SERIE # 3 CÁLCULO VECTORIAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SERIE # 3 CÁLCULO VECTORIAL"

Transcripción

1 SERIE # 3 ÁLULO VETORIAL

2 ÁLULO VETORIAL Página 1 1) Sea el campo vectoial F (x,y,)=( 3x+ y)i+( x+ y ) j ( x) k. alcula lago de la cuva : 4 5 x = + y y =, del punto A ( 3, 1, 1) al punto B ( 3, 1, -1). F d a lo ) Sea el campo de fueas F (x,y,)=( 3x+ y )i+( x - ) j ( ax) k. alcula el valo de la constante a de modo que F d evaluada del punto A ( 1, 1, 0) al punto B (, 1, 4) a lo lago de la ecta que los une sea igual a ) Sea el campo vectoial tayectoia del plano XY dada po (4 ) 3 F ( x, y, )= x i + y j y k. alcula F d x, del punto A (0,0,0) al punto B (,,0). a lo lago de la 4) alcula c F d, donde F es el campo vectoial F x, y, y i x e j 1 y e k y es la cicunfeencia x 1 y 9 F d 0

3 ÁLULO VETORIAL Página 5) alcula y dx x dy donde es la elipse x=a cost, y = b sent, ecoida en sentido positivo. ab 6) alcula la integal de línea I (3 x y) dx ( x 5 y) dy x= cost ; y = sent ; 0 t. sobe la cicunfeencia de ecuaciones 7) alcula F d, paa el campo vectoial x cos t y 3sent cuva : t0, SOLUION F d F( x, y) ( xy x )i ( x y x y )j y la, ecoida en sentido negativo. 8) alcula F d, paa el campo vectoial x 3cos t y sent cuva : t0, 3 3 F( x, y) ( x xy )i ( y x y x)j y la, ecoida en sentido negativo. SOLUION F d 1 9) alcula c F d paa el campo vectoial F( x, y, ) ( x y 4 ) i (x 3 y ) j (4x y ) k y la tayectoia fomada po los segmentos de ecta que unen al punto A(0,0,0) con B(1,0,0), B con (1,0,1) y con D(1,1,1).

4 ÁLULO VETORIAL Página 3 c F d 5 10) Paa el campo vectoial F y las tayectoias 1,, 3 y 4 que se muestan en la figua, indica si el valo de espuesta. F d sobe cada una de las cuvas es positivo o es negativo. Justifica su A citeio del pofeso. 11) alcula figua: c x y x dx dy, donde es el aco de cicunfeencia que se muesta en la c 0

5 ÁLULO VETORIAL 1) alcula c Página 4 x y dx y dy, donde es la tayectoia que se muesta en la figua: 18 c 13) alcula el tabajo que ealia el campo de la fuea patícula a lo lago de la tayectoia mostada en la figua. F (x,y)=(x y)i+(y) j, al move la 5 3 u.t. 3 14) alcula el tabajo que ealia el campo de fueas F (x,y)=(4xy )i+(y+x ) j al move una patícula del punto (, 0) al punto (, 0), a lo lago de la tayectoia mostada en la figua. omente el esultado.

6 ÁLULO VETORIAL Página 5 0; omentaio a citeio del pofeso. -y x 15) alcula el tabajo que ealia el campo de fueas F (x,y)= -e i+e j, cuando una patícula se mueve a lo lago de la cuva de ecuaciones; x 3 ln t, y ln t, paa 1t u.t. 16) Evalua el tabajo ealiado po el campo F (x,y)= yi+(y+1- x ) j a lo lago de la tayectoia c, que consiste en los segmentos de ecta que unen los puntos (5, 1) con (5, ) y luego (5, ) con (0, ). 161 u.t. 17) alcula el tabajo que desaolla el campo de fueas F = i+( x+6) k paa move una patícula a lo lago de la cuva : 3 u.t. x + x + y + = y del punto A (1, 1, 0) al punto B (0, 1, 1).

