Momento angular de una partícula. Momento angular de un sólido rígido

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Momento angular de una partícula. Momento angular de un sólido rígido"

Transcripción

1 Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular de un sólido rígido Las partículas de un sólido rígido en rotación alrededor de un eje fijo describen circunferencias centradas en el eje de rotación con una velocidad que es proporcional al radio de la circunferencia que describen v i = r i

2 En la figura, se muestra el vector momento angular L i de una partícula de masa m i cuya posición está dada por el vector r i y que describe una circunferencia de radio R i con velocidad v i. El módulo del vector momento angular vale L i =r i m i v i Su proyección sobre el eje de rotación Z es L iz =m i v i r i cos(90- i ), es decir, El momento angular de todas las partículas del sólido es La proyección L z del vector momento angular a lo largo del eje de rotación es El término entre paréntesis se denomina momento de inercia

3 En general, el vector momento angular L no tiene la dirección del eje de rotación, es decir, el vector momento angular no coincide con su proyección L z a lo largo del eje de rotación. Cuando coinciden se dice que el eje de rotación es un eje principal de inercia. Para estos ejes existe una relación sencilla entre el momento angular y la velocidad angular, dos vectores que tienen la misma dirección, la del eje de rotación L=I El momento de inercia no es una cantidad característica como puede ser la masa o el volumen, sino que su valor depende de la posición del eje de rotación. El momento de inercia es mínimo cuando el eje de rotación pasa por el centro de masa. Cuerpo Varilla delgada de longitud L Disco y cilindro de radio R Esfera de radio R Momento de inercia I c Aro de radio R mr 2 Teorema de Steiner El teorema de Steiner es una fórmula que nos permite calcular el momento de inercia de un sólido rígido respecto de un eje de rotación que pasa por un punto O, cuando conocemos el momento de inercia respecto a un eje paralelo al anterior y que pasa por el centro de masas. El momento de inercia del sólido respecto de un eje que pasa por O es El momento de inercia respecto de un eje que pasa por C es

4 Para relacionar I O e I C hay que relacionar r i y R i. En la figura, tenemos que El término intermedio en el segundo miembro es cero ya que obtenemos la posición x C del centro de masa desde el centro de masa. Ejemplo Sea una varilla de masa M y longitud L, que tiene dos esferas de masa m y radio r simétricamente dispuestas a una distancia d del eje de rotación que es perpendicular a la varilla y pasa por el punto medio de la misma. Un péndulo consiste en una varilla de masa M y longitud L, y una lenteja de forma cilíndrica de masa m y radio r. El péndulo puede oscilar alrededor de un eje perpendicular a la varilla que pasa por su extremo O

5 Energía cinética de rotación Las partículas del sólido describen circunferencias centradas en el eje de rotación con una velocidad que es proporcional al radio de la circunferencia que describen v i = R i. La energía cinética total es la suma de las energías cinéticas de cada una de las partículas. Esta suma se puede expresar de forma simple en términos del momento de inercia y la velocidad angular de rotación Ecuación de la dinámica de rotación Consideremos un sistema de partículas. Sobre cada partícula actúan las fuerzas exteriores al sistema y las fuerzas de interacción mutua entre las partículas del sistema. Supongamos un sistema formado por dos partículas. Sobre la partícula 1 actúa la fuerza exterior F 1 y la fuerza que ejerce la partícula 2, F 12. Sobre la partícula 2 actúa la fuerza exterior F 2 y la fuerza que ejerce la partícula 1, F 21. Por ejemplo, si el sistema de partículas fuese el formado por la Tierra y la Luna: las fuerzas exteriores serían las que ejerce el Sol ( y el resto de los planetas) sobre la Tierra y sobre la Luna. Las fuerzas interiores serían la atracción mutua entre estos dos cuerpos celestes. Para cada unas de las partículas se cumple que la variación del momento angular con el tiempo es igual al momento de la resultante de las fuerzas que actúan sobre la partícula considerada. Sumando miembro a miembro, aplicando la propiedad distributiva del producto vectorial, y teniendo en cuanta la tercera Ley de Newton, F 12 =-F 21, tenemos que Como los vectores r 1 -r 2 y F 12 son paralelos su producto vectorial es cero. Por lo que nos queda

6 La derivada del momento angular total del sistema de partículas con respecto del tiempo es igual al momento de las fuerzas exteriores que actúan sobre las partículas del sistema. Consideremos ahora que el sistema de partículas es un sólido rígido que está girando alrededor de un eje principal de inercia, entonces el momento angular L=I, la ecuación anterior la escribimos Momento angular de un sistema de partículas Consideremos el sistema de dos partículas de la figura anterior. El momento angular total del sistema respecto del origen es L=r 1 m 1 v 1 +r 2 m 2 v 2 Calculamos el momento angular respecto del centro de masas r 1cm =r 1 -r cm r 2cm =r 2 -r cm v 1cm =v 1 -v cm v 2cm =v 2 -v cm El momento angular respecto del origen es la suma de dos contribuciones: L=(r 1cm +r cm ) m 1 (v 1cm +v cm )+ (r 2cm +r cm ) m 2 (v 2cm +v cm )= (r 1cm m 1 v 1cm )+ (r 2cm m 2 v 2cm )+ r cm (m 1 v 1cm + m 2 v 2cm )+ (m 1 r 1cm + m 2 r 2cm ) v cm De la definición de posición y velocidad del centro de masas, tenemos que m 1 v 1cm + m 2 v 2cm =0, m 1 r 1cm + m 2 r 2cm =(m 1 +m 2 ) r cm L=L cm +(m 1 +m 2 ) r cm v cm En general, para un sistema de partículas de masa total m L=L cm +m r cm v cm El primer término, es el momento angular interno relativo al sistema c.m. y el último término, el

7 momento angular externo relativo al sistema de laboratorio, como si toda la masa estuviera concentrada en el centro de masa. Relación entre el momento de las fuerzas exteriores M ext y el momento angular interno L cm. El momento de las fuerzas exteriores respecto del origen es la suma de dos contribuciones M ext = r 1 F 1 +r 2 F 2 =(r 1cm +r cm ) F 1 +(r 2cm +r cm ) F 2 = r 1cm F 1 +r 2cm F 2 + r cm (F 1 +F 2 )= M cm + r cm (F 1 +F 2 ). M ext = M cm + r cm F ext. El primer término es el momento de las fuerzas exteriores relativo al c.m. y el segundo es el momento de la fuerza resultante F 1 +F 2 como si estuviera aplicada en el centro de masas. Derivando respecto del tiempo el momento angular total L, tenemos Teniendo en cuenta que el segundo término es el producto vectorial de dos vectores paralelos y que la ecuación del movimiento del c.m. es resulta Como hemos demostrado en el apartado anterior que Se obtiene la relación Estas dos relaciones son idénticas pero existen diferencias en su interpretación. En la primera se

8 evalúa el momento angular L y el momento de las fuerzas exteriores M ext respecto de un punto fijo O (origen del sistema de coordenadas) en un sistema de referencia inercial. La segunda se evalúa el momento angular L cm y el momento de las fuerzas M cm respecto al sistema de referencias del centro de masas incluso si no está en reposo con relación al sistema inercial de referencia O. Esta última relación, es la que emplearemos para describir el movimiento del c.m. de un sólido rígido. Vamos a estudiar con más detalle la validez de la relación Siendo A un punto arbitrario, L A el momento angular del sistema de partículas respecto de A y M A el momento total de las fuerzas externas respecto del mismo punto. La posición de la partícula i respecto al origen del sistema de referencia inercial es r i, la posición de dicha partícula respecto de A es r ia. En la figura, se muestra la relación entre estos dos vectores r i =r A +r ia La velocidad de la partícula i respecto del sistema de referencia inercial es v i, y del punto A es v A. El momento angular del sistema de partículas respecto de A, L A es Sea F i la fuerza exterior que actúa sobre la partícula i. La segunda ley de Newton afirma que El momento de las fuerzas exteriores respecto de A es

9 Como la posición del centro de masas r cm se define Siendo M la masa total del sistema de partículas, llegamos a la relación Podemos obtener la misma relación derivando el momento angular L A respecto del tiempo Cuando el término M(r cm -r A ) a A desaparece, la relación M A =dl A /dt se cumple. Esto ocurre en los siguientes casos: Cuando el punto A coincide con el centro de masas r cm =r A Cuando la aceleración de A es cero a A =0, es decir, A se mueve con velocidad constante. Cuando la aceleración de A, a A es paralela al vector (r cm -r A ) En los ejemplos de la sección Movimiento general de un sólido rígido emplearemos únicamente la relación El momento angular L cm del sólido rígido y el momento de las fuerzas exteriores M cm se calculan con respecto del centro de masas.

10 Principio de conservación del momento angular El principio de conservación del momento angular afirma que si el momento de las fuerzas exteriores es cero (lo que no implica que las fuerzas exteriores sean cero, que sea un sistema aislado), el momento angular total se conserva, es decir, permanece constante. Trabajo y energía en el movimiento de rotación En otra página relacionamos el trabajo de la resultante de las fuerzas que actúan sobre una partícula con la variación de energía cinética de dicha partícula. Considérese un cuerpo rígido que puede girar alrededor de un eje fijo tal como se indica en la figura. Supongamos que se aplica una fuerza exterior F en el punto P. El trabajo realizado por dicha fuerza a medida que el cuerpo gira recorriendo una distancia infinitesimal ds=rd en el tiempo dt es F sen es la componente tangencial de la fuerza, la componente de la fuerza a lo largo del desplazamiento. La componente radial de la fuerza no realiza trabajo, ya que es perpendicular al desplazamiento. El momento de la fuerza es el producto de la componente tangencial de la fuerza por el radio. La expresión del trabajo la podemos escribir de forma alternativa El trabajo total cuando el sólido gira un ángulo es

11 En la deducción se ha tenido en cuenta la ecuación de la dinámica de rotación M=I, y la definición de velocidad angular y aceleración angular. Se obtiene una ecuación análoga al teorema trabajo-energía para una partícula. El trabajo de los momentos de las fuerzas que actúan sobre un sólido rígido en rotación alrededor de un eje fijo modifica su energía cinética de rotación. Impulso angular En la dinámica de una partícula vimos el concepto de impulso lineal. Una fuerza aplicada durante un tiempo modifica el momento lineal (la velocidad de la partícula). En el caso de un sólido en rotación la magnitud equivalente se denomina impulso angular. El momento de las fuerzas que se aplican durante un tiempo t a un sólido rígido en movimiento de rotación alrededor de un eje fijo, modifica el momento angular del sólido en rotación.

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

4. Fuerzas centrales. Comprobación de la segunda Ley de Kepler

4. Fuerzas centrales. Comprobación de la segunda Ley de Kepler 4. Fuerzas centrales. Comprobación de la segunda Ley de Kepler Fuerza central Momento de torsión respecto un punto Momento angular de una partícula Relación Momento angular y Momento de torsión Conservación

Más detalles

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω Suponiendo un cuerpo rígido que gira con velocidad angular ω alrededor del eje Z que permanece fijo al cuerpo. dl = ( dm R 2

Más detalles

Dinámica del movimiento rotacional

Dinámica del movimiento rotacional Dinámica del movimiento rotacional Torca, momento angular, momento cinético o momento de torsión: La habilidad de una fuerza para rotar o girar un cuerpo alrededor de un eje. τ = r F r= es la posición

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla

El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla El sólido rígido Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2015/2016 Dpto.Física Aplicada III Universidad de Sevilla Índice Condición geométrica de

Más detalles

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL Capítulo 4 TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL 4.1 Introducción En el tema anterior hemos estudiado los principios fundamentales de la dinámica. La segunda ley de Newton, que relaciona

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO Nombre: Marilyn Chela Curso: 1 nivel de Ing. Química TEMA: Relación entre la Dinámica Lineal y la Dinámica Rotacional. Dinámica rotacional: Se trabaja con el

Más detalles

ENERGÍA Y CANTIDAD DE MOVIMIENTO

ENERGÍA Y CANTIDAD DE MOVIMIENTO Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS 10:47 CUERPOS RIGIDOS ENERGÍA Y CANTIDAD DE MOVIMIENTO 2016 Hoja 1 OBJETIVOS Estudiar el método del Trabajo y la Energía Aplicar y analizar el movimiento

Más detalles

FUERZAS CENTRALES. Física 2º Bachillerato

FUERZAS CENTRALES. Física 2º Bachillerato FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión

Más detalles

Capítulo 10. Rotación de un Cuerpo Rígido

Capítulo 10. Rotación de un Cuerpo Rígido Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

Javier Junquera. Dinámica del sólido rígido

Javier Junquera. Dinámica del sólido rígido Javier Junquera Dinámica del sólido rígido ibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 omento angular de un cuerpo que rota

Más detalles

Momento angular de una partícula

Momento angular de una partícula Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L = r m v Momento angular

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Cap. 11B Rotación de cuerpo rígido JRW

Cap. 11B Rotación de cuerpo rígido JRW Cap. 11B Rotación de cuerpo rígido JRW 01 Repaso JRW 01 Objetivos: Después de completar este módulo, deberá: Definir y calcular el momento de inercia para sistemas simples.

Más detalles

Dinámica de los sistemas de partículas

Dinámica de los sistemas de partículas Dinámica de los sistemas de partículas Definiciones básicas Supongamos un sistema compuesto por partículas. Para cada una de ellas podemos definir Masa Posición Velocidad Aceleración Fuerza externa Fuerza

Más detalles

Momento angular de una partícula

Momento angular de una partícula Momento angular de una partícula Se dene momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L = r m v 1 Momento angular

Más detalles

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton. 1. Introducción. 2. Leyes de Newton: 2.1 Primera Ley de Newton o Ley de Inercia. 2.2 Segunda Ley de Newton o Principio Fundamental de la Dinámica. 2.3 Tercera Ley de Newton o Principio de Acción o Reacción.

Más detalles

60N. Solo hay que tener en cuenta las fuerzas perpendiculares a la barra y en qué sentido la hacen girar: M sen45 1,5 70cos ,51N m

60N. Solo hay que tener en cuenta las fuerzas perpendiculares a la barra y en qué sentido la hacen girar: M sen45 1,5 70cos ,51N m . Calcular en momento de las fuerzas que actúan sobre la barra de la figura que puede girar alrededor de un eje que pasa por el punto. qué fuerza aplicada en el centro de la barra impide el giro? Dinámica

Más detalles

Mediante este programa se persigue desarrollar las siguientes habilidades:

Mediante este programa se persigue desarrollar las siguientes habilidades: PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios

Más detalles

Módulo 1: Mecánica Sólido rígido. Rotación (II)

Módulo 1: Mecánica Sólido rígido. Rotación (II) Módulo 1: Mecánica Sólido rígido. Rotación (II) 1 Segunda ley de Newton en la rotación Se puede hacer girar un disco por ejemplo aplicando un par de fuerzas. Pero es necesario tener en cuenta el punto

Más detalles

Estática. M = r F. donde r = OA.

Estática. M = r F. donde r = OA. Estática. Momento de un vector respecto de un punto: Momento de una fuerza Sea un vector genérico a = AB en un espacio vectorial V. Sea un punto cualesquiera O. Se define el vector momento M del vector

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

Tema 9: Introducción a la Dinámica

Tema 9: Introducción a la Dinámica Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática

Más detalles

Dinámica de Rotación del Sólido Rígido

Dinámica de Rotación del Sólido Rígido Dinámica de Rotación del Sólido Rígido 1. Movimientos del sólido rígido.. Momento angular de un sólido rígido. Momento de Inercia. a) Cálculo del momento de inercia de un sólido rígido. b) Momentos de

Más detalles

MCU. Transmisión de movimiento. Igual rapidez. tangencial. Posee. Velocidad. Aceleración centrípeta variable. Velocidad angular constante

MCU. Transmisión de movimiento. Igual rapidez. tangencial. Posee. Velocidad. Aceleración centrípeta variable. Velocidad angular constante DINÁMICA ROTACIONAL MCU Transmisión de movimiento Igual rapidez tangencial Posee 1 R1 2 R2 Velocidad angular constante Velocidad tangencial variable Aceleración centrípeta variable Fuerza centrípeta variable

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este

Más detalles

TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un

TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un elemento de masa dm que gira a una distancia r del eje de

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

Sólido Rígido. Momento de Inercia 17/11/2013

Sólido Rígido. Momento de Inercia 17/11/2013 Sólido ígido Un sólido rígido es un sistema formado por muchas partículas que tiene como característica que la posición relativa de todas ellas permanece constante durante el movimiento. A B El movimiento

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 12 CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO ANGULAR

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 12 CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO ANGULAR APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 12 CONSERVACIÓN DE A CANTIDAD DE MOVIMIENTO ANGUAR Cantidad de movimiento angular de una partícula. Así como en el movimiento de traslación

Más detalles

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla 00-0 Dinámica de la rotación Momento de un vector con respecto a un punto: M El momento del vector con respecto al punto O se define como el producto vectorial M r O Es un vector perpendicular al plano

Más detalles

Péndulo de torsión y momentos de inercia

Péndulo de torsión y momentos de inercia Prácticas de Física Péndulo de torsión y momentos de inercia 1 Objetivos Curso 2009/10 Determinar la constante de un muelle espiral Determinar el momento de inercia de varios sólidos rígidos Comprobar

Más detalles

El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla

El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla El sólido rígido Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2011/2012 Dpto.Física Aplicada III Universidad de Sevilla Índice Campo de velocidades de

Más detalles

Momento angular en mecánica clásica

Momento angular en mecánica clásica Momento angular en mecánica clásica Conocemos como actúa un cuerpo al aplicarle una fuerza externa y la relación existente entre fuerza externa y variación de la cantidad de movimiento. También sabemos

Más detalles

Física. Conservación del Momento Angular

Física. Conservación del Momento Angular Física Conservación del Momento Angular Tenemos dos discos, el inferior tiene un radio de 1 m y superior tiene un radio de 0.5 m que pueden girar alrededor del mismo eje pero con velocidades angulares

Más detalles

MECA EC N A I N CA C A A PL

MECA EC N A I N CA C A A PL Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS 18:51 CINÉTICA DE PARTÍCULAS SEGUNDA LEY DE NEWTON Mecánica Aplicada Mecánica y Mecanismos 2015 Hoja 1 OBJETIVOS 1. Interpretar las leyes de Newton. 2.

Más detalles

Física I F-123 PF1.7 Año 2017

Física I F-123 PF1.7 Año 2017 Práctica 6: Sólido Rígido 1. Determinar en cada caso el momento de inercia del sistema respecto de los ejes indicados. Utilizar cuando sea conveniente el teorema de Steiner. 2. Un disco de masa m = 50

Más detalles

Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento

Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento OBJETIVOS Formular: Conceptos, Definiciones Leyes resolver PROBLEMAS Fomentar: Habilidades Destrezas

Más detalles

SISTEMAS DE REFERENCIA NO INERCIALES

SISTEMAS DE REFERENCIA NO INERCIALES aletos Física para iencias e Ingeniería TEM 10 SISTEMS DE REFERENI NO INERILES 10.1 10.1 Sistema inercial de referencia El concepto de sistema inercial de referencia quedó establecido al estudiar las leyes

Más detalles

UD 10. Leyes de la dinámica

UD 10. Leyes de la dinámica UD 10. Leyes de la dinámica 1- Concepto de fuerza. 2- Primer principio de la dinámica. 3- Segundo principio de la dinámica. 4- Tercer principio de la dinámica. 5- Momento lineal. 6- Fuerzas: Peso, Normal,

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 SOLUCIÓN Analice las siguientes preguntas

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES EL MOVIMIENTO El movimiento siempre nos ha interesado. Por ejemplo, en el mundo de hoy consideramos el movimiento cuando describimos la rapidez de un auto nuevo o el poder de aceleración que tiene. La

Más detalles

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos

Más detalles

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente.

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. TORQUE Y EQUILIBRIO DE CUERPO RÍGIDO. En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. De traslación a lo largo de una trayectoria, de rotación mientras se está trasladando,

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Autores Introducción C O N S E R V A C I Ó N D E L M O M E N T O A N G U L A R Juan Andrés Diana, Fernando

Más detalles

Relación entre Torque y Aceleración Angular. En los ejemplos de aplicación de un torque, el efecto observable es un movimiento de rotación que parte del reposo, o también puede ser un movimiento que pase

Más detalles

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento DINÁMICA 1. Fuerza 2. Ley de Hooke 3. Impulso. 4. Momento lineal o cantidad de movimiento. Teorema del impulso. Principio de conservación de la cantidad de movimiento. 5. Leyes del movimiento. Definición

Más detalles

Dinámica de los sistemas de partículas

Dinámica de los sistemas de partículas Dinámica de los sistemas de partículas Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2013/2014 Dpto.Física Aplicada III Universidad de Sevilla Índice 2

Más detalles

Cinemática y Dinámica

Cinemática y Dinámica Cinemática y Dinámica Cinética de la partícula Objetivo: El alumno aplicará las leyes de Newton en la resolución de ejercicios de movimiento de la partícula en un plano, donde intervienen las causas que

Más detalles

Capítulo I PRINCIPIOS GENERALES Y VECTORES FUERZA 1.1 INTRODUCCIÓN

Capítulo I PRINCIPIOS GENERALES Y VECTORES FUERZA 1.1 INTRODUCCIÓN PRINIPIOS GENERLES Y VETORES FUERZ apítulo I 1.1 INTRODUIÓN La mecánica trata de la respuesta de los cuerpos a la acción de las fuerzas. Las leyes de la mecánica encuentran aplicación en el estudio de

Más detalles

ds dt = r dθ dv dt = r dω dt a O

ds dt = r dθ dv dt = r dω dt a O aletos 23.1 23.1 Rodadura sin deslizamiento Un sólido rígido con un eje de simetría axial, como un disco circular, un cilindro o una esfera, rueda sin deslizar sobre una superficie cualquiera, cuando en

Más detalles

F 28º 1200 N ESTÁTICA Y DINÁMICA

F 28º 1200 N ESTÁTICA Y DINÁMICA COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatura: ISICA 11º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE ESTÁTICA SITUACIÓN PROBLEMA Cuando un barco de gran tamaño entra a un puerto o atraviesa

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal. En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.

Más detalles

Dinámica de los sistemas de partículas. Javier Junquera

Dinámica de los sistemas de partículas. Javier Junquera Dinámica de los sistemas de partículas Javier Junquera Bibliografía FUENTE PRINCIPAL Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 8 Física

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Materiales * Varilla delgada con orificios practicados

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN Movimiento de rotación Qué tienen en común los movimientos de un disco compacto, las sillas voladoras, un esmeril,

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer

Más detalles

Javier Junquera. Equilibrio estático

Javier Junquera. Equilibrio estático Javier Junquera Equilibrio estático Bibliografía Física, Volumen 1, 6 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 12 Definición de equilibrio El término equilibrio

Más detalles

PROGRAMA DE FÍSICA I TEORÍA

PROGRAMA DE FÍSICA I TEORÍA Pág. 1/5 UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA PROGRAMA DE FÍSICA I TEORÍA Código: 0846203T Teoría: 4 horas/semana

Más detalles

BOLILLA 4 Movimiento Circular y Leyes de Newton

BOLILLA 4 Movimiento Circular y Leyes de Newton BOLILLA 4 Movimiento Circular y Leyes de Newton 1. Movimiento Circular. En ausencia de fuerzas, el movimiento en línea recta y a velocidad constante continúa indefinidamente. El movimiento circular, sin

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA FUNDAMENTACIÓN CIENTÍFICA

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA FUNDAMENTACIÓN CIENTÍFICA UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA ASIGNATURA: CÓDIGO: ÁREA: REQUISITO: FÍSICA I CB234 FUNDAMENTACIÓN CIENTÍFICA Matemática I CB15 con nota 2.0 HORAS

Más detalles

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca Ingeniería Mecánica. Mecánica Racional. Ejercicio de Mecánica Vectorial y Analítica

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca Ingeniería Mecánica. Mecánica Racional. Ejercicio de Mecánica Vectorial y Analítica Mecánica Racional Ejercicio de Mecánica Vectorial y Analítica Profesor Dr. Ercoli Liberto Alumno Breno Alejandro Año 2012 1 Cinemática y cinética del cuerpo rígido: Universidad Tecnológica Nacional Ejercicio

Más detalles

, la ley anterior se convierte en la ecuación de movimiento de la partícula: una ecuación diferencial para la posición r,

, la ley anterior se convierte en la ecuación de movimiento de la partícula: una ecuación diferencial para la posición r, Repaso de la mecánica de Newton Arrancamos de la segunda ley de Newton sin aclaraciones que vendrán más tarde. (1.1) Especificada la fuerza, la ley anterior se convierte en la ecuación de movimiento de

Más detalles

PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN

PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN OBJETIVOS Determinar la constante de torsión de un péndulo. Estudiar la dependencia del período de oscilación con el momento de inercia. Determinar experimentalmente

Más detalles

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G. Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector

Más detalles

Dinámica de Rotaciones

Dinámica de Rotaciones Pontificia Universidad Católica de Chile Instituto de Física FIZ02 Laboratorio de Mecánica Clásica Dinámica de Rotaciones Objetivo Estudiar la dinámica de objetos en movimiento rotacional. Introducción

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

Universidad Pontificia Bolivariana. Escuela de Ingenierías. Centro Ciencia Básica

Universidad Pontificia Bolivariana. Escuela de Ingenierías. Centro Ciencia Básica Universidad Pontificia Bolivariana. Escuela de Ingenierías. Centro Ciencia Básica Curso: Fundamentos de mecánica. 2015 20 Programación por semanas (teoría y práctica) Texto de apoyo Serway-Jewtt novena

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2017 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2017 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 017 Problemas (Dos puntos por problema). Problema 1: Un barco enemigo está en el lado este de una isla montañosa como se muestra en la figura.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS ÍSICAS II TÉRMINO 2010-2011 PRIMERA EALUACIÓN DE ÍSICA A SOLUCIÓN Pregunta 1 (12 puntos) La trayectoria de un móvil viene descrita por las

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

Física I. Cantidad de Movimiento, Impulso y Choque. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física I. Cantidad de Movimiento, Impulso y Choque. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Física I Cantidad de Movimiento, Impulso y Choque UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar IMPULSO Y CANTIDAD DE MOVIMIENTO Anteriormente se explicó

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

MOVIMIENTO CIRCULAR UNIFORME (MCU)

MOVIMIENTO CIRCULAR UNIFORME (MCU) MOVIMIENTO CIRCULAR UNIFORME (MCU) Ángulo Es la abertura comprendida entre dos radios abiertos que limitan un arco de circunferencia. B _ r θ _ r A Θ= desplazamiento angular r = vector de posición A =

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas

Más detalles

CONTENIDO DINÁMICA DE LA PARTÍCULA. Conceptos fundamentales: masa y fuerza. Leyes de Newton

CONTENIDO DINÁMICA DE LA PARTÍCULA. Conceptos fundamentales: masa y fuerza. Leyes de Newton CONTENIDO Conceptos fundamentales: masa y fuerza Leyes de Newton Ejemplos de fuerzas: peso, fuerza elástica, rozamiento, etc. Diagrama de cuerpo libre Momento lineal y conservación del momento lineal Momento

Más detalles

Cuestionario sobre las Leyes de Newton

Cuestionario sobre las Leyes de Newton Cuestionario sobre las Leyes de Newton 1. Enuncie las leyes de Newton y represente gráficamente o por medio de una ilustración Primera Ley: La primera ley de Newton, conocida también como Ley de inercia,

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. Trabajo mecánico. 2. Teorema de la energía cinética. 3. Fuerzas conservativas y energía potencial. 4. Conservación de la energía mecánica. 5. Consejos

Más detalles

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s.

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s. Dinámica de sistemas en rotación 1) Momento y aceleración angular. Sobre una rueda actúa durante 10 s un momento constante de 20 N m, y durante ese tiempo la velocidad angular de la rueda crece desde cero

Más detalles

Tema 5: Tensor de Inercia

Tema 5: Tensor de Inercia Tema 5: Tensor de Inercia Mecánica Racional, 2º, Grado en Ingeniería Civil Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Índice Introducción Momentos de inercia de cuerpos continuos Tensor

Más detalles

UNIDAD II. 2 Cinemática. 2.1 Movimiento rectilíneo. 2.2 Movimiento bajo aceleración constante. 2.3 Movimiento circular

UNIDAD II. 2 Cinemática. 2.1 Movimiento rectilíneo. 2.2 Movimiento bajo aceleración constante. 2.3 Movimiento circular 42 UNIDAD II 2 Cinemática 2.1 Movimiento rectilíneo 2.2 Movimiento bajo aceleración constante 2.3 Movimiento circular 2.4 Movimiento curvilíneo general 43 UNIDAD II 2 CINEMATICA. La Cinemática (del griego

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION DOCENTE: TEMA: UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA ESCUELA PROFESIONAL DE INGENIERIA ELECTRICA LABORATORIO Nº 8 FISICA I CICLO: 008-A LIC. JULIO CHICANA L. MOMENTO

Más detalles

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 9

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 9 FÍSIC GENEL I - 2014 GUI DE TBJOS PÁCTICOS Nº 9 Problema 1: Un disco macizo, de masa M, radio y espesor e, puede girar sin rozamiento alrededor de un eje que pasa por el punto de su circunferencia. El

Más detalles

2DA PRÁCTICA CALIFICADA

2DA PRÁCTICA CALIFICADA 2DA PRÁCTICA CALIFICADA DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE : Ing. CASTRO PÉREZ, Cristian CINÉTICA DE UNA

Más detalles

Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería

Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Grado en Ingeniería Aeroespacial Física I Segunda prueba de control, Enero 2016. Curso 2015/16 Nombre: DNI: Este test se recogerá

Más detalles