UNIDAD DIDÁCTICA 3 MECANISMOS Y MÁQUINAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD DIDÁCTICA 3 MECANISMOS Y MÁQUINAS"

Transcripción

1 Tecnologías de 3º E.S.O. UNIDAD DIDÁCTICA 3 MECANISMOS Y MÁQUINAS Página 1

2 1 Conceptos previos Una máquina es un conjunto de elementos que intectúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza. Definición alternativa: conjunto de dispositivos sencillos que realizan trabajo. Un mecanismo es cualquier elemento que constituye o forma parte de una máquina. Página 2

3 2 Palancas Una máquina simple es aquella que está formada por pocos elementos. La palanca es una máquina simple, ya que es capaz de multiplicar la fuerza (puedo levantar mucho peso haciendo poca fuerza) y está formada por 2 elementos: una barra y un punto de apoyo. Página 3

4 Ley de la palanca Página 4

5 Ejemplo de aplicación de la ley de la palanca Indi y Lara tienen cada uno una masa de 40 kg. Podrán levantar a Hipo? Hay que comprobar si se cumple la siguiente igualdad: F BF= R B R Página 5

6 Tipos de palancas Según la posición relativa de la fuerza, de la resistencia y del punto de apoyo, las palancas se clasifican en tres tipos: Palanca de primer grado o primer género. Palanca de segundo grado o segundo género. Palanca de tercer grado o tercer género. Página 6

7 Palanca de primer grado El punto de apoyo está entre la fuerza y la resistencia. Dependiendo de la longitud de los brazos, la fuerza será mayor, menor o igual que la resistencia. Página 7

8 Palanca de segundo grado La resistencia está entre el punto de apoyo y la fuerza. Estas palancas tienen ventaja mecánica: aplicando poca fuerza se vence una gran resistencia. Página 8

9 Palanca de tercer grado La fuerza está entre el punto de apoyo y la resistencia. Estas palancas tienen desventaja mecánica: es necesario aplicar mucha fuerza para vencer poca resistencia. Página 9

10 Ejemplos de palancas de primer grado Remos, tijeras, grúa, balanza, tenazas, balancín, alicates... Página 10

11 Ejemplos de palancas de segundo grado Carretilla, sacacorchos, cascanueces... Página 11

12 Ejemplos de palancas de tercer grado Brazo humano, quitagrapas... Página 12

13 Palancas articuladas Es un mecanismo complejo formado por la unión de varias palancas con uniones móviles. Ejemplos: vehículo elevador, cuerpo humano (los huesos son las barras, los músculos ejercen fuerza y las articulaciones son las uniones móviles). Vehículo articulado: el cierre de las 2 palancas articuladas de la base obliga a que el resto de palancas se cierren. Esto produce el desplazamiento en vertical del conjunto, que alcanza gran altura. Página 13

14 3 Poleas y polipastos La polea es una rueda con una hendidura en la llanta por donde se introduce una cuerda o una correa. Las poleas sirven para elevar cargas con más comodidad porque cambian la dirección de la fuerza. Polea fija: la polea gira pero sin moverse de su sitio. Para elevar la carga, la fuerza que se ejerza tiene que ser mayor o igual que la resistencia. Página 14

15 Polea móvil y polipastos I Un polipasto es un conjunto de poleas combinadas de tal forma que se puede elevar un gran peso haciendo muy poca fuerza. Está compuesto de una polea fija y una polea móvil. La fija solo gira cuando se tira de la cuerda y la móvil gira a la vez que se desplaza. En el dibujo, el peso cuelga de la polea móvil, y se reparte entre las dos cuerdas: la mitad del peso lo soporta el tronco y la otra mitad el hipopótamo. Página 15

16 Polea móvil y polipastos II Empleando un polipasto de 8 poleas móviles, cada una soporta 1000 N, de manera que el tronco aguanta 7500 N y ellos solo tienen que hacer 500 N de fuerza (que es como levantar 50 kg). Página 16

17 Torno Un torno es un cilindro que consta de una manivela que lo hace girar, de forma que es capaz de levantar pesos con menos esfuerzo. Se puede considerar como una palanca de primer grado cuyos brazos giran 360º. Página 17

18 Torno: aplicación de la ley de la palanca al torno Con la mano giramos la manivela aplicando una fuerza F, el torno gira y la cuerda se enrolla en el cilindro a la vez que eleva la carga. Es una palanca cuyo punto de apoyo es el eje del cilindro y los brazos son la barra de la manivela y el radio del cilindro. F B F =R B R Como la longitud de la barra de la manivela es mayor que el radio del torno (cilindro), la fuerza que hacemos con la manivela siempre será menor que la resistencia que levantamos. Página 18

19 Ejemplos de aplicación de la ley de la palanca Página 19

20 4 Plano inclinado, cuña y tornillo Plano inclinado El plano inclinado es una rampa que sirve para elevar cargas realizando menos esfuerzos. F b= R a F= R a b Página 20

21 Cuña La cuña es un plano inclinado doble, donde la fuerza que se aplica perpendicular a la base se transmite multiplicada a las caras de la cuña. La fuerza aumenta más cuanto mayor longitud tienen las caras y menor longitud tiene la base. Página 21

22 Tornillo El tornillo es un plano inclinado, pero enrollado sobre un cilindro. Cuando se aplica presión y se enrosca, se multiplica la fuerza aplicada. Cada filete de la rosca hace de cuña, introduciéndose en el material con poco esfuerzo. Página 22

23 5 Mecanismos de transmisión Mecanismos de transmisión: son aquellos que comunican o transmiten el movimiento a otros mecanismos, además de reducir o multiplicar la fuerza. Transmisión por engranajes. Transmisión por correa. Transmisión por cadena y catalina. Tornillo sin fin y corona. Trenes de mecanismos. Página 23

24 Transmisión por engranajes Los engranajes son ruedas que tienen dientes en todo su perímetro externo y engarzan unas con otras. El tamaño de de los dientes de cada una deben ser iguales para que encajen. Los engranajes transmiten movimientos de giro entre ejes muy próximos y son adecuados cuando también es necesario transmitir grandes fuerzas, porque los dientes de los engranajes no deslizan entre sí. Página 24

25 Relación de transmisión entre engranajes Página 25

26 Transmisión por correa Es un mecanismo compuesto de una correa que conduce el movimiento de una polea a otra. Las hendiduras de ambas poleas tienen el mismo tamaño y la correa entre ambas debe tener la tensión adecuada para que se transmita el movimiento. La transmisión por correas es más silenciosa, pero puede patinar cuando se pretende transmitir mucho esfuerzo. Esto sirve para absorber las frenadas o acelerones de un motor, por ejemplo. Página 26

27 Relación de transmisión entre poleas Página 27

28 Ejemplo resuelto de transmisión entre poleas Página 28

29 Transmisión por cadena Es un mecanismo compuesto de una cadena y de ruedas dentadas. Página 29

30 Tornillo sin fin y corona Es una forma de transmisión de movimientos entre ejes que son perpendiculares entre sí. La rosca del tornillo engrana con los dientes del engranaje. Cada vuelta de tornillo la rueda dentada avanza un diente. Para que la rueda dentada de una vuelta completa, el tornillo tiene que girar tantas veces como dientes tiene el engranaje. Página 30

31 Relación de transmisión I Cuando se transmite un movimiento, también se transmite energía. La velocidad motriz es la del elemento que acciona el mecanismo La velocidad conducida es la del elemento que recibe el movimiento. Por ejemplo, en el caso del tornillo sin fin y rueda, el tornillo es el elemento motriz, y la rueda, el conducido. Página 31

32 Relación de transmisión II Multiplicador de velocidad: mecanismo de transmisión en que la velocidad conducida es mayor que la velocidad motriz. Reductor de velocidad: mecanismo de transmisión en que la velocidad conducida es menor que la motriz. Página 32

33 Trenes de mecanismos Los trenes de mecanismos son la unión de varios mecanismos simples. Por ejemplo, los relojes analógicos tienen muchos engranajes, unos acoplados a otros. Página 33

34 Sistema de transmisión reductor Para unir un sistema de poleas a un sistema de engranajes, es necesario que una polea y un engranaje estén en el mismo eje y giren a la misma velocidad, i.e., que sean solidarios. Página 34

35 Tren de poleas Cuando queremos reducir la velocidad de un motor se puede hacer con varias poleas unidas con correa. En este proceso la energía transmitida a cada elemento es la misma, i.e., que al reducir la velocidad aumenta la fuerza. Página 35

36 Tren de engranajes Si queremos aumentar la velocidad de un mecanismo se utilizan varios engranajes o poleas acoplados, pasando de mayor a menor tamaño. Página 36

37 Mecanismos de transformación Son los que cambian el tipo de movimiento, de lineal a circular, o a la inversa, y de alternativo a circular, o inversa. Los más importantes son: Piñón cremallera y husillo tuerca: para transformaciones de movimiento circular en lineal o lineal a circular. Biela-manivela, excéntrica, cigüeñal y leva: para transformaciones de movimiento circular en alternativo. Página 37

38 Piñón cremallera Es un sistema compuesto por un engranaje, llamado piñón, y una barra dentada. Página 38

39 Elevalunas (piñón cremallera) Al girar la manivela del elevalunas, se mueve el piñon, la cremallera se desplaza y produce el ascenso de la luna. Cuando se gira la manivela al revés, la cremallera se mueve en sentido contrario y el cristal baja. Página 39

40 Dirección de un coche (piñón cremallera) Al girar el volante, se produce un desplazamiento lineal de la cremallera que mueve las palancas y obliga a girar a las ruedas en el mismo sentido. Página 40

41 Husillo-tuerca Está compuesto de un eje roscado (husillo) y una tuerca con la misma rosca que el eje. Si se gira la tuerca, esta se desplaza linealmente sobre el husillo; y al revés, si gira el husillo, también se desplaza la tuerca. Página 41

42 Gato a manivela (husillo-tuerca) Al girar la manivela del gato, gira la tuerca y avanza por el husillo linealmente de forma que se cierran las barras articuladas. Al girar en sentido contrario, se abren las barras. Página 42

43 Mecanismos de transformación de movimiento circular a alternativo Biela-manivela Es un mecanismo compuesto de dos barras articuladas, de forma que una gira y la otra se desplaza por una guía. La barra que gira se llama manivela, y la otra, biela. Página 43

44 Biela-manivela I Página 44

45 Biela-manivela II Página 45

46 Biela-manivela III Página 46

47 Biela-manivela IV Página 47

48 Mecanismo biela-manivela en las ruedas de un tren de vapor Página 48

49 Excéntrica La excéntrica es una rueda que tiene una barra rígida unida en un punto de su perímetro. Convierte el movimiento circular en alternativo y viceversa. Página 49

50 El cigüeñal El cigüeñal es un sistema compuesto por la unión de múltiples manivelas acopladas a sus correspondientes bielas. Transforma simultáneamente un movimiento de giro en varios movimientos alternativos. Página 50

51 Leva y seguidor La leva es un dispositivo que al girar es capaz de accionar un elemento al que no está unido y moverlo de forma alternativa. Transforma un movimiento de giro en un movimiento lineal alternativo. El seguidor solo transmitirá el movimiento lineal cuando la parte saliente de la leva entre en contacto con el mismo. Página 51

52 CÓMO HACER UNA PALANCA? Página 52

53 CÓMO HACER UNA POLEA? Página 53

54 CÓMO HACER UN TORNILLO SIN FIN? Página 54

55 CÓMO HACER ENGRANAJES? Página 55

56 CÓMO MONTAR ENGRANAJES PREFABRICADOS? Página 56

57 CÓMO CONSTRUIR UN PIÑÓN CREMALLERA? Página 57

58 CÓMO HACER UNA BIELA MANIVELA? Página 58

59 CÓMO HACER UN CIGÜEÑAL? Página 59

60 6. Las máquinas térmicas Máquinas térmicas: transforman la energía térmica en energía mecánica (movimiento). Según la forma de realizar la combustión del combustible, pueden ser de dos tipos: De combustión externa: el combustible se quema fuera del motor, como es el caso de la máquina de vapor. De combustión interna: el combustible se quema dentro de la máquina, como en el motor de un coche. Página 60

61 Combustión externa: la máquina de vapor Página 61

62 Fases de la combustión externa La Revolución Industrial La máquina de vapor se usó en trenes, barcos a vapor y multitud de máquinas que sustituyeron al trabajo manual. Aparecieron nuevas profesiones: mineros, mecánicos, etc. Surgió una nueva clase social: la clase obrera. Se produjo la Revolución Industrial. Página 62

63 Combustión interna El motor de combustión interna es más eficiente, ya que el calor se produce dentro de la máquina: hay menos pérdidas. Tipos: Motor de cuatro tiempos. Motor de dos tiempos. Motores diésel. Página 63

64 El motor de cuatro tiempos Es el motor de combustión interna más usado. Necesita de combustible y de aire (que contiene oxígeno). Posee 4 fases bien diferenciadas. Página 64

65 Fase de admisión La válvula A se abre; entran el aire y el combustible (gasolina pulverizada) en el cilindro. Baja el pistón. Al bajar el pistón, se hace el vacío y ayuda a que entre mejor la mezcla. Página 65

66 Fase de compresión Al subir el pistón, se cierran las válvulas A y E y se comprime la mezcla (gasolina y aire). Para que suba el pistón la primera vez, hay que ayudarse con un motor de arranque alimentado por la batería del coche. Después, ya sube por el propio giro del cigüeñal. Página 66

67 Fase de explosión Cuando la mezcla está muy comprimida, la bujía lanza una chispa que hace explotar la mezcla. Los gases muy calientes se expanden y hacen bajar el pistón. Página 67

68 Fase de escape Se abre la válvula E (escape) y, al subir el pistón, expulsa los gases producidos en la combustión a través de dicha válvula. Los gases pasan al tubo de escape, que los envía al exterior. Se vuelve a empezar el ciclo admisióncompresión-explosiónescape y, así sucesivamente. Página 68

69 El motor de dos tiempos Es un motor más sencillo que se utiliza mucho en las motos, cortadoras de césped, etc. Al igual que el motor de cuatro tiempos, tiene que admitir combustible, comprimirlo, explotar y expulsar los gases, pero lo hace en solo dos fases en un solo cilindro: Compresión-explosión. Escape-compresión. El aceite lubricante elimina rozamientos. Las rejillas de ventilación sirven para refrigerar el motor debido al calentamiento. Página 69

70 1. COMPRESIÓN-EXPLOSIÓN El pistón sube y comprime la mezcla. Cuando está arriba del todo, se enciende la bujía provocando la explosión de la mezcla. Los gases calentados a alta temperatura se expanden y hacen descender el pistón con mucha energía. Empieza el escape de los gases al llegar a la lumbrera E. Página 70

71 2. ESCAPE-COMPRESIÓN Cuando el pistón está abajo, salen por el escape los gases procedentes de la anterior combustión y, al mismo tiempo, entra por la lumbrera A (gracias a la bomba de soplado) la mezcla de aire y gasolina. Por último, el pistón sube y comienza otra vez la compresiónexplosión. Página 71

72 Los motores diésel. Cilindrada Usan como combustible el gasóil o gasóleo. No usan bujía. La mezcla de aire y combustible se comprime tanto que alcanza los 600ºC, a la cual explota la mezcla sin necesidad de chispa de una bujía. Página 72

73 7. Motores para volar Hace 200 años los hermanos Montgolfier construyeron el primer globo aerostático, que vuela gracias a que el aire caliente lo hace ascender. El primer avión con motor fue el de los hermanos Wright, en el año Página 73

74 Principio de acción y reacción El Arianne 5 es un cohete que lleva dos tanques, uno de hidrógeno (combustible) y otro de oxígeno (comburente). La reacción química entre ambos es muy violenta, produce mucha energía para subir el cohete. Como producto de la reacción se genera vapor de agua. Página 74

75 Cohete Un cohete es un reactor que lleva en un tanque el combustible y en el otro el comburente (sustancia que reacciona con el combustible para provocar la combustión), normalmente oxígeno. Página 75

76 ENSAYO: Principio de acción y reacción La jeringuilla pequeña sale disparada hacia arriba. Aplicando el principio de acción y reacción, observamos que el agua que estaba dentro de la jeringuilla sale con una determinada velocidad lo que hace que el cohete suba. Página 76

77 Motores de aviones Hay 2 tipos principales de motores de aviones: Los que tienen turbina compresora y se utilizan fundamentalmente en aviones comerciales: turborreactor, turbofan y turbohélice. Los que no llevan turbina y se utilizan sobre todo en aviones experimentales no comerciales: estatorreactor y pulsorreactor. El combustible utilizado por los aviones es el queroseno, porque no se congela a temperaturas muy bajas, cosa que sí le ocurre al gasóleo. Página 77

78 Turborreactor El aire entra aspirado por las hélices de un compresor. En la cámara de combustión, el oxígeno del aire (comburente) que entra comprimido reacciona con el queroseno (combustible). Los gases a altísimas temperaturas de combustión, se expanden y salen por la parte posterior a gran velocidad, impulsando al avión hacia adelante. Al salir hacen girar una turbina que, a su vez, hace girar el compresor delantero (para que entre más aire del exterior). Página 78

79 Ejemplo de turborreactor Página 79

80 Turbofan (ventilador) Es el motor más usado por los aviones comerciales. Es más silencioso que el turborreactor. Al estar el ventilador (fan) dentro del tubo, se suman dos efectos: uno, el ventilador refrigera el turborreactor, y dos, el flujo del aire es mayor. El avance del avión se debe al empuje del ventilador (fan) y al de los gases que salen por la tobera final. Página 80

81 Ejemplo de turbofan (ventilador) Página 81

82 Turbopropulsor (o turbohélice) Se diferencia del turborreactor en que la turbina de la parte posterior hace girar no solo al compresor, sino a una hélice delantera exterior. La propulsión se debe a dos causas: a los gases que salen por la parte posterior (con poca velocidad, ya que la mayor parte de la energía la gastan en mover la turbina) y al empuje de la hélice. Página 82

83 Ejemplo de turbopropulsor (o turbohélice) Página 83

84 Estatorreactor I Consiste en un tubo abierto por los dos extremos. El oxígeno del aire entra por la parte delantera a altas velocidades, y reacciona con el combustible. Los gases se expanden debido al enorme calor generado en la combustión iniciada por la chispa de la bujía, de esta forma salen por la parte posterior a gran velocidad, por lo que el motor es empujado hacia adelante. Ventajas: tiene poco peso, es sencillo, es básicamente un tubo. Se utiliza sobre todo en los aviones espía que vuelan a cotas muy altas y a grandes velocidades. Página 84

85 Estatorreactor II Página 85

86 Pulsorreactor I Evita el retroceso de aire hacia la entrada, mediante unas válvulas que permiten la entrada de aire y se cierran cuando explota la mezcla. La combustión se produce a pulsos (abriendo y cerrando la entrada de aire). Se instalan en aviones que soportan poco peso y suelen volar a baja cota. Página 86

87 Pulsorreactor II Página 87

Página 1. Tema 5. MECANISMOS y MÁQUINAS.

Página 1. Tema 5. MECANISMOS y MÁQUINAS. Página 1 Tema 5 MECANISMOS y MÁQUINAS. Conceptos previos Una máquina es un conjunto de elementos que intectúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza. Definición alternativa:

Más detalles

Una máquina es un conjunto de elementos que interactúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza.

Una máquina es un conjunto de elementos que interactúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza. Una máquina es un conjunto de elementos que interactúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza. Los elementos que constituyen las máquinas se llaman mecanismos. Las palancas

Más detalles

Tema 5. Mecanismos y máquinas

Tema 5. Mecanismos y máquinas Víctor M. Acosta Guerrero José Antonio Zambrano García Departamento de Tecnología I.E.S. Maestro Juan Calero Tema 5. Mecanismos y máquinas. 1. INTRODUCCIÓN. Las máquinas nos rodean: el mecanismo de un

Más detalles

Material elaborado por el Servicio de Educación de las entidades miembro de Down Galicia

Material elaborado por el Servicio de Educación de las entidades miembro de Down Galicia Material elaborado por el Servicio de Educación de las entidades miembro de Down Galicia. - 1 - LAS PALANCAS Una máquina es un conjunto de piezas que hacen un trabajo. Una palanca es una máquina simple.

Más detalles

DEPARTAMENTO DE TECNOLOGÍA IES MONELOS U.D.MÁQUINAS Y MECANISMOS

DEPARTAMENTO DE TECNOLOGÍA IES MONELOS U.D.MÁQUINAS Y MECANISMOS DEPARTAMENTO DE TECNOLOGÍA IES MONELOS 2010 2011 U.D.MÁQUINAS Y MECANISMOS Definición máquina: una máquina es un conjunto de elementos que interactúan entre si y que es capaz de realizar un trabajo o aplicar

Más detalles

Tema 3: MECANISMOS Y MÁQUINAS (Repaso de Contenidos Básicos)

Tema 3: MECANISMOS Y MÁQUINAS (Repaso de Contenidos Básicos) Tecnologías 3ºE.S.O. Tema 3: MECANISMOS Y MÁQUINAS (Repaso de Contenidos Básicos) 1. Enuncia la Ley de la Palanca. Qué es cada uno de sus elementos? Haz un dibujoesquema de la misma, situando cada uno

Más detalles

1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos

1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos 1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos Una palanca es una máquina constituida por una barra simple que puede girar en torno a un punto de apoyo o fulcro. Según donde se aplique

Más detalles

2º E.S.O. INDICE 1. QUE SON LOS MECANISMOS 2. CLASIFICACION DE LOS MECANISMOS 2.1. MECANISMOS DE TRASMISION DE MOVIMIENTO

2º E.S.O. INDICE 1. QUE SON LOS MECANISMOS 2. CLASIFICACION DE LOS MECANISMOS 2.1. MECANISMOS DE TRASMISION DE MOVIMIENTO 1. QUE SON LOS MECANISMOS INDICE 2. CLASIFICACION DE LOS MECANISMOS 2.1. MECANISMOS DE TRASMISION DE MOVIMIENTO 2.2 MECANISMOS DE TRANSFORMACION DE MOVIMIENTO 2º E.S.O. TECNOLOGÍA - 2º ESO TEMA 5: LOS

Más detalles

MECANISMOS MÁQUINAS SIMPLES MECANISMOS DE TRANSMISIÓN DE MOVIMIENTOS MECANISMOS DE TRANSFORMACIÓN DE MOVIMIENTOS MECANISMOS DE ACOPLAMIENTO

MECANISMOS MÁQUINAS SIMPLES MECANISMOS DE TRANSMISIÓN DE MOVIMIENTOS MECANISMOS DE TRANSFORMACIÓN DE MOVIMIENTOS MECANISMOS DE ACOPLAMIENTO MECANISMOS MÁQUINAS SIMPLES MECANISMOS DE TRANSMISIÓN DE MOVIMIENTOS MECANISMOS DE TRANSFORMACIÓN DE MOVIMIENTOS MECANISMOS DE ACOPLAMIENTO MECANISMOS DISIPADORES DE ENERGÍA Y RETENCIÓN MECANISMOS ACUMULADORES

Más detalles

DEPARTAMENTO DE TECNOLOGIA IES ANTONIO SEQUEROS TEMA 3: MECANISMOS

DEPARTAMENTO DE TECNOLOGIA IES ANTONIO SEQUEROS TEMA 3: MECANISMOS TEMA 3: MECANISMOS 1. Mecanismos a. Movimiento circular en movimiento circular Ruedas de fricción Polea correa Engranajes b. Movimiento circular en movimiento lineal y viceversa Biela manivela Piñón cremallera

Más detalles

Máquinas y mecanismos

Máquinas y mecanismos Máquinas y mecanismos Las máquinas Una máquina es un conjunto de mecanismos que transforman un tipo de energía o de trabajo en energía útil. Estos mecanismos aprovechan la acción de una fuerza para producir

Más detalles

0.- INTRODUCCIÓN. Fuerza y movimiento obtenidos en el elemento RECEPTOR. Fuerza y movimiento proporcionado por el elemento MOTRIZ MECANISMO

0.- INTRODUCCIÓN. Fuerza y movimiento obtenidos en el elemento RECEPTOR. Fuerza y movimiento proporcionado por el elemento MOTRIZ MECANISMO 0.- INTRODUCCIÓN. En general, todas las máquinas se componen de mecanismos; gracias a ellos, el impulso que proviene del esfuerzo muscular o de un motor se traduce en el tipo de movimiento y la fuerza

Más detalles

Dpto. de Tecnología del I.E.S. Trassierra. Córdoba. MECANISMOS

Dpto. de Tecnología del I.E.S. Trassierra. Córdoba. MECANISMOS 1. QUÉ SON LOS MECANISMOS? Dpto. de Tecnología del I.E.S. Trassierra. Córdoba. MECANISMOS Si miras a tu alrededor, veras muchos objetos que se mueven. Todos estos objetos y cualquier máquina que realice

Más detalles

Tema 6: MECANISMOS Y MÁQUINAS.

Tema 6: MECANISMOS Y MÁQUINAS. Tema 6: MECANISMOS Y MÁQUINAS. 1. DEFINICIÓN: una máquina es un conjunto de elementos que interactúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza, los elementos que constituyen

Más detalles

MECANISMOS Y MÁQUINAS SIMPLES

MECANISMOS Y MÁQUINAS SIMPLES MECANISMOS Y MÁQUINAS SIMPLES Los mecanismos y máquinas simples son dispositivos que se utilizan para reducir la cantidad de esfuerzo necesario para realizar diversas actividades o para transmitir y /

Más detalles

Z 1 = 8 Z 2 = 16 W 1 Z 1 = W 2 Z 2

Z 1 = 8 Z 2 = 16 W 1 Z 1 = W 2 Z 2 7- SISTEMAS DE ENGRANAJES Para que dos ruedas dentadas engranen entre sí, el tamaño de los dientes de cada una deben ser iguales. Z 1 = 8 Z 2 = 16 El número de dientes de un engranaje se representa por

Más detalles

MECANISMOS. Realizado por Carolina Rubio

MECANISMOS. Realizado por Carolina Rubio MECANISMOS Realizado por Carolina Rubio Maquinas 1. Trabajo 2. Potencia 3. Partes de un maquina Maquinas simples 1. Palanca 2. Plano inclinado 3. Tornillo 4. La rueda 5. La polea INDICE Mecanismos de transmisión

Más detalles

QUÉ SON LOS MECANISMOS?

QUÉ SON LOS MECANISMOS? QUÉ SON LOS MECANISMOS? Son elementos destinados a trasmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) aun elemento receptor. Permiten realizar determinados trabajos con mayor

Más detalles

Clasificación de los mecanismos.

Clasificación de los mecanismos. MECANISMOS - II MECANISMOS. Son elementos destinados a trasmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) a un elemento receptor. Permiten al ser humano realizar determinados

Más detalles

UNIDAD 3.- MECANISMOS

UNIDAD 3.- MECANISMOS UNIDAD 3.- MECANISMOS 3.1.- Máquinas simples 3.2.- Mecanismos de transmisión de movimiento 3.3.- Mecanismos de transformación de movimiento MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DE MOVIMIENTO Un MECANISMO

Más detalles

2.- Una palanca es.y consiste en..

2.- Una palanca es.y consiste en.. Departamento de Tecnología. 3º ESO. Ficha nº1. Mecanismos y máquinas. Cuestiones: 1.- Una máquina es.los elementos que constituyen las máquinas se llaman 2.- Una palanca es.y consiste en.. 3.- La ley de

Más detalles

BLOQUE 2. OPERADORES MECÁNICOS

BLOQUE 2. OPERADORES MECÁNICOS BLOQUE 2. OPERADORES MECÁNICOS 1. INTRODUCCIÓN Hay muchas maneras de definir una máquina. Nosotros vamos a usar la siguiente definición: Máquina: es el conjunto de mecanismos (operadores mecánicos) capaz

Más detalles

Tema 3: MECANISMOS Y MÁQUINAS.

Tema 3: MECANISMOS Y MÁQUINAS. Tema 3: MECANISMOS Y MÁQUINAS. 1. DEFINICIÓN: una máquina es un conjunto de elementos que interactúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza, los elementos que constituyen

Más detalles

MÁQUINAS SIMPLES UNIDAD 6

MÁQUINAS SIMPLES UNIDAD 6 MÁQUINAS SIMPLES UNIDAD 6 TECHNOLOGIES IES MIGUEL ESPINOSA 2012/2013 INDICE 1. INTRODUCCIÓN 2. LA POLEA 3. LA PALANCA 4. EL PLANO INCLINADO 5. EL TORNO 6. TRANSMISIÓN POR ENGRANAJE 7. TRANSMISIÓN POR CADENA

Más detalles

Dpto. TECNOLOGÍA. Tema 7.- MECANISMOS. Mecanismos de transmisión lineal (PALANCAS, )

Dpto. TECNOLOGÍA. Tema 7.- MECANISMOS. Mecanismos de transmisión lineal (PALANCAS, ) Tema 7.- MECANISMOS 1. Qué es una palanca? Mecanismos de transmisión lineal (PALANCAS, ) La palanca es una máquina simple, formada por una barra rígida que gira alrededor de un punto sobre el que se aplica

Más detalles

MÁQUINAS SIMPLES UNIDAD 6

MÁQUINAS SIMPLES UNIDAD 6 MÁQUINAS SIMPLES UNIDAD 6 TECHNOLOGIES IES MIGUEL ESPINOSA 2013/2014 INDICE 1. INTRODUCCIÓN 2. LA POLEA 3. LA PALANCA 4. EL PLANO INCLINADO 5. EL TORNO 6. TRANSMISIÓN POR ENGRANAJE 7. TRANSMISIÓN POR CADENA

Más detalles

Máquinas y Mecanismos

Máquinas y Mecanismos Máquinas y Mecanismos Tecnología 3º ESO LAS MÁQUINAS Una máquina es el conjunto de elementos fijos y/o móviles, utilizados por el hombre, y que permiten reducir el esfuerzo para realizar un trabajo (o

Más detalles

MAQUINAS Y MECANISMOS

MAQUINAS Y MECANISMOS MAQUINAS Y MECANISMOS INTRODUCCIÓN El ser humano necesita realizar trabajos que sobrepasan sus posibilidades: mover rocas muy pesadas, elevar coches para repararlos, transportar objetos o personas a grandes

Más detalles

Mecanismo: Elemento destinado a transmitir y/o transformar las fuerzas o movimientos desde un elemento motriz (motor) hasta un elemento receptor.

Mecanismo: Elemento destinado a transmitir y/o transformar las fuerzas o movimientos desde un elemento motriz (motor) hasta un elemento receptor. Mecanismo: Elemento destinado a transmitir y/o transformar las fuerzas o movimientos desde un elemento motriz (motor) hasta un elemento receptor. Finalidad: - Permiten realizar trabajos con mayor comodidad

Más detalles

Y si la niña estuviera situada a 4m del punto de apoyo?. Qué conclusión puedes sacar?.

Y si la niña estuviera situada a 4m del punto de apoyo?. Qué conclusión puedes sacar?. PROBLEMAS DE MÁQUINAS Y MECANISMOS LA PALANCA 1. Indica el tipo de palanca en cada uno de los casos siguientes: 2. A qué distancia del eje de un balancín se tendrá que sentar un niño de 30 kg para que

Más detalles

UNIDAD 3.- MECANISMOS

UNIDAD 3.- MECANISMOS UNIDAD 3.- MECANISMOS 3.1.- Máquinas simples 3.2.- Mecanismos de transmisión de movimiento 3.3.- Mecanismos de transformación de movimiento MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DE MOVIMIENTO Un MECANISMO

Más detalles

1.- Con la carretilla de la figura queremos transportar una carga de tierra.

1.- Con la carretilla de la figura queremos transportar una carga de tierra. MECANISMOS 1.- Con la carretilla de la figura queremos transportar una carga de tierra. A) qué tipo de palanca estamos empleando? B) Qué esfuerzo tenemos que realizar si el peso de la arena a transportar

Más detalles

TEMA 4: El movimiento de las máquinas.

TEMA 4: El movimiento de las máquinas. TEMA 4: El movimiento de las máquinas. NIVEL: 2º Curso de Educación Secundaria Obligatoria. TEMA 4: El movimiento de las máquinas. Página 1 I N D I C E 0.- INTRODUCCIÓN. 1.- TIPOS DE MOVIMIENTO. 1.1.-

Más detalles

PALANCA. Operador compuesto de una barra que oscila sobre un eje la cual necesita de una potencia o fuerza.

PALANCA. Operador compuesto de una barra que oscila sobre un eje la cual necesita de una potencia o fuerza. CONCEPTOS BASICOS SOBRE OPERADORES MECANICOS DEFINICION. Son operadores que van conectados entre sì para permitir el funcionamiento de una máquina, teniendo en cuenta la fuerza que se ejerce sobre ellos.

Más detalles

Un mecanismo es un dispositivo que transforma el producido por un elemento (fuerza de ) en un movimiento deseado de (fuerza de ) llamado elemento.

Un mecanismo es un dispositivo que transforma el producido por un elemento (fuerza de ) en un movimiento deseado de (fuerza de ) llamado elemento. MECANISMOS 2º ESO A. Introducción. Un mecanismo es un dispositivo que transforma el producido por un elemento (fuerza de ) en un movimiento deseado de (fuerza de ) llamado elemento. Elemento motriz Elemento

Más detalles

MECANISMOS. Desde la antigüedad el hombre ha inventado máquinas que le permitan reducir el esfuerzo necesario a la hora de realizar un trabajo.

MECANISMOS. Desde la antigüedad el hombre ha inventado máquinas que le permitan reducir el esfuerzo necesario a la hora de realizar un trabajo. MECANISMOS INTRODUCCIÓN Desde la antigüedad el hombre ha inventado máquinas que le permitan reducir el esfuerzo necesario a la hora de realizar un trabajo. Qué partes tiene una máquina? -Un elemento motriz

Más detalles

TEMA 2: ELEMENTOS MECÁNICOS TRANSFORMADORES DEL MOVIMIENTO. 1.- Elementos mecánicos transformadores del movimiento:

TEMA 2: ELEMENTOS MECÁNICOS TRANSFORMADORES DEL MOVIMIENTO. 1.- Elementos mecánicos transformadores del movimiento: TEMA 2: ELEMENTOS MECÁNICOS TRANSFORMADORES DEL MOVIMIENTO 1.- Elementos mecánicos transformadores del movimiento: Son los elementos encargados de transformar o cambiar el tipo de movimiento de entrada

Más detalles

APUNTES DE MECANISMOS E.S.O.

APUNTES DE MECANISMOS E.S.O. APUNTES DE MECANISMOS E.S.O. DEPARTAMENTO DE TECNOLOGÍA 1 INTRODUCCIÓN MECANISMOS Si observamos a nuestro alrededor, observaremos que estamos rodeados de objetos que se mueven o tienen capacidad de movimiento.

Más detalles

TEMA 11: MECANISMOS 1 TEMA 11: MECANISMOS. Carretilla Pinzas Polea

TEMA 11: MECANISMOS 1 TEMA 11: MECANISMOS. Carretilla Pinzas Polea TEMA 11: MECANISMOS 1 TEMA 11: MECANISMOS 11.1.- INTRODUCCIÓN Desde la existencia del hombre, éste ha fabricado útiles que le ayudan en sus tareas cotidianas de supervivencia, como hachas y cuchillos.

Más detalles

CALOR Y TRABAJO: MÁQUINAS TÉRMICAS

CALOR Y TRABAJO: MÁQUINAS TÉRMICAS CALOR Y TRABAJO: MÁQUINAS TÉRMICAS I.-ENERGÍA MECÁNICA (TRABAJO) Y ENERGÍA CALORÍFICA (CALOR) TRANSFORMACIONES DE LA ENERGÍA MECÁNICA (TRABAJO) EN ENERGÍA CALORÍFICA. TRANSFOMRACIÓNES DE LA ENERGÍA CALORÍFICA

Más detalles

RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS. Fuerza

RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS. Fuerza RECOPILACIÓN DE PROBLEMAS DE EXÁMENES MECANISMOS PÁGINA 1 RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS Fuerza 1.1.- La piedra del dibujo pesa 160 kg. Calcular la fuerza que hay que aplicar en el extremo

Más detalles

CCNN 5º Primaria Tema 8: Las máquinas

CCNN 5º Primaria Tema 8: Las máquinas 1. Las máquinas y sus componentes Los automóviles, los electrodomésticos o los ordenadores son aparatos que facilitan las actividades humanas y dependemos de su correcto funcionamiento para realizar nuestras

Más detalles

TEMA 3: MÁQUINAS Y MECANISMOS 1

TEMA 3: MÁQUINAS Y MECANISMOS 1 ! TEMA 3: MÁQUINAS Y MECANISMOS 1! TECNOLOGÍA 2º. E.S.O. Colegio Romareda. Zaragoza. 1.- Difercia tre transmitir el movimito y transformar el movimito. 2.- PALANCA: barra rígida que pue girar por un punto.

Más detalles

MECANISMOS Y MÁQUINAS

MECANISMOS Y MÁQUINAS Desde el punto de vista técnico la excéntrica es, básicamente, un disco (rueda) dotado de dos ejes: Eje de giro y el excéntrico. Por tanto, se distinguen en ella tres partes claramente diferenciadas: El

Más detalles

LA PALANCA. Tipos de palancas. Ley de la palanca. P Bp = R Br. Cálculos utilizando la ley de la palanca. R Br P = R Br P=?

LA PALANCA. Tipos de palancas. Ley de la palanca. P Bp = R Br. Cálculos utilizando la ley de la palanca. R Br P = R Br P=? LA PALANCA La palanca es una barra rígida que puede girar alrededor de un punto llamado fulcro o punto de apoyo. Palanca Sobre la palanca actúan dos fuerzas: La potencia: fuerza que produce el movimiento.

Más detalles

Mecanismos 2. Rotación en rotación. Poleas y engranajes Transmisión por cadena.

Mecanismos 2. Rotación en rotación. Poleas y engranajes Transmisión por cadena. Mecanismos 2. Mecanismos que transforman movimientos: Rotación en rotación. Poleas y engranajes Transmisión por cadena. Rotación en traslación y viceversa : Piñón Cremallera. Rotación en alternativo regular

Más detalles

EJERCICIOS DE MECÁNICA 3º ESO Curso

EJERCICIOS DE MECÁNICA 3º ESO Curso EJERCICIOS DE MECÁNICA 3º ESO Curso 2011-2012 1. Qué es la Mecánica? 2.Tipos de movimiento. 3.Di qué es el rozamiento y qué efectos provoca 4.Diferencia entre mecanismo y máquina. 5.Diferencia entre mecanismo

Más detalles

EJERCICIOS EJERCICIOS DE PALANCAS. 1) Calcular el peso que puedo levantar en la palanca del siguiente dibujo si mi fuerza es equivalente a 10 kg.

EJERCICIOS EJERCICIOS DE PALANCAS. 1) Calcular el peso que puedo levantar en la palanca del siguiente dibujo si mi fuerza es equivalente a 10 kg. EJERCICIOS EJERCICIOS DE PALANCAS 1) Calcular el peso que puedo levantar en la palanca del siguiente dibujo si mi fuerza es equivalente a 10 kg. 2) Se desea que dos personas de 40 y 60 kg permanezcan en

Más detalles

MECANISMOS Y MÁQUINAS Los mecanismos son elementos cuyo objetivo es transmitir y transformar fuerzas y movimientos desde un elemento motriz (motor)

MECANISMOS Y MÁQUINAS Los mecanismos son elementos cuyo objetivo es transmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) Los mecanismos son elementos cuyo objetivo es transmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) hasta un receptor. Permiten al ser humano realizar determinados trabajos con

Más detalles

TEMA 3. MECANISMOS Y MÁQUINAS

TEMA 3. MECANISMOS Y MÁQUINAS TEMA 3. MECANISMOS Y MÁQUINAS 1. INTRODUCCIÓN. Las máquinas nos rodean: el mecanismo de un reloj, los juguetes, las lavadoras, los coches, etc... Todos ellos tienen mecanismos para transmitir el movimiento.

Más detalles

ACTIVIDADES SOBRE PALANCAS. Ley de la palanca. P Bp = R Br. Actividad B.2: Copia en tu cuaderno los siguientes dibujos y completa las frases

ACTIVIDADES SOBRE PALANCAS. Ley de la palanca. P Bp = R Br. Actividad B.2: Copia en tu cuaderno los siguientes dibujos y completa las frases ACTIVIDADES SOBRE PALANCAS Ley de la palanca P Bp = R Br Actividad B.1 Indica sobre los siguientes mecanismos de palanca la potencia, la resistencia, los brazos de potencia y de resistencia y el fulcro.

Más detalles

12.7. Cadenas cinemáticas. A Representación gráfica. Cadenas cinemáticas.

12.7. Cadenas cinemáticas. A Representación gráfica. Cadenas cinemáticas. 1 12.7. Cadenas cinemáticas A Representación gráfica Cadenas cinemáticas. 2 B Cálculos 3 C Caja de velocidades Ejemplo 7: caja de velocidades con engranajes desplazables. Ejemplo 8: caja de velocidades

Más detalles

PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.)

PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.) Departamento de Tecnología PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.) Para recuperar la evaluación deberás: -Realizar estas Actividades -Realizar una Prueba de conocimientos (Las actividades deberás entregarlas

Más detalles

MÁQUINAS Y MECANISMOS.

MÁQUINAS Y MECANISMOS. MÁQUINAS Y MECANISMOS. Nombre y apellidos: Curso y grupo: 1. INTRODUCCIÓN. Fuente: http://www.edu.xunta.es/contidos/premios/p2004/b/mecanismos/ El ser humano necesita realizar trabajos que sobrepasan sus

Más detalles

Departamento de Tecnología MECANISMOS

Departamento de Tecnología MECANISMOS MECANISMOS 1. Mecanismos de transmisión circular 1.1 Ruedas de fricción 1.2 Poleas y correas 1.3 Ruedas dentadas 1.4 Transmisión por cadenas 1.5 Tornillo sin fin 2. Mecanismos de transformación de movimiento

Más detalles

NOTA: En los siguientes ejercicios, si no pone nada, entenderemos que es una palanca de primer grado. Recordemos la Ley de la Palanca:

NOTA: En los siguientes ejercicios, si no pone nada, entenderemos que es una palanca de primer grado. Recordemos la Ley de la Palanca: OBLIGATORIO: Realiza en todos los ejercicios un esquema del sistema. En él deben aparecer reflejados todos los datos del ejercicio. Palancas NOTA: En los siguientes ejercicios, si no pone nada, entenderemos

Más detalles

TRANSMISORES DE MOVIMIENTO (NO CAMBIAN LA FORMA DEL MOVIMIENTO QUE RECIBEN)

TRANSMISORES DE MOVIMIENTO (NO CAMBIAN LA FORMA DEL MOVIMIENTO QUE RECIBEN) TRANSMISORES DE MOVIMIENTO (NO CAMBIAN LA FORMA DEL MOVIMIENTO QUE RECIBEN) Casos particulares Casos particulares POLEAS Y CORREA Trenes de poleas Correa y poleas dentadas Piñones y cadena ENGRANAJES Piñón

Más detalles

EJERCICIOS BLOQUE 2.1: MÁQUINAS Y SISTEMAS MECÁNICOS

EJERCICIOS BLOQUE 2.1: MÁQUINAS Y SISTEMAS MECÁNICOS EJERCICIOS BLOQUE 2.1: MÁQUINAS Y SISTEMAS MECÁNICOS 1. Con un remo de 3 m de longitud se quiere vencer la resistencia de 400 kg que ofrece una barca mediante una potencia de 300 kg. A qué distancia del

Más detalles

ACTIVIDADES SOBRE PALANCAS. Ley de la palanca. P Bp = R Br. Actividad B.1. Ejemplo. Pedal. muelle. Esquema. Solución. 2º género

ACTIVIDADES SOBRE PALANCAS. Ley de la palanca. P Bp = R Br. Actividad B.1. Ejemplo. Pedal. muelle. Esquema. Solución. 2º género ACTIVIDADES SOBRE PALANCAS Ley de la palanca P Bp = R Br Actividad B.1 Indica sobre los siguientes mecanismos de palanca el género, la potencia, la resistencia, y el fulcro. Representa esquemáticamente

Más detalles

Guía 3 Máquinas simples y la palanca Ing. Daniel Negret Pag.1

Guía 3 Máquinas simples y la palanca Ing. Daniel Negret Pag.1 Guía 3 Máquinas simples y la palanca Ing. Daniel Negret Pag.1 LAS MÁQUINAS Las máquinas son mecanismos que hacen que el trabajo sea más fácil y rápido, porque ayudan a aumentar nuestra fuerza. MÁQUINAS

Más detalles

EJERCICIOS DE MECÁNICA 3º ESO Curso 2013/2014

EJERCICIOS DE MECÁNICA 3º ESO Curso 2013/2014 EJERCICIOS DE MECÁNICA 3º ESO Curso 2013/2014 Para realizar estos ejercicios consulta antes tus apuntes, el libro y vuestra Web: www.tecnologia.maestrojuandeavila.es (Temas Mecánica) 1. Qué es la Mecánica?

Más detalles

TRANSMISORES DE MOVIMIENTO (NO CAMBIAN LA FORMA DEL MOVIMIENTO QUE RECIBEN)

TRANSMISORES DE MOVIMIENTO (NO CAMBIAN LA FORMA DEL MOVIMIENTO QUE RECIBEN) TRANSMISORES DE MOVIMIENTO (NO CAMBIAN LA FORMA DEL MOVIMIENTO QUE RECIBEN) Casos particulares Casos particulares POLEAS Y CORREA Trenes de poleas Correa y poleas dentadas Piñones y cadena ENGRANAJES Piñón

Más detalles

Unidade 5 Mecanismos (Apuntes) LOS MECANISMOS

Unidade 5 Mecanismos (Apuntes) LOS MECANISMOS LOS MECANISMOS CLICA SOBRE LA IMAGEN PARA SABER MÁS 1. INTRODUCCIÓN Si observamos a nuestro alrededor, observaremos que estamos rodeados de objetos que se mueven o tienen capacidad de movimiento. Los elementos

Más detalles

UNIDAD 7: MECANISMOS TECNOLOGIAS 3º ESO I.E.S. ALTO GUADIANA. Actividades

UNIDAD 7: MECANISMOS TECNOLOGIAS 3º ESO I.E.S. ALTO GUADIANA. Actividades UNIDAD 7: MECANISMOS TECNOLOGIAS 3º ESO I.E.S. ALTO GUADIANA (P. 148 Oxford) 1. INTRODUCCIÓN Las máquinas sirven para hacer más fácil el trabajo al hombre, por ejemplo levantar grandes cargas, desplazarse

Más detalles

Mecanismos. Fundamentos para programación y robótica. Módulo 3: Fundamentos de mecánica. Capítulo 3: Mecanismos.

Mecanismos. Fundamentos para programación y robótica. Módulo 3: Fundamentos de mecánica. Capítulo 3: Mecanismos. Módulo 3: Fundamentos de mecánica Capítulo 3:. Objetivos: o Usar mecanismos para resolver problemas. Exposición de máquinas simples y engranajes. Vamos a buscar y analizar mecanismos en cosas cotidianas

Más detalles

Cuaderno de recuperación de tecnologías

Cuaderno de recuperación de tecnologías Cuaderno de recuperación de tecnologías 2ª EVALUACIÓN TEMA 1: LA ARQUITECTURA DEL ORDENADOR. 1) Qué es un sistema informático?. 2) Qué es la memoria ROM?, Qué significa ROM?. 3) Para qué sirve y cómo se

Más detalles

FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... 1) MECANISMOS: LA PALANCA

FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... 1) MECANISMOS: LA PALANCA FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... CALIFICACIÓN: 1) MECANISMOS: LA PALANCA La palanca es un mecanismo que transforma un movimiento lineal, es decir de traslación, en otro lineal

Más detalles

El movimiento en las máquinas

El movimiento en las máquinas 1 Mira a tu alrededor. Qué tipo de máquinas hacían los romanos? Marco Vitrubio describió los principios que regulan los aparatos mecánicos como órganos, máquinas para arrastrar o elevar pesos o agua, catapultas

Más detalles

MÁQUINAS Y MECANISMOS

MÁQUINAS Y MECANISMOS NOMBRE Y APELLIDOS: CURSO Y GRUPO: MÁQUINAS Y MECANISMOS 1. INTRODUCCIÓN. El ser humano necesita realizar trabajos que sobrepasan sus posibilidades: mover rocas muy pesadas, elevar coches para repararlos,

Más detalles

VANESA PEÑA PAOLA PUCHIGAY 901

VANESA PEÑA PAOLA PUCHIGAY 901 VANESA PEÑA PAOLA PUCHIGAY 901 Por magnitud física entendemos cualquier propiedad de los cuerpos que se puede medir o cuantificar. Medir una magnitud física consiste en asignarle a esa magnitud un numero

Más detalles

1. Calcula la cilindrada de un motor de 4 cilindros si el diámetro del cilindro es de 50 mm y la carrera del pistón es de 85 mm.

1. Calcula la cilindrada de un motor de 4 cilindros si el diámetro del cilindro es de 50 mm y la carrera del pistón es de 85 mm. UNIDAD 1: El motor de combustión ACTIVIDADES - PÁG. 16 1. Calcula la cilindrada de un motor de 4 cilindros si el diámetro del cilindro es de 50 mm y la carrera del pistón es de 85 mm. 2 2 2 d 3,14 5 cm

Más detalles

Tema 3. Máquinas simples.

Tema 3. Máquinas simples. Tema 3. Máquinas simples. Tecnología. 3º ESO. Tema 3: Máquinas simples. 1. Introducción. Ya conoces que la Tecnología es una Ciencia que reúne en conjunto de conocimientos, destrezas, habilidades...que

Más detalles

GRUPO DE TRABAJO COMBISOL LAS MÁQUINAS

GRUPO DE TRABAJO COMBISOL LAS MÁQUINAS LAS MÁQUINAS LAS MÁQUINAS Y SUS COMPONENTES Las máquinas son objetos fabricados por las personas para realizar alguna tarea (trabajo) con menos esfuerzo (de forma más fácil). Las máquinas necesitan energía

Más detalles

móvil) conectado a un mecanismo de tracción.

móvil) conectado a un mecanismo de tracción. La polea: Es un mecanismo formado por un eje y una rueda acanalada, por la que pasa una cuerda o una correa. Para qué sirve? Para cambiar la dirección en la que actúa una fuerza y disminuir el esfuerzo

Más detalles

I.E.S. " HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS

I.E.S.  HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS MECANISMOS. Indica el sentido de giro de todas las poleas, si la polea motriz (la de la izquierda) girase en el sentido de las agujas del reloj. Indica también si se son mecanismos reductores o multiplicadores

Más detalles

TRANSMISIÓN MOVIMIENTO GIRATORIO: ENGRANAJES Y POLEAS MECANISMOS TRANSFORMACIÓN: BIELA MANIVELA, PIÑÓN CREMALLERA, LEVAS.

TRANSMISIÓN MOVIMIENTO GIRATORIO: ENGRANAJES Y POLEAS MECANISMOS TRANSFORMACIÓN: BIELA MANIVELA, PIÑÓN CREMALLERA, LEVAS. UNIDAD 7. MECANISMOS MÁQUINAS Y MECANISMOS MÁQUINAS SIMPLES TIPOS DE MOVIMIENTO CLASIFICACIÓN DE LOS MECANISMOS TRANSMISIÓN LINEAL: PALANCAS. POLEAS TRANSMISIÓN MOVIMIENTO GIRATORIO: ENGRANAJES Y POLEAS

Más detalles

4º. En el sistema de poleas del dibujo calcula las velocidades de giro de cada polea y las relaciones de transmisión. (2 punto)

4º. En el sistema de poleas del dibujo calcula las velocidades de giro de cada polea y las relaciones de transmisión. (2 punto) TECNOLOGÍA. 3º ESO Mecanismos Fecha: 13-XI-07 Nombre: Grupo: Nota: 1º. Tipos de palancas. (1,5 puntos) 2º. En el mecanismo propuesto, indica que tipo de palancas intervienen y la distancia a la que se

Más detalles

UNIDAD: MECANISMOS EL MOVIMIENTO DE LAS MÁQUINAS: SUS MECANISMOS. Los romanos destacaron por su capacidad para crear todo tipo de máquinas.

UNIDAD: MECANISMOS EL MOVIMIENTO DE LAS MÁQUINAS: SUS MECANISMOS. Los romanos destacaron por su capacidad para crear todo tipo de máquinas. UNIDAD DIDÁCTICA ADAPTADA TECNOLOGÍA 2º E.S.O. UNIDAD: MECANISMOS EL MOVIMIENTO DE LAS MÁQUINAS: SUS MECANISMOS Mira a tu alrededor Los romanos destacaron por su capacidad para crear todo tipo de máquinas.

Más detalles

Tema 4. Máquinas complejas.

Tema 4. Máquinas complejas. Tema 4. Máquinas complejas. Tecnología. 3º ESO. Tema 4: Máquinas complejas. 1. Introducción. Ya sabemos que el hombre inventa máquinas para reducir el esfuerzo necesario para realizar un trabajo. Hoy en

Más detalles

EJERCICIOS DE PALANCAS

EJERCICIOS DE PALANCAS IES Los Neveros Dpto. Tecnología EJERCICIOS DE MÁQUINAS SIMPLES 2º DE ESO Nombre:... Grupo:... Fecha:... NOTA EJERCICIOS DE PALANCAS ACLARACIONES: En cada ejercicio se ha de dibujar la figura correspondiente

Más detalles

FUNDAMENTO DE MOTORES

FUNDAMENTO DE MOTORES FUNDAMENTO DE MOTORES Capítulo 2: Componentes Básicos del Motor Recopilado por: M. En C. José Antonio Glez. M. Bloque del Motor, Monoblock o Block Es la parte principal de la Estructura del motor y es

Más detalles

MECANISMOS 1.- INTRODUCCIÓN

MECANISMOS 1.- INTRODUCCIÓN MECANISMOS 1.- INTRODUCCIÓN Una máquina es cualquier aparato o dispositivo que al ser accionado (es decir, cuando se pone en funcionamiento) produce un cierto efecto. Las máquinas tienen la capacidad de

Más detalles

CIDEAD.- TECNOLOGÍA INDUSTRIAL I. TEMA 6.- los MECANISMOS, 1ª PARTE.

CIDEAD.- TECNOLOGÍA INDUSTRIAL I. TEMA 6.- los MECANISMOS, 1ª PARTE. Desarrollo del tema:. Los mecanismos y los sistemas mecánicos.. Los elementos que transmiten movimientos. 3. La transmisión de movimientos por: a. Palancas. b. Ruedas de fricción. c. Poleas y correas.

Más detalles

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA.

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. 1 MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. Una máquina térmica es un dispositivo que trabaja de forma cíclica o de forma continua para producir trabajo mientras se le da y cede calor,

Más detalles

TEMA 3: ESTRUCTURAS Y MECANISMOS

TEMA 3: ESTRUCTURAS Y MECANISMOS TEMA 3: ESTRUCTURAS Y MECANISMOS 1. Estructuras a. Propiedades b. Tipos I. Naturales II. Artificiales c. Elementos de una estructura I. Zapatas II. Pilares III. Vigas d. Perfiles e. Esfuerzos I. Tracción

Más detalles

Máquinas y Mecanismos

Máquinas y Mecanismos UNIDAD TEMÁTICA 6 Máquinas y Mecanismos (2º ESO) http://informaticaytecnologiadp.wordpress.com PÁGINA 1 DE 1 2 I. INTRODUCCIÓN 1. CONCEPTO DE FUERZA A pesar de haber hablado de la fuerza en temas anteriores,

Más detalles

Ventaja Mecánica. Cuanto mayor sea la F o la distancia al eje de giro, mayor será el momento torsor transmitido.

Ventaja Mecánica. Cuanto mayor sea la F o la distancia al eje de giro, mayor será el momento torsor transmitido. Ventaja Mecánica. Conceptos Básicos Inercia. Dificultad que opone un cuerpo para cambiar su velocidad, cuando se esta moviendo y para moverse cando esta en reposo. Fuerza. Es todo aquello que puede producir

Más detalles

IES PABLO RUIZ PICASSO DEPARTAMENTO DE TECNOLOGÍA UNIDAD: MÁQUINAS Y MECANISMOS TEORÍA DE LA UNIDAD 1.- INTRODUCCIÓN

IES PABLO RUIZ PICASSO DEPARTAMENTO DE TECNOLOGÍA UNIDAD: MÁQUINAS Y MECANISMOS TEORÍA DE LA UNIDAD 1.- INTRODUCCIÓN IES PABLO RUIZ PICASSO DEPARTAMENTO DE TECNOLOGÍA UNIDAD: MÁQUINAS Y MECANISMOS TEORÍA DE LA UNIDAD 1.- INTRODUCCIÓN El ser humano necesita realizar trabajos que sobrepasan sus posibilidades: mover rocas

Más detalles

TECNOLOGÍA EJERCICIOS SOBRE MECANISMOS I

TECNOLOGÍA EJERCICIOS SOBRE MECANISMOS I 1. LA PALANCA 1.1 En una palanca de primer género colocamos en uno de sus extremos un peso de 10 N. Si la palanca tiene una longitud de 4 m y el punto de apoyo se encuentra en el punto medio, calcular

Más detalles

Mecanismos y máquinas

Mecanismos y máquinas Mecanismos y máquinas En este tema vamos a estudiar ciertos sistemas mecánicos ( mecanismos ) que posibilitan al hombre reducir el esfuerzo, como por ejemplo la palanca, la polea, la rueda, etc. La máquina

Más detalles

CEJAROSU 01 -Departamento de Tecnología- Levogiro. Dextrogiro. (oscilante)

CEJAROSU 01 -Departamento de Tecnología- Levogiro. Dextrogiro. (oscilante) TIPOS DE MOVIMIENTOS Giratorio Lineal Continuo Levogiro Dextrogiro TRANSMISIÓN DE MOVIMIENTOS I Tipos de movimientos Alternativo (oscilante) TRANSMISIÓN DE MOVIMIENTOS Movimiento de entrada Movimiento

Más detalles

1. Introducción TRABAJO, ENERGÍA, POTENCIA Y RENDIMIENTO Trabajo, energía y rendimiento MECANISMOS QUE TRANSFORMAN

1. Introducción TRABAJO, ENERGÍA, POTENCIA Y RENDIMIENTO Trabajo, energía y rendimiento MECANISMOS QUE TRANSFORMAN Mecanismos I Tecnología 3º ESO 1. Introducción.... 2 2. TRABAJO, ENERGÍA, POTENCIA Y RENDIMIENTO... 3 2.1 Trabajo, energía y rendimiento...3 3. MECANISMOS QUE TRANSFORMAN MOVIMIENTOS RECTILÍNEOS EN MOVIMIENTOS

Más detalles

Sistema de admisión de aire y escape

Sistema de admisión de aire y escape Pantalla anterior Producto: TRACK-TYPE TRACTOR Modelo: D8R II TRACK-TYPE TRACTOR AKA Configuración: D8R TRACK-TYPE TRACTOR Differential Steering AKA00001- UP (MACHINE) POWERED BY 3406E Engine Bienvenido:

Más detalles

3º ESO - Ejercicios de mecanismos HOJA 1

3º ESO - Ejercicios de mecanismos HOJA 1 3º ESO - Ejercicios de mecanismos HOJA 1 1. Para sacar una muela hay que hacer una fuerza de 980 N. La dentista utiliza para ello unas tenazas que tienen un mango de 15 cm. La distancia entre el extremo

Más detalles

Tecnología 2.º ESO. Actividades. Unidad 3 Mecanismos CUESTIONES SENCILLAS EDITORIAL TEIDE

Tecnología 2.º ESO. Actividades. Unidad 3 Mecanismos CUESTIONES SENCILLAS EDITORIAL TEIDE CUESTIONES SENCILLAS 1. Por qué las carreteras de montaña con pendientes pronunciadas se construyen con muchas curvas? 2. Los pestillos de las puertas tienen una cara inclinada. Explica por qué tienen

Más detalles

I.E.S. " HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS

I.E.S.  HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS MECANISMOS 1. Indica el sentido de giro de todas las poleas, si la polea motriz (la de la izquierda) girase en el sentido de las agujas del reloj. Indica también si se son mecanismos reductores o multiplicadores

Más detalles

OBSERVA Y EXPERIMENTA UNIDAD 6

OBSERVA Y EXPERIMENTA UNIDAD 6 EN EL AULA (Pág. 111) SOLUCIONARIO OBSERVA Y EXPERIMENTA UNIDAD 6 6 1. Piensa en las tareas que realizas en el aula. Las haces todas por ti mismo o necesitas ayuda de alguna máquina? Encuentras a tu alrededor

Más detalles

2. Calcula el valor de la Fuerza (F) que será necesaria para vencer la resistencia R. Qué tipo de palanca es?

2. Calcula el valor de la Fuerza (F) que será necesaria para vencer la resistencia R. Qué tipo de palanca es? EJERCICIOS DE PALANCAS 1. Unas tijeras de podar puede cortar grandes ramas de árboles si ejercer demasiada fuerza. A qué crees que se debe la facilidad con la que el agricultor puede cortar las ramas?

Más detalles

Maquinas Simples fuerzas musculares

Maquinas Simples fuerzas musculares PALANCAS Maquinas Simples: Son dispositivos sencillos que permiten vencer grandes fuerzas musculares, en este sentido son multiplicadores de fuerzas, también permiten cambiar el sentido de la fuerza, para

Más detalles

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS 5. MOTORES DE REACCIÓN En los motores de reacción, la energía mecánica producida por el proceso de combustión aparece en forma de energía cinética de una corriente de fluido en lugar de presentarse como

Más detalles