7 ÁLULO VETORIAL Página 6 18) alcula el tabajo que efectúa el campo de fueas F( x, y, )= i+3x j+x k sobe una patícula que se desplaa del punto P (0, 0, 0) al punto Q (3,, 1) sobe la cuva : x = 0 y 0 3 u.t. 19) alcula el tabajo ealiado po el campo: -y -x - -y x - F(x, y,)=(e - e )i+(e - xe )j +(e - ye )k al desplaa una paticula desde el punto A (0, 0, 0) hasta el punto B (1, 1, 1), a lo lago de la cuva cuya ecuación vectoial es 3 (t)= ( t ) i+( t ) j +( t ) k. 3 e u.t. 0) alcula el tabajo efectuado paa desplaa una patícula en el campo de fueas epesentado po F(x,y,)=(x)i+(y)j+()k, a lo lago de la cuva de ecuaciones x= 5cost, y = - 5cost, = 5sent, desde el punto paa el cual t = 0 hasta el punto deteminado po t=. Explique el poqué del esultado. 0 u.t. Explicación a citeio del pofeso. 1) alcula el tabajo que ealia el campo de fueas F(x,y,)=(3y)i -(4)j+(6x)k cuando una patícula se desplaa a lo lago de la elipse de ecuaciones 4x +9y = 36 4, del punto A(3, 0, 4) al punto B(0,, 4), siguiendo un sentido de ecoido contaio al de las manecillas del eloj. 9 3 u.t.

8 ÁLULO VETORIAL Página 7 3 ) alcula el tabajo que ealia el campo de fueas F (x,y)=(x +y)i+(y +4x) j al move una patícula a lo lago de la tayectoia ceada mostada en la figua. 6 u.t. 3) alcula el tabajo que ealia el campo de fueas F=(x)i+(xy) j ( y) k cuando una patícula se desplaa a lo lago de la tayectoia ceada definida po la intesección de las supeficies = 4 - x, x=0, = 0, y = - 3, y = u.t. 4) Sea el campo vectoial cuya ecuación es: e y e x F ( x, y, ) = i+ j ( e ang tan xy) k alcula F d 1x y 1x y a lo lago de una vuelta completa a la cuva de ecuaciones 0. x + = 16, x+ y+ = 10. 5) alcula el tabajo que ealia el campo de fueas F ( x, y, ) =(cosy - y senx - ) i+(-x seny+y cosx - ) j (1 x) k

9 ÁLULO VETORIAL Página 8 al move una patícula a lo lago de la cuva : B ( -,, 1). y = - x y = sen del punto A (0,0,0) al punto 1 6) Sea el campo consevativo x v= x i+(4 sen y - sec y) j tan y k. Detemina su coespondiente función potencial. x ( x, y, ) x 4cos y tan y. 7) Sea el campo vectoial F( x, y, ) ( x y ) i ( x 3 y ) j (4x y ) k donde, β,. a) Detemina los valoes de, β, paa los cuales F es consevativo. b) Obtene una función potencial del campo consevativo F. a) 4, 1,. b) x 3y f ( x, y, ) xy 4x y c 8) Detemina si el campo cuya ecuación en coodenadas polaes es F (, ) = sen( )e cos( )e tiene función potencial, en caso afimativo, calcula la difeencia de potencial ente el polo y el punto A cuyas coodenadas catesianas son (1, 1). 1 u.t.

10 ÁLULO VETORIAL 9) alcula el valo de F d -y x donde F (x, y) = i+ j. x y x y Página 9 a lo lago de la cicunfeencia de adio 1 con cento en el oigen, 30) alcula ecuación 0. F d siendo F (, ) = 6 sen( )eˆ 6 cos( )eˆ y la cicunfeencia de x - 4y+ y = 0. 31) alcula el tabajo efectuado po el campo de fueas F (, ) = eˆ ˆ e,dado en coodenadas polaes, al desplaa una patícula a lo lago de la cuva : x +4y = 4 desde el punto A (,0) hasta el punto B ( 0, 1), dados en coodenadas catesianas. u.t. 3) alcula el tabajo que efectúa el campo de fueas F,, sen e cos e sen e en el movimiento de una patícula desde el punto A,, 1 4 hasta el punto 3 B,, 1 4 a lo lago de la cuva : 1 Todos los datos están dados en coodenadas cilíndicas ciculaes. 4 u. de t.

11 ÁLULO VETORIAL Página 10 33) Sea F el campo vectoial cuya ecuación en coodenadas polaes es B F (, ) =(- sen )e ˆ ( cos ˆ )e. alcula F d a lo lago de la cuva de ecuación A x + y - 4x = 0 del punto A (0,0) al punto B ( 4, 0) paa y ) Sea el campo vectoial V cuya ecuación en coodenadas cilíndicas es 3 3 V (,, ) = 8 eˆ 8 eˆ 1 eˆ, calcula V d a lo lago de una vuelta completa a la cuva de ecuaciones 0 u.t. x + = 5, x+ y+ = ) El campo vectoial F en coodenadas cilíndicas está dado po: 3 3 F (,, ) = ( sen) e (cos ) e 3 ( sen ) e alcula el tabajo que desaolla el campo F al move una patícula del punto A1,,1 al punto B (, 0, -1), a lo lago de la ecta que los une. Los puntos están dados en coodenadas cilíndicas. -1 u.t. 36) alcula el tabajo que ealia el campo de fueas 3 F(,, ) (4 ) e e (3 ) e al move una patícula alededo de la cicunfeencia de ecuaciones x + y = 9, = 9 - x - y. 36 u.t. 37) Detemina si la expesión en coodenadas polaes d f 3 d 3 ln3d, es una difeencial exacta. En caso de selo, obtenga la función de la cual se obtiene.

12 ÁLULO VETORIAL Página 11 f 3 cos sen 38) Sea el campo vectoial F(,, ) e e 3 3 en coodenadas cilíndicas ciculaes. Detemina si el campo es consevativo; en caso afimativo, obtene una función potencial de F. cos F es consevativo, f (, ) c 39) Sea el campo consevativo F. Detemina la función potencial de F. f Ln 40) Utilia coodenadas esféicas paa detemina si el campo vectoial epesentado po xi y j k F x, y, es consevativo. Si lo es, obtene su función potencial. x y El campo vectoial,, es f ln x y. F x y es consevativo y su función potencial en coodenadas catesianas

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

2. CURVAS EN EL SISTEMA POLAR

2. CURVAS EN EL SISTEMA POLAR 2. CURVAS EN EL SISTEMA POLAR Objetivo: El alumno obtendá ecuaciones en foma pola de cuvas en el plano y deteminaá las caacteísticas de éstas a pati de su ecuación en foma pola. Contenido: 2.1 Sistema

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

r r 3 producido por una carga Q localizada en el origen, con ε constante. a. Demuestre que (3 puntos)

r r 3 producido por una carga Q localizada en el origen, con ε constante. a. Demuestre que (3 puntos) U..V. F.I.U..V. ÁLULO VETORIAL (54) PRIMER PARIAL (3%) 5/1/9 MATEMÁTIA APLIADA Pof. 1. Sean el campo posición (x,, z) = (x,, z) el campo eléctico E = ε Q poducido po una caga Q localizada en el oigen,

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2 CÁLCULO Pime cuso de Ingenieo de Telecomunicación Segundo Examen Pacial. 1 de Junio de 1 Pimea pate Ejecicio 1. Obtene la expesión en que se tansfoma z xx +z xy +z yy ; al cambia las vaiables independientes

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO

SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO Sugeencias paa quien impate el cuso: Se espea que con la popuesta didáctica pesentada en conjunción con los apendizajes que sobe el estudio de la tigonometía

