES IDEALES Y REACTORES MÚLTIPLES omparació de Reactores Ideales y Reactores Múltiples PITULO 4 OMPRIÓN DE RETORES IDELES Y RETORES MÚLTIPLES 4. INTRODUIÓN E este capítulo se comparará los reactores T y. Se diseñará baterías de reactores

Más detalles

Calculo de coeficientes de transferencia. Dr. Rogelio Cuevas García 1

Calculo de coeficientes de transferencia. Dr. Rogelio Cuevas García 1 Calculo de coeficietes de trasferecia Dr. Rogelio Cuevas García 1 El calculo de los coeficietes de trasferecia de masa se prefiere e fució de úmeros adimesioales y e igeiería de reactores heterogéeos,

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Estructura de los Sólidos

Estructura de los Sólidos Estructura de los Sólidos Materia Codesada: Este termio iclue tato a los sólidos como a los líquidos La gracias esta e que e ambos estados las iteraccioes etre átomos moléculas so suficietemete fuertes

Más detalles

Guía: Propiedades de las potencias SGUIC3M020MT311-A17V1

Guía: Propiedades de las potencias SGUIC3M020MT311-A17V1 Guía: Propiedades de las potecias SGUICM00MT11-A17V1 TABLA DE CORRECCIÓN PROPIEDADES DE LAS POTENCIAS Ítem Alterativa Dificultad Estimada 1 C Media D Media D Media 4 B Media 5 D Compresió Media 6 E Compresió

Más detalles

20/11/2011 ELECTROTECNIA

20/11/2011 ELECTROTECNIA 0//0 orriete cotíua EETROTENIA. Elemetos activos. Elemetos pasivos 3. riterio iteracioal de sigos 4. Asociació de elemetos activos 5. Asociació de elemetos pasivos Juaa Molia Elemetos capaces de aportar

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

RELACIONES DE RECURRENCIA

RELACIONES DE RECURRENCIA Uidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo geeral Coocer e forma itroductoria los coceptos propios de la recurrecia e relació co matemática discreta. Objetivos específicos Coocer

Más detalles

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES ab + cd = 2500, halle el valor de (a + c) a c e g K.

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES ab + cd = 2500, halle el valor de (a + c) a c e g K. SEMANA 1 RAZONES Y PROPORCIONES 1. Si: a b c d y 7 4 1 6 ab + cd = 500, halle el valor de (a + c) A) 75 B) 80 C) 90 D) 95 E) 100 a b ab K K 7 4 8 d e de K K 1 6 7 Luego: 500 100K K = 5 Luego: a = 5, d

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

C. INDICADORES DE EVALUACION DE PROYECTOS

C. INDICADORES DE EVALUACION DE PROYECTOS C. INDICADORES DE EVALUACION DE PROYECTOS 1. Matemáticas Fiacieras 1.1 Iterés simple e iterés compuesto Iterés simple es aquel que se calcula siempre sobre el capital origial, y por tato excluye itereses

Más detalles

ESTIMACION DE LA PRESION DE CONVERGENCIA, CONSTANTE DE EQUILIBRIO Y FASES DEL GAS NATURAL

ESTIMACION DE LA PRESION DE CONVERGENCIA, CONSTANTE DE EQUILIBRIO Y FASES DEL GAS NATURAL República Bolivariaa de Veezuela Miisterio del Poder Popular para la Educació Superior Uiversidad Nacioal Experimetal Rafael María Baralt Programa: Igeiería y Tecología Proyecto: Igeiería e Gas Profesor:

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

Series de números reales

Series de números reales Series de úmeros reales Covergecia de series uméricas Ejercicio. series: a) ) + b) 3 3 ) c) +) Aplicar el criterio de la raíz para estudiar la posible covergecia de las siguietes Solució. a) Aplicamos

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

Escena 5 Planificación contra stock

Escena 5 Planificación contra stock Método de Plaificació propuesto 67 Escea 5 Plaificació cotra stock Ua vez coocidos los protagoistas la escea busca ordear los pedidos de la forma más eficiete, respetado los requisitos del cliete. Es e

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

FENOMENOS DE TRANSPORTE INTRODUCCIÓN

FENOMENOS DE TRANSPORTE INTRODUCCIÓN FENOMENOS DE TRANSPORTE INTRODUCCIÓN Objetivos: -el estudio de los feómeos de trasporte sigue al estudio de la termodiámica. -la termodiámica mira a u sistema e equilibrio. -los feómeos de trasporte mira

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 016 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA Juio, Ejercicio 5, Opció A Juio, Ejercicio 5, Opció B Reserva 1, Ejercicio, Opció B Reserva 1, Ejercicio 5, Opció

Más detalles

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas.

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas. ESUEL UNIVERSIRI DE INGENIERÍ ÉNI INDUSRIL UNIVERSIDD POLIÉNI DE MDRID Roda de Valecia, 3 80 Madrid www.euiti.upm.es sigatura: Igeiería de la Reacció Química Se platea ua serie de cuestioes y ejercicios

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

8.- LÍMITES DE FUNCIONES

8.- LÍMITES DE FUNCIONES 8.- LÍMITES DE FUNCIONES.- DOMINIO DE DEFINICIÓN. Halla el domiio de defiició de f() = + 5+6 Solució: El domiio es -{,}. Halla el domiio de defiició de f() = 6 Solució: El domiio es (-,-] [, ).. Halla

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE

TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE Supogamos teer ua plata de trasferecia G(s) (ver la figura), que es estable y a la cual le igresamos ua señal siusoidal r(t) = a. se(ω.t). Se demuestra que

Más detalles

Capítulo VARIABLES ALEATORIAS

Capítulo VARIABLES ALEATORIAS Capítulo VI VARIALES ALEATORIAS. Itroducció Detro de la estadística se puede cosiderar dos ramas perfectamete difereciadas por sus objetivos y por los métodos que utiliza: Estadística Descriptiva o Deductiva

Más detalles

(a n a n+1 ) n(n + 1) = Comprobar que las siguientes series no son convergentes. ( 1) n. 2 n+2 3 n 2,

(a n a n+1 ) n(n + 1) = Comprobar que las siguientes series no son convergentes. ( 1) n. 2 n+2 3 n 2, FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 4. Probar que si la serie es covergete,

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

VECTORES. A partir de la representación de, como una recta numérica, los elementos

VECTORES. A partir de la representación de, como una recta numérica, los elementos VECTORES VECTORES Los ectores, que era utilizados e mecáica e la composició de fuerzas y elocidades ya desde fies del siglo XVII, o tuiero repercusió etre los matemáticos hasta el siglo XIX cuado Gauss

Más detalles

- A h h+1 n-1 n

- A h h+1 n-1 n 1º DMINISTRCIÓN Y FINNZS GESTIÓN FINNCIER. TEM 9 TEM Nº 9: SELECCIÓN DE INVERSIONES 1. DIMENSIÓN FINNCIER DE UN PROYECTO DE INVERSIÓN Desde el puto de vista fiaciero, es decir, moetario, cualquier proyecto

Más detalles

Se utilizan tres enunciados para básicos para definir los procesos de Poisson. Sea t un t 0, entonces se tiene:

Se utilizan tres enunciados para básicos para definir los procesos de Poisson. Sea t un t 0, entonces se tiene: 9 TEORÍA DE TRÁFIO La teoría de tráfico es ua herramieta ampliamete utilizada para el aálisis del comportamieto de las redes de comuicacioes, las cuales puede ser de comutació de circuitos, como las redes

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL I.E.S. Virge de la Paz. Alcobedas DEPARTAMETO DE MATEMÁTICAS Itroducció ESTADÍSTICA UIDIMESIOAL El ombre de Estadística alude al eorme iterés de esta rama matemática para los asutos del Estado y su itroducció

Más detalles

Evolución del concepto de Átomo (Resumen)

Evolución del concepto de Átomo (Resumen) Evolució del cocepto de Átomo (Resume) Tomposo Propuso u p[átomo co cargad positive distribuida e ua esfera de 0-8 cm de diámetro co pequeñas partículas co carga egativa distribuidas e capas. La teoría

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

CS. de la COMPUTACION II 1 VERIFICACION DE PROGRAMAS

CS. de la COMPUTACION II 1 VERIFICACION DE PROGRAMAS CS. de la COMPUTACION II 1 VERIFICACION DE PROGRAMAS Uo de los efoques para determiar si u programa es correcto es establecer ua actividad de testig. Esta cosiste e seleccioar u cojuto de datos de etrada

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS "Toda cosa grade, majestuosa y bella e este mudo, ace y se forja e el iterior del hombre". Gibrá Jalil Gibrá. Uidad : PROCESOS INFINITOS Y LA NOCIÓN

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles