Tema 6: Modelos de probabilidad.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 6: Modelos de probabilidad."

Transcripción

1 Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos por U(n), si su ley de probabilidad viene dada por: S X = {x 1, x 2,..., x n } p(x = x i ) = 1, para cada i = 1, 2,..., n. n (b) Distribuciones definidas sobre un experimento de Bernouilli Un experimento aleatorio se denomina de Bernouilli si verifica las tres condiciones siguientes: 1 El experimento consiste en observar elementos de una población y clasificarlos en dos categorías: éxito y fracaso (que denominaremos E y F). 2 Llamaremos p a la probabilidad de que un elemento esté en E y q = 1 p a la probabilidad de que esté en F. 3 Las observaciones son independientes. Sobre los experimentos de Bernouilli se pueden definir varios modelos de variables aleatorias: Distribución de Bernouilli. La variable aleatoria X que modeliza la clasificación de un elemento observado en un experimento de Bernouilli como E ó F, tiene una distribución que llamaremos Bernouilli de parámetro p. Lo denotaremos por X B(p). Su ley de probabilidad viene dada por: S X = {0, 1} p(x = 1) = p, p(x = 0) = 1 p E(X) = p V ar(x) = pq. Distribución binomial. La variable aleatoria X que modeliza el número de elementos, entre n observados que tienen la característica E, tiene una distribución que llamaremos binomial de parámetros n y p. Lo denotaremos por X B(n, p); su ley de probabilidad viene dada por: S X = {0, 1,..., n}

2 Estadística 61 p(x = k) = ( n k ) p k (1 p) n k E(X) = np V ar(x) = npq. Propiedades 1 i. Si X B(n, p), entonces X es la suma de n variables de Bernouilli independientes y de parámetro p. ii. Si X 1, X 2,..., X k son variables binomiales independientes de parámetros n i y p, i = 1, 2,..., k, entonces X X k tiene distribución B(n n k, p). iii. Si X B(n, p) entonces Y = n X B(n, 1 p). iv. La distribución es simétrica si y sólo si p = 1 2. Si p < 1 2, entonces existe asimetría a la derecha y en caso contrario hay asimetría a la izquierda. Observación 1 partir de la propiedad (i). Los valores de la media y de la varianza de X se deducen fácilmente a La propiedad (ii) se denomina propiedad de aditividad y no es cierta en general para cualquier modelo de distribución: por ejemplo, si X e Y son las variables que modelizan el resultado de dos dados normales, ambas son uniformes discretas, pero su suma, que modelizaría la suma de resultados, no lo es. Distribución geométrica: La variable aleatoria X que modeliza el número de observaciones (o ensayos) necesarias para obtener el primer éxito en un experimento de Bernouilli, tiene una distribución que llamaremos geométrica de parámetro p. Lo denotaremos por X G(p); su ley de probabilidad viene dada por: S X = {1, 2,...} p(x = k) = p(1 p) k 1 k = 1, 2,... E(X) = 1 p V ar(x) = 1 p p 2 Observación 2 En ocasiones conviene utilizar la variable Y que modeliza el número de fracasos necesarios hasta obtener el primer éxito en un experimento de Bernouilli; esta variable está relacionada con la anterior por la igualdad Y = X 1; a partir de esta relación se deduce la ley de probabilidades, media y varianza de la variable Y (calcúlalas). Distribución binomial negativa. La variable aleatoria X que modeliza el número de ensayos necesarios para obtener el r- ésimo éxito, tiene una distribución que llamamos binomial negativa de parámetros r y p. Lo denotaremos por X BN (r, p). Su ley de probabilidad viene dada por: S X = {r, r + 1,...}

3 Estadística 62 p(x = k) = ( k 1 r 1 ) p r (1 p) k r E(X) = r p V ar(x) = r(1 p) p 2 Observación 3 EL siguiente cuadro señala las diferencias entre las variables binomial y binnomial negativa, indicando qué es lo que permanece fijo y cuáles son los valores (aleatorios) de la variable: (c) Distribución hipergeométrica. N o de ensayos N o de éxitos Binomial fijo aleatorio Binomial negativa aleatorio fijo La variable aleatoria X cuya distribución se denomina hipergeométrica de parámetros N, n y Q, se define sobre experimentos que consisten en observar elementos de una población y clasificarlos en dos categorías, éxito y fracaso, (es decir, que cumplen la condición 1) de los experimentos de Bernouilli), pero en los que las observaciones no son independientes. Corresponde a modelizar el número de individuos que tienen la característica de interés, de n (diferentes) observados de una población finita, de tamaño N, cuándo en la población hay Q individuos con esa característica. La denotaremos por X H(N, n, Q); su ley de probabilidad viene dada por: S X = [máx{0, n (N Q)},..., mín{q, n}] ( ) ( ) Q N Q p(x = i) = i n i ( ) N n E(X) = nq N V ar(x) = nq N ( 1 Q N ) ( ) N n N 1 Aproximación de la distribución hipergeométrica por la binomial. Si X es una variable aleatoria con distribución hipergeométrica H(N, n, Q), se puede demostrar que cuando N, Q y Q N p, la distribución hipergeométrica tiende a una distribución binomial B(n, p). Esto permite aproximar la hipergeométrica H(N, n, Q) por una binomial de parámetros n y Q N cuando N es suficientemente grande. En general, la aproximación se considera satisfactoria si N > 50 y n N 0.1. (d) Distribuciones discretas definidas sobre un proceso de Poisson. Un proceso de Poisson es un experimento en el que se observa la aparición de sucesos puntuales sobre un soporte continuo (intervalo de tiempo, de longitud, superficie, etc) y que cumple las siguientes condiciones:

4 Estadística 63 1 El número de resultados que ocurren en un intervalo de tiempo o región específica es independiente del número que ocurre en cualquier otro intervalo disjunto, es decir, no depende del número de resultados que ocurren fuera de él. 2 La probabilidad de que un suceso ocurra en un intervalo o región muy pequeña es proporcional a la longitud del intervalo o área de la región. 3 La probabilidad de que ocurra más de un resultado en un intervalo corto es despreciable. Como consecuencia de las propiedades anteriores el promedio de sucesos por unidad de soporte se mantiene constante y lo denotaremos por λ. Distribución de Poisson. La variable aleatoria X que modeliza el número de sucesos en una unidad de soporte, en un proceso de Poisson, tiene una distribución que llamaremos de Poisson de parámetro λ. La denotaremos por X P(λ). Su ley de probabilidad viene dada por: S X = {0, 1...} p(x = k) = (λ)k e λ k! E(X) = λ V ar(x) = λ. Observación 4 Si Y es la variable que modeliza el número de sucesos en t unidades de soporte (t > 0), la variable Y es también de Poisson y su parámetro es λt, pues por las propiedades de los procesos de Poisson se deduce que el número medio de sucesos en t unidades de soporte es λt. Proposición 1 Si X 1,..., X k son variables aleatorias independientes, con distribución de Poisson, con parámetros λ i, i = 1, 2,..., k entonces la variable aleatoria X = distribución de Poisson de parámetro λ = k λ i. Teorema 1 Teorema de Poisson k X i tiene Sea {X n } n=1 una sucesión de v. a., tales que X n B(n, p n ). Si lim n np n = λ y X es una v.a. con distribución P(λ), se tiene que: lim p(x n x) = p(x x), para cada x IR. n Observación 5 Este último resultado se utiliza en la práctica para aproximar las probabilidades relativas a una variable B(n, p) con n grande y p peque o por probabilidades relativas a una variable de Poisson de parámetro λ = np. Utilizaremos esta aproximación cuando n 25 y p < 0.01.

5 Estadística Modelos continuos. (a) Distribución exponencial La variable aleatoria T que en los procesos de Poisson modeliza el tiempo entre la ocurrencia de dos sucesos consecutivos, tiene una distribución que llamaremos exponencial de parámetro λ > 0; la denotaremos por T Exp(λ). Su ley de probabilidades es: S X = (0, ) f(t) = Su función de distribución viene dada por: { 0 si t < 0 λe λt si t 0 F (t) = 1 e λt E(X) = 1 λ V ar(x) = 1. λ 2 Es el ejemplo más simple de las distribuciones utilizadas en fiabilidad. Proposición 2 Propiedad de pérdida de memoria de la distribución exponencial. Si X es una v.a. con distribución Exp(λ), entonces p(x x + h/(x > x)) = p(x h)para cada x, h 0. Demostración Para cada x > 0 y cada h 0, p(x x + h/(x > x)) = p(x x + h) p(x > x) = 1. Distribución uniforme continua = e λ(t+h) e λt = e λh = p(x h) La variable aleatoria X tiene una distribución uniforme continua de parámetros a y b, que denotaremos por U(a, b), si su ley de probabilidades es: S X = [a, b] (ó (a, b], [a, b), (a, b); denotaremos al intervalo por I) f(x) = { 1 b a si x I 0 en otro caso E(X) = a + b 2 V ar(x) = (b a)2. 12

6 Estadística Distribución normal La variable aleatoria X tiene una distribución normal de parámetros µ y σ, X N (µ, σ) si su ley de probabilidades es: Propiedades 2 (a) E(X) = µ (b) V ar(x) = σ 2 S X = IR f(x) = 1 { σ 2π exp 1 ( ) } x µ 2, para cada x IR. 2 σ (c) Es simétrica respecto de media, mediana y moda, que coinciden con µ. (d) La función de densidad tiene puntos de inflexión en µ ± σ. (e) La función de densidad tiende asintóticamente a 0 en ±. (f) Q 1 = µ 0.675σ, Q 3 = µ σ y por tanto, el IRQ es 1.35σ. (g) En µ ± 2σ se encuentra el 95.5% de la distribución y en µ ± 3σ se encuentra el 99.7% de la misma. (h) Si X N (µ, σ), entonces la variable estandarizada, Z = X µ σ tiene distribución N (0, 1). (i) Dos distribuciones normales cualesquiera están relacionadas mediante una transformación lineal. (j) Si X 1, X 2,..., X n son variables aleatorias independientes, tales que X i N (µ i, σ i ), i = 1,..., n, entonces la v.a. X = n X i tiene distribución N ( n n µ i, σi 2). 6.3 Teorema Central del Límite. El modelo normal es uno de los utilizados más frecuentemente, debido a que en muchas situaciones, los resultados de un experimento son consecuencia de múltiples causas de pequeã incidencia individual, pero cuyos efectos se suman, dando lugar a los resultados del experimento (por ejemplo, los errores de medida, en muchas situaciones); en estas situaciones, el modelo normal suele aproximar bien el comportamiento de los resultados del experimento. El siguiente teorema explica el buen funcionamiento del modelo normal: Teorema 2 Sea {X n } n=1 una sucesión de variables aleatorias independientes con E(X i) = µ i y V ar(x i ) = σi 2. Entonces la sucesión de variables aleatorias definida por: Z n = n X i n µ i ( n ) 1/2 σi 2 converge asintóticamente a una variable aleatoria con distribución N (0, 1), es decir, si F n es la función de distribución de la variable Z n, n = 1, 2,..., y φ es la función de distribución de una variable N (0, 1), entonces para cada x IR, lim F n(x) = φ(x). n

7 Estadística 66 También se dice que n X i es asintóticamente una variable N ( n n µ i, σi 2) Observación 6 Si {X n } n=1 una sucesión de variables aleatorias independientes e idénticamente distribuidas, todas ellas tendrán la misma media (µ) y la misma desviación típioca (σ), y en ese caso, la variable n X i es asintóticamente una variable N (nµ, σ n) Si aplicamos el teorema anterior a una sucesión de variables con distribución B(p) (Bernouilli de parámetro p), se obtiene el siguiente resultado: Teorema 3 Teorema de De Moivre Sea {X n } n=1 una sucesión de variables aleatorias independientes con distribución B(n, p). Entonces X n es asintóticamente normal, con parámetros µ = np y σ = npq. Corrección de continuidad Como la distribución binomial es discreta y la normal es continua, para que la aproximación de la variable X B(n, p) por la variable Y N (np, npq) resulte más precisa se utiliza la llamada corrección de medio punto o de continuidad, que asigna, si b IN: p(x b) p(y b + 0.5), es decir F X (b) F Y (b + 0.5). Esta misma corrección se aplica cada vez que se aproxima una variable aleatoria discreta, cuyo soporte sean los números naturales, por una variable con distribución normal. Observación 7 La aproximación de una binomial por una normal no es adecuada para valores en las colas de la distribución binomial. En concreto, para valores fuera de un intervalo np±3 npq. Tampoco es, en general, adecuada la aproximación para valores p < 1 n+1 ó p > n n+1. Si p es próximo a 0.5, con n > 10 la aproximación es satisfactoria. Como consecuencia del teorema de Poisson y del teorema de De Moivre, se puede demostrar que una distribución de Poisson de parámetro λ se puede aproximar por medio de una variable aleatoria N (λ, λ). Generalmente, esta aproximación es satisfactoria si λ > Otras distribuciones continuas. Distribución gamma: La variable aleatoria X tiene una distribución gamma de parámetros α y β(ambos positivos) si su ley de probabilidades es: f(x) = Su función de distribución viene dada por: S X = (0, ) 0 si x 0 β Γ(α) (βx)α 1 e βx si x > 0 r 1 βx (βx)i F (t) = 1 e i! i=0

8 Estadística 67 E(X) = α β V ar(x) = α β 2. En general, esta variable se utiliza para modelizar el tiempo hasta el fallo en distintos componentes. En el caso particular de que α = 1, entonces la distribución gamma es una exponencial de parámetro β. En el caso particular de que α sea un número natural, la variable X es suma de α v. a. independientes con distribución exponencial, de parámetro β Distribución de Weibull. La variable aleatoria X tiene una distribución de Weibull de parámetros α y β (ambos positivos) si su ley de probabilidad es: f(x) = Su función de distribución viene dada por: S X = (0, ) 0 si x 0 [ ( ) α ] α β exp x α β si x > 0 [ ( ) x α ] F (t) = 1 exp β ( ) E(X) = βγ α ( ) ( ) ) 2 V ar(x) = β (Γ α Γ α En general, esta variable se utiliza para modelizar el tiempo hasta el fallo en distintos componentes.

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Tema 7. Variables Aleatorias Continuas

Tema 7. Variables Aleatorias Continuas Presentación y Objetivos. Tema 7. Variables Aleatorias Continuas En este tema se propone el estudio de las variables aleatorias continuas más importantes, desde la más simple incrementando el grado de

Más detalles

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,... Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Apuntes de Clases. Modelos de Probabilidad Discretos

Apuntes de Clases. Modelos de Probabilidad Discretos 2010 Índice 1. Distribución de Bernouilli 2 2. Distribución Binomial 3 3. Distribución Hipergeométrica 3.1. Aproximación Binomial de la distribución Hipergeométrica............. 7 4. Distribución Geométrica

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

Pérdida Esperada. Pérdida Esperada (PE): Valor esperado de pérdida por riesgo crediticio en un horizonte de tiempo determinado.

Pérdida Esperada. Pérdida Esperada (PE): Valor esperado de pérdida por riesgo crediticio en un horizonte de tiempo determinado. Pérdida Esperada Uno de los objetivos de este estudio es construir una función de pérdidas para el portafolio de la cartera de préstamos que ofrece la entidad G&T Continental, basados en el comportamiento

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Estadística Grupo V. Tema 10: Modelos de Probabilidad

Estadística Grupo V. Tema 10: Modelos de Probabilidad Estadística Grupo V Tema 10: Modelos de Probabilidad Algunos modelos de distribuciones de v.a. Hay variables aleatorias que aparecen con frecuencia en las Ciencias Sociales y Económicas. Experimentos dicotómicos

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

Variables aleatorias continuas y Teorema Central del Limite

Variables aleatorias continuas y Teorema Central del Limite Variables aleatorias continuas y Teorema Central del Limite FaMAF 17 de marzo, 2015 Variables aleatorias continuas Definición Una variable aleatoria X se dice (absolutamente continua) si existe f : R R

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

Cálculo de Probabilidades II Preguntas Tema 2

Cálculo de Probabilidades II Preguntas Tema 2 Cálculo de Probabilidades II Preguntas Tema 2 1. Demuestre que la suma de n v.a. Bernuolli(p) independientes tiene una distribución Binomial con parametros (n, p). 2. Se dice que una v.a tiene una distribución

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 3 Variables aleatorias Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

6.3. Distribuciones continuas

6.3. Distribuciones continuas 144 Bioestadística: Métodos y Aplicaciones Solución: Si consideramos la v.a. X que contabiliza el número de personas que padecen la enfermedad, es claro que sigue un modelo binomial, pero que puede ser

Más detalles

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Discretas de Probabilidad UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

2 Modelos de probabilidad discretos sobre R

2 Modelos de probabilidad discretos sobre R UN CATÁLOGO DE MODELOS DE POBABILIDAD Julián de la Horra Departamento de Matemáticas U.A.M. Introducción En este capítulo vamos a dar un catálogo de algunos de los modelos de probabilidad más utilizados,

Más detalles

Variables Aleatorias y Distribución de Probabilidades

Variables Aleatorias y Distribución de Probabilidades Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables

Más detalles

Distribuciones de probabilidad Discretas

Distribuciones de probabilidad Discretas Distribuciones de probabilidad Discretas Distribución Uniforme Discreta Definición Una variable aleatoria X, tiene una distribución uniforme discreta, si cada uno de los valores x 1, x 2,.. x n, tiene

Más detalles

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 010 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de

Más detalles

Momentos de Funciones de Vectores Aleatorios

Momentos de Funciones de Vectores Aleatorios Capítulo 1 Momentos de Funciones de Vectores Aleatorios 1.1 Esperanza de Funciones de Vectores Aleatorios Definición 1.1 Sea X = (X 1,..., X n ) un vector aleatorio (absolutamente continuo o discreto)

Más detalles

Resumen teórico de los principales conceptos estadísticos

Resumen teórico de los principales conceptos estadísticos Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 6: Distribuciones estadísticas teóricas Resumen teórico Resumen teórico de los principales conceptos estadísticos

Más detalles

Esperanza Condicional

Esperanza Condicional Esperanza Condicional Podemos obtener la esperanza de una distribución condicional de la misma manera que para el caso unidimensional: 129 Caso 2 v.a. discretas X e Y: Caso 2 v.a. continuas X e Y: Percentiles

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

Introducción a los Procesos de Poisson *

Introducción a los Procesos de Poisson * Introducción a los Procesos de Poisson * Victor M. Pérez Abreu C. Departamento de Probabilidad y Estadística, CIMAT David Reynoso Valle Licenciatura en Matemáticas, DEMAT, Universidad de Guanajuato 22

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

MODELOS DISCRETOS DE PROBABILIDAD

MODELOS DISCRETOS DE PROBABILIDAD MODELOS DISCRETOS DE PROBABILIDAD M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Modelo Uniforme Discreto Modelo Uniforme Discreto Sea

Más detalles

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 8 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes.

ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes. 1 ESTADÍSTICA I Capítulo 6: MODELOS PROBABILÍSTICOS CONTINUOS. Contenido: Distribución Uniforme Continua. Distribución Triangular. Distribución Normal. Distribuciones Gamma, Exponencial, Erlang y Chi Cuadrado.

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

Modelado de la aleatoriedad: Distribuciones

Modelado de la aleatoriedad: Distribuciones Modelado de la aleatoriedad: Distribuciones Begoña Vitoriano Villanueva Bvitoriano@mat.ucm.es Facultad de CC. Matemáticas Universidad Complutense de Madrid I. Distribuciones Discretas Bernoulli (p) Aplicaciones:

Más detalles

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial. Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución

Más detalles

Familias de distribuciones

Familias de distribuciones Capítulo 2 Familias de distribuciones 2.1. Introducción Las distribuciones estadísticas son usadas para modelar poblaciones a través de un miembro de una familia de distribuciones. Cada familia se encuentra

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS.

VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS. VARIABLE ALEATORIA CONTINUA VARIABLES ALEATORIAS CONTINUAS º Bto. CC.SS. Una variable aleatoria es continua si puede tomar, al menos teóricamente, todos los valores comprendidos en un cierto intervalo

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 6 Teoremas ĺımite Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST. Tema

Más detalles

FORMULARIO DE DISTRIBUCIONES DE PROBABILIDAD

FORMULARIO DE DISTRIBUCIONES DE PROBABILIDAD FORMULARIO DE DISTRIBUCIONES DE PROBABILIDAD Jorge M. Galbiati pág. DISTRIBUCION BINOMIAL 2 DISTRIBUCION POISSON 4 DISTRIBUCION HIPERGEOMETRICA 5 DISTRIBUCION GEOMETRICA 7 DISTRIBUCION NORMAL 8 DISTRIBUCION

Más detalles

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer...

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer... TEMA 3. Algunos modelos de probabilidad de tipo discreto En este capítulo se abordan «familias» muy específicas de probabilidad, que con cierta frecuencia se nos presentan en el mundo real. Van a ser distribuciones

Más detalles

Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del

Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del Límite Área de Estadística e Investigación Operativa Mariano Amo Salas y Licesio J. Rodríguez-Aragón

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Georgina Flesia FaMAF 3 de mayo, 2012 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

Tema 2 Modelos de probabilidad

Tema 2 Modelos de probabilidad Tema 2 Modelos de probabilidad José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Estructura de este tema Conceptos básicos de probabilidad. Modelos discretos: la distribución

Más detalles

Cuáles son las características aleatorias de la nueva variable?

Cuáles son las características aleatorias de la nueva variable? Apuntes de Estadística II. Ingeniería Industrial. UCAB. Marzo 203 CLASES DE ESTADÍSTICA II CLASE 5) UNA TRANSFORMACIÓN DE DOS VARIABLES. Sea Z = g(, ) una función de las variables aleatorias e, tales que

Más detalles

1. Variables Aleatorias Discretas

1. Variables Aleatorias Discretas Tema 4: Variables Aleatorias Modelos de Probabilidad 1. Variables Aleatorias Discretas Lo que pretendemos en este tema es transformar el problema de la asignación de probabilidades a otro consistente en

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

Modelo de Probabilidad

Modelo de Probabilidad Capítulo 1 Modelo de Probabilidad 1.1 Definiciones y Resultados Básicos Sea Ω un conjunto arbitrario. Definición 1.1 Una familia no vacía F de subconjuntos de Ω es llamada una σ-álgebra de subconjuntos

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Patricia Kisbye FaMAF 6 de mayo, 2010 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

Fórmulas, Resultados y Tablas Cálculo de Probabilidades y Estadística Matemática

Fórmulas, Resultados y Tablas Cálculo de Probabilidades y Estadística Matemática DEPARTAMENT D ESTADÍSTICA I INVESTIGACIÓ OPERATIVA Fórmulas, Resultados y Tablas Cálculo de Probabilidades y Estadística Matemática A. Distribuciones de variables aleatorias. 1. Descripción de una distribución

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p

Más detalles

Funciones generadoras de probabilidad

Funciones generadoras de probabilidad Funciones generadoras de probabilidad por Ramón Espinosa Armenta En este artículo veremos cómo utilizar funciones generadoras en teoría de la probabilidad. Sea Ω un conjunto finito o numerable de resultados

Más detalles

Tema 3: VARIABLES ALEATORIAS

Tema 3: VARIABLES ALEATORIAS Tema 3: VARIABLES ALEATORIAS Introducción En el tema anterior hemos modelizado el comportamiento de los experimentos aleatorios. Los resultados de un experimento aleatorio pueden ser de cualquier naturaleza,

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Sabemos que en un proceso de Poisson la función de probabilidad está dada por:

Sabemos que en un proceso de Poisson la función de probabilidad está dada por: DISTRIBUCIÓN DE WEIBULL Relación entre la dist eponencial y la dist de Poisson Sabemos que en un proceso de Poisson la función de probabilidad está dada por: e-! ( λt ) λt f X (, λ ) P( X = ) = Queremos

Más detalles

I. Distribuciones discretas

I. Distribuciones discretas Probabilidades y Estadística (M) Funciones de densidad o probabilidad puntual, esperanzas, varianzas y funciones características de las variables aleatorias más frecuentes I. Distribuciones discretas Distribución

Más detalles

PROCESO DE BERNOULLI Rosario Romera Febrero 2009

PROCESO DE BERNOULLI Rosario Romera Febrero 2009 PROCESO DE BERNOULLI Rosario Romera Febrero 2009 1. Sumas de Variables Aleatorias Independientes De nición Se considera el experimento aleatorio consistente en la repetición de juegos binarios independientes.

Más detalles

Algunas Distribuciones EstadísticasTeóricas. Aproximación de la Distribución Binomial por la Distribución de Poisson

Algunas Distribuciones EstadísticasTeóricas. Aproximación de la Distribución Binomial por la Distribución de Poisson Algunas Distribuciones EstadísticasTeóricas Distribución de Bernoulli Distribución de Binomial Distribución de Poisson Aproximación de la Distribución Binomial por la Distribución de Poisson Distribución

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad 1. Variable aleatoria Una variable aleatoria X es una función que asocia a cada elemento del espacio muestral E un número real: X: E Ejemplo: Consideremos el experimento

Más detalles

9 APROXIMACIONES DE LA BINOMIAL

9 APROXIMACIONES DE LA BINOMIAL 9 APROXIMACIONES DE LA BINOMIAL 1 Una variable aleatoria sigue una distribución binomial B(n = 1000; p = 0,003). Mediante la aproximación por una distribución de POISSON, calcular P(X = 2), P(X 3) y P(X

Más detalles

1.1. Distribución exponencial. Definición y propiedades

1.1. Distribución exponencial. Definición y propiedades CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -

Más detalles

Unidad Temática 1: Unidad 3 Distribución de Probabilidad Tema 9

Unidad Temática 1: Unidad 3 Distribución de Probabilidad Tema 9 Unidad Temática 1: Unidad 3 Distribución de Probabilidad Tema 9 Distribución de Probabilidad Recordamos conceptos: Variable aleatoria: es aquella que se asocia un número o un dato probabilístico, como

Más detalles

Estadística Descriptiva y Probabilidad FORMULARIO

Estadística Descriptiva y Probabilidad FORMULARIO Estadística Descriptiva y Probabilidad FORMULARIO Departament d Estadística i Investigació Operativa Universitat de València Angel Corberán Francisco Montes 2 3 Capítulo 1 Estadística Descriptiva 1.1.

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira

Más detalles

4. Modelos Multivariantes

4. Modelos Multivariantes 4. Curso 2011-2012 Estadística Distribución conjunta de variables aleatorias Definiciones (v. a. discretas) Distribución de probabilidad conjunta de dos variables aleatorias X, Y Función de distribución

Más detalles

contablemente infinito.

contablemente infinito. III. Variables aleatorias Discretas y sus Distribuciones de Probabilidad 1 Variable aleatoria discreta Definición Una variable aleatoria se llama discreta si se puede contar su conjunto de resultados posibles.

Más detalles

Análisis Estadístico de Datos Climáticos. Distribuciones paramétricas de probabilidad (Wilks, cap. 4)

Análisis Estadístico de Datos Climáticos. Distribuciones paramétricas de probabilidad (Wilks, cap. 4) Análisis Estadístico de Datos Climáticos Distribuciones paramétricas de probabilidad (Wilks, cap. 4) 2013 Variables aleatorias Una variable aleatoria es aquella que toma un conjunto de valores numéricos

Más detalles

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0 Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución

Más detalles

Estadística y Probabilidad

Estadística y Probabilidad La universidad Católica de Loja Estadística y Probabilidad ESCUELA DE ELECTRÓNICA Y TELECOMUNICACIONES Paralelo C Nombre: Milner Estalin Cumbicus Jiménez. Docente a Cargo: Ing. Patricio Puchaicela. Ensayo

Más detalles

CONTRASTES NO PARAMÉTRICOS: ALEATORIEDAD Y LOCALIZACIÓN

CONTRASTES NO PARAMÉTRICOS: ALEATORIEDAD Y LOCALIZACIÓN CONTRASTES NO PARAMÉTRICOS: ALEATORIEDAD Y LOCALIZACIÓN Antonio Morillas A. Morillas: C. no paramétricos (II) 1 1. Contrastes de aleatoriedad. Contraste de rachas. 2. Contrastes de localización 2.1 Contraste

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo

Más detalles

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Curso 2016-2017 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable

Más detalles

Ejercicios de Simulación

Ejercicios de Simulación Ejercicios de Simulación Investigación Operativa Ingeniería Informática, UC3M Curso 07/08 1. Escribe un código (por ejemplo en Matlab, Fortran, C,... ) que genere m secuencias de n números Bernoulli con

Más detalles

Tema 3. Probabilidad y variables aleatorias

Tema 3. Probabilidad y variables aleatorias 1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Dónde estamos? MODELOS DE PROBABILIDAD

Dónde estamos? MODELOS DE PROBABILIDAD Dónde estamos? MODELOS DE PROBABILIDAD DESCR. 98 CÁLC. P. Probabilidad INFERENCIA 988 MODELOS DISCRETOS MODELOS CONTINUOS TEOREMA CENTRAL DEL LÍMITE Variables aleatorias Modelos de robabilidad 994 999

Más detalles

Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM

Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Universidad Católica del Norte Escuela de Negocios Mineros Magíster en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Antofagasta, Junio de 2014 Freddy

Más detalles

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo

Más detalles

Unidad Temática 3 UT3-1: Variable Aleatoria

Unidad Temática 3 UT3-1: Variable Aleatoria Autoevaluación UT3 Unidad Temática 3 UT3-1: Variable Aleatoria Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza.

Más detalles

GRADO TURISMO TEMA 7: INTRODUCCIÓN A LOS MODELOS DE PROBABILIDAD

GRADO TURISMO TEMA 7: INTRODUCCIÓN A LOS MODELOS DE PROBABILIDAD GRADO TURISMO TEMA 7: INTRODUCCIÓN A LOS MODELOS DE PROBABILIDAD Prof. Rosario Martínez Verdú TEMA 7: INTRODUCCIÓN A LOS MODELOS DE PROBABILIDAD 1. Nociones básicas de teoría de la probabilidad. 2. Variable

Más detalles

Tema 2: Variables Aleatorias Unidimensionales

Tema 2: Variables Aleatorias Unidimensionales Tema 2: Variables Aleatorias Unidimensionales Teorı a de la Comunicacio n Curso 27-28 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función

Más detalles

Tema 3. VARIABLES ALEATORIAS.

Tema 3. VARIABLES ALEATORIAS. 3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable

Más detalles

5 DISTRIBUCIONES BINOMIAL Y DE POISSON

5 DISTRIBUCIONES BINOMIAL Y DE POISSON 5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria

Más detalles

Generación de variables aleatorias continuas Método de rechazo

Generación de variables aleatorias continuas Método de rechazo Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa

Más detalles

Tema 7: Introducción a la Teoría sobre Estimación

Tema 7: Introducción a la Teoría sobre Estimación Tema 7: Introducción a la Teoría sobre Estimación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Introducción a la Teoría sobre Estimación

Más detalles