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS Paa los inteeses de la Física, los Campos Vectoiales se clasifican en dos gupos: -CAMPOS VECTORIALES CONSERVATIVOS.CAMPOS VECTORIALES NO CONSERVATIVOS Los de

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide egio Yansen Núñez Teoema de tokes y Gauss Actividad Nº Considee el campo vectoial F( x, y, z) ( y, x, z ). Calcule F d donde C es C la intesección ente el plano x + y + z y el cilindo x + y. Actividad

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

Trabajo, Energía, Potencial y Campo Eléctrico

Trabajo, Energía, Potencial y Campo Eléctrico Cáteda de Física Expeimental II Física III Tabajo, Enegía, Potencial y Campo Eléctico Pof. D. Victo H. Rios 2010 Contenidos - El concepto físico de tabajo. - Enegía potencial eléctica. - Enegía paa la

Más detalles

Apunte FII-1-RM: Repaso de Matemática

Apunte FII-1-RM: Repaso de Matemática Física II Física B - Electomagnetismo Pofesoa: Da. C. Caletti : Repaso de Matemática I. Gadiente A fin de compende mejo el concepto de gadiente comenzaemos po las bases, analizando, peviamente, qué tipo

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO EL POTENCIAL ELÉCTRICO. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Pofeso: José Fenando Pinto Paa UNIDAD 7 POTENCIAL ELECTROSTÁTICO Dos cagas en la misma posición tienen dos veces más enegía

Más detalles

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2).

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2). GUIA 0 1 - Halla el módulo del vecto de oigen en (20,-5,8) etemo en (-4,-3,2). 2 - a) Halla las componentes catesianas de los siguientes vectoes: (i) A (ii) A = 4 A = θ = 30º 4 θ =135º A (iii) (iv) A θ

Más detalles

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.:

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.: Campo eléctico 1. Calcula el valo de la fueza de epulsión ente dos cagas Q 1 = 200 µc y Q 2 = 300 µc cuando se hallan sepaadas po una distancia de a) 1 m. b) 2 m. c) 3 m. Resp.: a) 540 N, b) 135 N, c )

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

CAMPO ELÉCTRICO Y POTENCIAL

CAMPO ELÉCTRICO Y POTENCIAL CMPO ELÉCTRICO Y POTENCIL INTERCCIONES ELECTROSTÁTICS (CRGS EN REPOSO) Caga eléctica: popiedad intínseca de la mateia ue se manifiesta a tavés de fuezas de atacción o epulsión Ley de Coulomb: expesa la

Más detalles

CONTROL 1 2ªEVAL 2ºBACH

CONTROL 1 2ªEVAL 2ºBACH ONROL 1 ªEL ºH NO Nobe: echa: INSRUIONES Y RIERIOS ENERLES DE LIIIÓN La pueba consta de una opción, que incluye cuato peguntas. Se podá hace uso de calculadoa científica no pogaable. LIIIÓN: ada pegunta

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α,

Más detalles

Ejemplos 1. Cinemática de una Partícula

Ejemplos 1. Cinemática de una Partícula Ejemplos 1. inemática de una atícula 1.1. Divesos Sistemas oodenadas 1.1.* La velocidad peiféica de los dientes de una hoja de siea cicula (diámeto 50mm) es de 45m/s cuando se apaga el moto y, la velocidad

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles

87. Un cierto campo de fuerzas viene dado por la expresión F 4y

87. Un cierto campo de fuerzas viene dado por la expresión F 4y Campos 5 81. El témino potencial, es elativamente modeno, dado que tampoco existía el de enegía potencial, que Helmholtz, denominaba tensión. Fue Rankine el que en 1842 (algunos histoiadoes de la ciencia,

Más detalles

REPARTIDO III CIRCUNFERENCIA

REPARTIDO III CIRCUNFERENCIA Pof.: Lucia Tafenabe Ecuación Geneal REPRTIDO III IRUNFERENI B B cento, Ecuación de la icunfeencia conociendo cento (α, β) adio. adio B MN ( - α) ( - β) Deteminación de la ecuación de la cicunfeencia conociendo:

Más detalles

Aplicaciones de la Integración. Universidad Diego Portales CALCULO II

Aplicaciones de la Integración. Universidad Diego Portales CALCULO II Aplicaciones de la Integación El valo medio de una función En muchas situaciones pácticas, se desea enconta el valo medio de una función continua sobe un intevalo, como el nivel medio de la polución del

Más detalles

CP; q v B m ; R R qb

CP; q v B m ; R R qb Campo Magnético Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos (N y S). Si acecamos

Más detalles

Es claro que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palabra coseno (seno del complemento).

Es claro que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palabra coseno (seno del complemento). Es clao que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palaba coseno (seno del complemento). Nota: En adelante escibiemos indistintamente cos a o cos(m(a)),

Más detalles

Campos 5. W C, por lo A. I, C dr A. , mientras que C I dr. , de lo que A. , Como que la única respuesta válida es la b

Campos 5. W C, por lo A. I, C dr A. , mientras que C I dr. , de lo que A. , Como que la única respuesta válida es la b Campos 5 81. El témino potencial, es elativamente modeno, dado que tampoco existía el de enegía potencial, que Helmholtz, denominaba tensión. Fue Rankine el que en 184 (algunos histoiadoes de la ciencia,

Más detalles

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de

Más detalles

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables (x 0 ). x ik. x ik 1

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables (x 0 ). x ik. x ik 1 1. RESUMEN Ingenieía Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vaias Vaiables 08-1 Ingenieía Matemática Univesidad de Chile Guía Semana 5 Teoema del valo medio.

Más detalles

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas. º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.

Más detalles

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

Más detalles

UNIDAD 4: CIRCUNFERENCIA CIRCULO:

UNIDAD 4: CIRCUNFERENCIA CIRCULO: UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

TEMA 2.- Campo gravitatorio

TEMA 2.- Campo gravitatorio ema.- Campo gavitatoio EMA.- Campo gavitatoio CUESIONES.- a) Una masa m se encuenta dento del campo gavitatoio ceado po ota masa M. Si se mueve espontáneamente desde un punto A hasta oto B, cuál de los

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 )

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 ) COLEGIO ESTRADA DE MARIA AUILIADORA CIENCIA, TRABAJO VALORES: MI PROECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (0 ) Fecha: Nombe del estudiante: N O T A La nivelación es en foma de talle donde

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos

Más detalles

Teoremas Integrales. V(x j ) ds

Teoremas Integrales. V(x j ) ds Semana 2 - Clase 5 24/03/09 Tema : Algeba ectoial Teoemas Integales. Teoema de la Divegencia o de Gauss Sea = x j ) un campo vectoial definido sobe un volumen cuya fontea es la supeficie y ˆn el vecto

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse.

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse. Leyes de Keple. Antes de demosta las tes leyes de Keple, haé un análisis matemático de lo que es una elipse. Una elipse (Fig.) es el luga geomético de un punto que se mueve en un plano de tal manea que

Más detalles

OTRAS APLICACIONES DE LA APROXIMACIÓN DE CAPA LÍMITE LAMINAR. CORRIENTES LIBRES.

OTRAS APLICACIONES DE LA APROXIMACIÓN DE CAPA LÍMITE LAMINAR. CORRIENTES LIBRES. OTRAS APLICACIONES DE LA APROXIMACIÓN DE CAPA LÍMITE LAMINAR. CORRIENTES LIBRES. 1 Intoducción Los movimientos de choos de líquido en el seno del mismo líquido, la estela de cuepos en el seno de una coiente

Más detalles

DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional

DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional Poblema 6 : Una fuente bidimensional de intensidad q está ubicada en una esquina ectangula

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011 EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 5 AÑOS SIN CICLO MEDIO COMPLETO PRACTICO Función Lineal Rectas Noviembe RECORDAR: Una unción lineal es de la oma popiedad que los cocientes incementales:

Más detalles

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( )

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( ) CAMPOS: OPERADOR NABLA Repesenta los campos vectoiales A i + j, B i j. Halla la divegencia el otacional de cada uno de ellos eplica el significado físico de los esultados obtenidos. Solución: I.T.I., 3,

Más detalles

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando MECNIC PLICD I. EXMEN PCIL. 17-04-99. PIME EJECICI TIEMP: 75 1. btene la expesión de la velocidad de ω V s ω V s sucesión del cento instantáneo de otación cuando =. 2 2. Indica qué afimaciones son cietas

Más detalles

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz. Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos

Más detalles

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas ELECTROSTTIC La electostática es la pate de la física que estudia las cagas elécticas en equilibio. Cagas elécticas Existen dos clases de cagas elécticas, llamadas positiva y negativa, las del mismo signo

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 0- Pofeso: Jaime Andés Jaamillo González (jaimeaj@conceptocomputadoes.com) Pate del mateial ha sido tomado de documentos

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN, REFRACCIÓN Y LENTES

ÓPTICA GEOMÉTRICA: REFLEXIÓN, REFRACCIÓN Y LENTES PRÁCTICA ÓPTICA GEOMÉTRICA: REFLEXIÓN, REFRACCIÓN Y LENTES A) MATERIAL Fuente de luz, banco óptico, lente delgada convegente, pantalla. B) OBJETIVO Intoduci los conceptos de ayo luminoso y de índice de

Más detalles

Generalidades y ángulos en la circunferencia. II Medio 2016

Generalidades y ángulos en la circunferencia. II Medio 2016 Genealidades y ángulos en la cicunfeencia II Medio 2016 pendizajes espeados Identifica los elementos de una cicunfeencia y un cículo. Calcula áeas y peímetos del cículo, del secto cicula y del segmento

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Leyes de la electostática Leyes de la electostática:

Más detalles

TANGENCIAS (Julio Catalán)

TANGENCIAS (Julio Catalán) NGENIS (Julio atalán) Los poblemas de tangencia que pueden pesentase son innumeables y van desde los muy sencillos a los más complejos, ecuiéndose paa su solución a pocedimientos muy distintos: desde los

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.).

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.). 1.- Clasificación de movimientos. 1. Tomando como efeencia la tayectoia: Movimientos ectilíneos o de tayectoia ecta. Movimientos cuvilíneos o de tayectoia cuva (cicula, elíptica, paabólica, etc.). 2. Tomando

Más detalles

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es BLOQUE A A.- En el instante t = se deja cae una pieda desde un acantilado sobe un lago;,6 s más tade se lanza una segunda pieda hacia abajo con una velocidad inicial de 3 m/s. Sabiendo que ambas piedas

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 18 Explorando la esfera-1. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 18 Explorando la esfera-1. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Mateia: Matemáticas. Tema: Geometía 18 Exploando la esfea-1. Fecha: Pofeso: Fenando Viso Nombe del alumno: Sección del alumno: CONDICIONES: Tabajo individual. Sin libos, ni cuadenos, ni

Más detalles

EJERCICIOS DEL TEMA VECTORES

EJERCICIOS DEL TEMA VECTORES EJERCICIOS DEL TEMA VECTORES 1) Considea el vecto w, siguiente: w Dibuja, en cada caso uno de los siguientes casos, un vecto v, que sumado con u dé como esultado w : a) b) c) d) u u u u 2) A la vista de

Más detalles

4.5 Ley de Biot-Savart.

4.5 Ley de Biot-Savart. 4.5 Ley de Biot-Savat. Oto expeimento que puede ealizase paa conoce más sobe el oigen y compotamiento de las fuezas de oigen magnético es el mostado en la siguiente figua. Consiste de un tubo de ayos catódicos,

Más detalles

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión). Examen de Física-, Ingenieía Química Diciembe de Cuestiones (Un punto po cuestión). Cuestión : Los vectoes (,, ), (,, 5) y (,, ), están aplicados en los puntos A (,, ), B (,, ) y C (,, ) espectivamente.

Más detalles

Solución al examen de Física

Solución al examen de Física Solución al examen de Física Campos gavitatoio y eléctico 14 de diciembe de 010 1. Si se mantuviea constante la densidad de la Tiea: a) Cómo vaiaía el peso de los cuepos en su supeficie si su adio se duplicaa?

Más detalles

Situaciones 1: Dada una carga eléctrica puntual, determine el campo eléctrico en algún punto dado. r u r. r 2. Esmelkys Bonilla

Situaciones 1: Dada una carga eléctrica puntual, determine el campo eléctrico en algún punto dado. r u r. r 2. Esmelkys Bonilla Situaciones 1: Dada una caga eléctica puntual, detemine el campo eléctico en algún punto dado. E = k q 2 u 1.- Una caga puntual positiva, situada en el punto P, cea un campo eléctico E v en el punto, epesentado

Más detalles

Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition.

Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Vectoes Pesentanción basada en el mateial contenido en: Seway, R. Physics fo Scientists and Enginees. Saundes College Pub. 3d edition. Sistemas de Coodenadas Se usan paa descibi la posición de un punto

Más detalles

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores.

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores. CAPÍTULO Campo eléctico II: distibuciones continuas de caga Índice del capítulo.1 Cálculo del campo eléctico mediante la ley de Coulomb.. La ley de Gauss..3 Cálculo del campo eléctico mediante la ley de

Más detalles

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un punto. Poblemas OPCIÓN A.- Un satélite descibe una óbita

Más detalles

GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS

GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 6 SEMESTRE 1 GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS RESEÑA HISTÓRICA Leonhad Eule, (1707-1783) Fue un matemático

Más detalles

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS Fundamentos Físicos de la Infomática Escuela Supeio de Infomática Cuso 09/0 Depatamento de Física Aplicada TEMA 4. ELECTOSTATICA EN CONDUCTOES Y DIELECTICOS 4..- Se tiene un conducto esféico de adio 0.5

Más detalles

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO Física Geneal III Potencial Eléctico Optaciano ásuez Gacía CPITULO I POTENCIL ELÉCTICO 136 Física Geneal III Potencial Eléctico Optaciano ásuez Gacía 4.1 INTODUCCIÓN. Es sabido ue todos los objetos poseen

Más detalles

Actividad para el curso de Física: Mecánica del movimiento circular de un punto material.

Actividad para el curso de Física: Mecánica del movimiento circular de un punto material. Mecánica del movimiento cicula de un punto mateial. Pofeso Eduado Abaham Escácega Pliego *. Índice 1. Intoducción. 2 2. Apunte 2 2.1. Posición de un punto mateial en movimiento cicula.........................

Más detalles

IV. Geometría plana. v v2 2. u v = u v cos α

IV. Geometría plana. v v2 2. u v = u v cos α Talle de Matemáticas 16 IV. Geometía plana IR 2 = {(x, y)/x, y IR} puede identificase con el espacio de vectoes libes del plano utilizando la base canónica: v =(v 1,v 2 )=v 1 (1, 0) + v 2 (0, 1) = v 1

Más detalles

FÍSICA II: 1º Curso Grado de QUÍMICA

FÍSICA II: 1º Curso Grado de QUÍMICA FÍSICA II: 1º Cuso Gado de QUÍMICA 5.- DIPOLOS Y DIELÉCTRICOS 5.1 Se tiene una distibución de cagas puntuales según la figua. P Calcula cuánto vale a) el momento monopola y b) el momento dipola 5.2 Calcula

Más detalles

MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ

MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U. -- 0 - - 03. N.S.Q INSIUCIÓN EDUCAIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ M.C.U. MOVIMIENO CIRCULAR UNIFORME Pieda atada a una cueda: estoy giando La tiea:

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

[b] La ecuación de la velocidad se obtiene derivando, con respecto al tiempo, la ecuación de la

[b] La ecuación de la velocidad se obtiene derivando, con respecto al tiempo, la ecuación de la Nombe y apellidos: Puntuación: 1. Pimeo vetical, luego hoizontal Un muelle, de masa despeciable, se defoma 20 cm cuando se le cuelga un cuepo de 1,0 kg de masa (figua 1). A continuación, se coloca sin

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

Fuerza conservativa Una fuerza es conservativa si el trabajo total que realiza sobre una partícula es nulo al realizar una trayectoria cerrada

Fuerza conservativa Una fuerza es conservativa si el trabajo total que realiza sobre una partícula es nulo al realizar una trayectoria cerrada Cuso: ISICA I CB 3 I ueza consevativa na fueza es consevativa si el tabajo total que ealiza sobe una patícula es nulo al ealiza una tayectoia ceada Altenativa na fueza es consevativa si es independiente

Más detalles

X I OLIMPIADA NACIONAL DE FÍSICA

X I OLIMPIADA NACIONAL DE FÍSICA X I LIMPIADA NACINAL D FÍSICA FAS LCAL - UNIVSIDADS D GALICIA - 18 de Febeo de 2000 APLLIDS...NMB... CNT... PUBA BJTIVA 1) Al medi la masa de una esfea se obtuvieon los siguientes valoes (en gamos): 4,1

Más detalles

OPTIMIZACIÓN DE FUNCIONES DE UNA VARIABLE

OPTIMIZACIÓN DE FUNCIONES DE UNA VARIABLE Matemáticas º Bacilleato. OTIMIZACIÓN DE UNCIONE DE UNA VARIABLE ROBLEMA DE OTIMIZACIÓN aa esolve un poblema de optimización se siguen los siguientes pasos:. Lee bien el enunciado.. i el poblema tiene

Más detalles

CONTENIDO FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. Campos escalares y vectoriales. Gradiente y rotacional. Campos conservativos.

CONTENIDO FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. Campos escalares y vectoriales. Gradiente y rotacional. Campos conservativos. CONTENIDO FUERZS CONSERVTIVS Y NO CONSERVTIVS Campos escalaes y vectoiales Gadiente y otacional Campos consevativos. Potencial Tabajo ealizado po una fueza consevativa Fuezas no consevativas: Fueza de

Más detalles

Plano Tangente a una superficie

Plano Tangente a una superficie Plano Tangente a una supeficie Plano Tangente a una supeficie Sea z f ( una función escala con deivadas paciales continuas en (a b del dominio de f. El plano tangente a la supeficie en el punto P( a b

Más detalles

Ejemplos 2. Cinemática de los Cuerpos Rígidos

Ejemplos 2. Cinemática de los Cuerpos Rígidos Ejemplos. Cinemática de los Cuepos Rígidos.1. Rotación alededo de un eje fijo.1.** El bloque ectangula ota alededo de la ecta definida po los puntos O con una velocidad angula de 6,76ad/s. Si la otación,

Más detalles

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo Cuso: FISICA II CB 3U 1I Halla el CE de una esfea hueca con caga Q adio a. ad a d asen P de a Las componentes en el eje Y se anulan El CE esultante de la esfea hueca se encontaa sobe el eje X. El áea de

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

Electromagnetismo II

Electromagnetismo II Electomagnetismo II emeste: 15-1 EXAMEN FINAL D. A. Reyes-oonado Ayud. J. astejón-figueoa Ayud. P. E. Roman-Taboada Elaboó: Pedo Eduado Roman Taboada 1.- Poblema: (pts) (a) Escibe las cuato ecuaciones

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell CAMPOS ELECTROMAGNÉTICOS Tema Ecuaciones de Mawell P.- En una egión totalmente vacía ha un campo eléctico E = kt uˆ oto magnético con B B =. La magnitud k es constante. Calcula B. = B = ε µ + k k ' P.-

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles