2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo."

Transcripción

1 2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo. 2.1 Formas cuadráticas. Expresión matricial y analítica. Expresiones diagonales. Definición 2.1 (Expresión matricial) Una forma cuadrática es una función : que a cada vector,,, le asocia el valor siendo A una matriz simétrica, es decir:,,,,,, Su expresión analítica es:,,, Ejemplo 2.2 Sea : dada por,,,, Su expresión analítica es: ,,,, 4 3 2,, Nota: En la diagonal principal de la matriz están los coeficientes de,, (en este orden). En el lugar ij de la matriz está la mitad del coeficiente de. Esta relación entre los elementos de una y otra expresión de la forma cuadrática, permite obtener fácilmente cada una de ellas a partir de la otra. Ejemplo 2.3 Su expresión matricial es: Sea : dada por,, ,,,, Definición 2.4 (Expresión diagonal) Sea : una forma cuadrática. Una expresión diagonal o canónica de q viene dada por: 0 0 0,,,,,, ó í ó é á. 1

2 Observación: Pretendemos expresar una forma cuadrática en forma diagonal. Cualquier forma cuadrática admite, al menos, una expresión diagonal que es la que viene dada por los autovalores de la matriz asociada, aunque, bajo ciertas condiciones, también pueden existir otras expresiones diagonales. Proposición 2.5 (Expresión diagonal por autovalores) Para toda forma cuadrática :, con A su matriz asociada, y,,, autovalores de A, existe una expresión diagonal dada por:,,, Ejemplo 2.6 Sea la forma cuadrática : dada por:,, Su expresión matricial es,,,, Buscamos los autovalores de la matriz A: Una expresión diagonal por autovalores es:,, 5 5 Proposición 2.7 (Expresión diagonal de Jacobi) Sea : una forma cuadrática y A su matriz asociada. Consideremos los menores angulares formados por las i primeras filas de A y las i primeras columnas de A: Supongamos que. La expresión diagonal de Jacobi de la forma cuadrática q viene dada por:,,, Siempre que 0, 0, 0,, 0 Es decir, para que q admita expresión diagonal de Jacobi, se tiene que verificar: , 0 0 Ejemplo 2.8 Sea la forma cuadrática : dada por,, (es la misma forma cuadrática del ejemplo 2.6) , 30, , Como 3,, 0, la forma diagonal de Jacobi es,,

3 1 1 0 Ejemplo 2.9 Sea la forma cuadrática : dada por,, No admite expresión diagonal de Jacobi: Nota: (Ley de inercia de Sylvester) Todas las expresiones como suma de cuadrados de q tienen el mismo número de elementos positivos y negativos. 2.2 Clasificación de las formas cuadráticas Definición 2.10 Sea : una forma cuadrática q es definida positiva si 0,. q es semidefinida positiva si 0 0 ú. q es definida negativa si 0,. q es semidefinida negativa si 0 0 ú. q es indefinida si existen vectores de no nulos tales que 0 0. Proposición 2.11 (Criterio de los autovalores) Sea : una forma cuadrática y A su matriz asociada. Sean,,, los autovalores de A. q es definida positiva si y sólo si los autovalores de A son todos positivos. q es semidefinida positiva si y sólo si los autovalores de A son positivos y nulos. q es definida negativa si y sólo si los autovalores de A son todos negativos. q es semidefinida negativa si y sólo si los autovalores de A son negativos y nulos. q es indefinida si y sólo si A posee algún autovalor positivo y algún autovalor negativo. Ejemplo 2.12 Clasificar la forma cuadrática,, Su expresión matricial es:,, Autovalores: Los autovalores son:

4 Proposición 2.13 (Criterio de los menores angulares) Sea : una forma cuadrática, A su matriz asociada y,,, los menores angulares de A 1 0, 0, 0,, , 0, 0,, , 0,, 0, 0,, , 0,, 0, 0,, , 0, 0,, En el resto de los casos el criterio no es válido Ejemplo 2.14 Clasificar la forma cuadrática,, 2 2 utilizando el criterio de los menores angulares La matriz asociada es : Como: 3 0, 0 0 (Caso 3) Ejemplo 2.15 Clasificar la forma cuadrática,, utilizando el criterio de los menores angulares La matriz asociada es : El criterio de los menores angulares no afirma nada en este caso. Ejercicio 2.16 Sea la forma cuadrática : dada por,, a) Expresión matricial. b) Expresión diagonal por autovalores. c) Si es posible, expresión diagonal de Jacobi. d) Clasificar la forma cuadrática. Solución 1 1 2,, Una expresión diagonal por autovalores es,, ,,

5 1 1 2 Estudiamos los menores angulares: Como el rango de la matriz es 2 y los dos primeros menores angulares no son nulos, la forma diagonal de Jacobi es:,, 1 d) Vamos a clasificar la forma cuadrática: ª forma: Utilizando el criterio de los autovalores ª forma: Utilizando la expresión diagonal por autovalores,, ,, ó 3ª forma: Utilizando la expresión diagonal de Jacobi,, ó 4ª forma: Utilizando el criterio de los menores angulares Caso Formas cuadráticas restringidas a un subespacio. Clasificación. Al estudiar el signo de una forma cuadrática es frecuente que estas tengan que satisfacer un conjunto de restricciones, o lo que es lo mismo, que el vector pertenezca a un subespacio de. Definición 2.17 Sean : una forma cuadrática y E un subespacio vectorial de. q restringida a E es definida positiva si 0,. q restringida a E es semidefinida positiva si 0 0 ú. q restringida a E es definida negativa si 0,. q restringida a E es semidefinida negativa si 0 0 ú. q restringida a E es indefinida si existen vectores de no nulos tales que 0 0. Clasificación de una forma cuadrática restringida a un subespacio. El camino para clasificar una forma cuadrática restringida a un subespacio vectorial es: 1) Se obtienen las ecuaciones paramétricas del subespacio (supongamos que los parámetros son,,, ) 2) Se sustituyen las ecuaciones paramétricas en la expresión analítica de la forma cuadrática. 3) Se clasifica la forma cuadrática restringida,,, Observación: Si q es definida, al restringirla a E seguirá siendo definida. (Positiva o negativa) Si q es semidefinida, al restringirla a E puede ser definida o semidefinida. (Positiva o negativa) Si q es indefinida, al restringirla a E puede ser definida positiva o negativa, semidefinida positiva o negativa o indefinida. 5

6 Ejercicio 2.18 Dada la forma cuadrática,, 2 2 3, clasificarla sin restringir y restringida al subespacio:,, 0 Solución: Clasificación sin restringir: 2 1 0,,,, , , q es semidefinida positiva Restringida al subespacio E: 1) Buscamos las ecuaciones paramétricas de E 0 ó í 0 Ecuaciones paramétricas: 2) Sustituimos las ecuaciones paramétricas en la expresión analítica de la forma cuadrática:,, 2 2 3, ) Se clasifica la forma cuadrática restringida:,, Expresión matricial de la forma cuadrática restringida y , Ejercicio 2.19 Clasificar la forma cuadrática,, 2 2 2x x : 0,1,1 Solución: Buscamos las ecuaciones paramétricas de F 0,1,1 Tenemos un sistema generador, un solo vector es l.i., luego 0,1,1 es una base de F é 1 Sustituimos las ecuaciones paramétricas en la expresión analítica de la forma cuadrática: 2 Se clasifica la forma cuadrática restringida: Tenemos la forma cuadrática escrita como suma de cuadrados, para clasificarla sólo tenemos que mirar el signo de los coeficientes. es definida positiva. 6

7 Ejercicio 2.20 Dadas las formas cuadráticas:, 2 25,, 2,, Calcular: La expresión matricial, una expresión diagonal por autovalores y, siempre que sea posible, una expresión diagonal de Jacobi. Clasificarlas. Solución:, 2 25 ó, Expresión diagonal por autovalores: ,,, Expresión diagonal de Jacobi , , ,, 2 ó,,,, Expresión diagonal por autovalores: ,, 2 Expresión diagonal de Jacobi

8 1 2 1,, ,,,, Expresión diagonal por autovalores: ,, Expresión diagonal de Jacobi , ,, , 2 2 6, Ejercicio 2.21 Clasificar sin restringir y restringida al subespacio vectorial 1 1 1,, 20 la forma cuadrática cuya matriz asociada es: Solución: Clasificación sin restringir , , 1 1 0, Clasificación restringida Nos hace falta la expresión analítica de la forma cuadrática 1 1 1,,,, 1 1 1,, Buscamos las ecuaciones paramétricas de F 20 2 ó: é Sustituimos las ecuaciones paramétricas en la expresión analítica de la forma cuadrática:, Se clasifica la forma cuadrática restringida:,, ,

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 2011/ ?

Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 2011/ ? Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 011/1 1) (1 punto) Dado el subespacio vectorial,,,,,,,,,,, a) Obtener la dimensión, unas ecuaciones implícitas, unas

Más detalles

MATRICES Y SISTEMAS DE ECUACIONES

MATRICES Y SISTEMAS DE ECUACIONES MATRICES Y SISTEMAS DE ECUACIONES Definición Una matriz real de orden m n es una tabla ordenada de m n números reales a 11 a 12 a 1n a A = 21 a 22 a 2n a m1 a m2 a mn en la cual las líneas horizontales

Más detalles

6 Vectores. Dependencia e independencia lineal.

6 Vectores. Dependencia e independencia lineal. 6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar

Más detalles

Matemáticas Empresariales II. Formas cuadráticas

Matemáticas Empresariales II. Formas cuadráticas Matemáticas Empresariales II Lección 7 Formas cuadráticas Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales II 1 / 17 Definición de Formas cuadráticas Sea V

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO APUNTES E MATEMÁTICAS EXÁMENES RESUELTOS E MATEMÁTICAS I EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA GRAOS EN ECONOMÍA Y AMINISTRACIÓN E EMPRESAS PRIMER CURSO Jesús Muñoz San Miguel http://www.personal.us.es/jmiguel

Más detalles

Prácticas de Matemáticas II: Álgebra lineal

Prácticas de Matemáticas II: Álgebra lineal Prácticas de Matemáticas II: Álgebra lineal Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Prácticas de Matemáticas II: Álgebra lineal

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

Aplicaciones bilineales y formas cuadráticas (Curso )

Aplicaciones bilineales y formas cuadráticas (Curso ) ÁLGEBRA Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 2008 2009) 1. Comprobar si las siguientes aplicaciones son o no bilineales y en las que resulten serlo, dar la matriz que las representa

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

Formas cuadráticas. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza

Formas cuadráticas. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Formas cuadráticas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza A lo largo de todo el capítulo consideraremos que V un espacio vectorial real de dimensión finita n. 1 Formas bilineales

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

6.7. Clasificación de formas cuadráticas

6.7. Clasificación de formas cuadráticas 6.7 Clasificación de s s 1.1. Definición de s s en R n El concepto básico que sirve para definir una es el de polinomio homogéneo de segundo grado en varias variables. En toda esta sección sobreentenderemos

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

T E X T O D E L M A N U A L D E H T M L, W E B M A E S T R O, P O R F R A N C I S C O A R O C E N A

T E X T O D E L M A N U A L D E H T M L, W E B M A E S T R O, P O R F R A N C I S C O A R O C E N A T E X T O D E L M A N U A L D E H T M L, W E B M A E S T R O, P O R F R A N C I S C O A R O C E N A Q U E S E E N C U E N T R A E N I N T E R N E T E N : h t t p : / / w w w. l a n d e r. e s / w e b m

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

Diagonalización de matrices.

Diagonalización de matrices. Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que

Más detalles

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales.

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales. Capítulo V Valores y vectores propios. Diagonalización de operadores lineales. Hemos visto que la aplicaciones lineales de en están definidas a través de una expresión de la forma ; pero esta fórmula puede

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

Independencia Lineal y Generación. (c) 2012 Leandro Marin

Independencia Lineal y Generación. (c) 2012 Leandro Marin 09.00 Independencia Lineal y Generación 3 48700 9000 (c) 0 Leandro Marin . Independencia Lineal Dada una familia de vectores v, v,, v k de un espacio vectorial V, llamaremos combinación lineal de estos

Más detalles

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas.

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas. Tema II Capítulo 5 Aplicaciones bilineales y formas cuadráticas Álgebra Departamento de Métodos Matemáticos y de Representación UDC 5 Aplicaciones bilineales y formas cuadráticas o simplemente f( x, ȳ)

Más detalles

Problemas de exámenes de Formas Bilineales y Determinantes

Problemas de exámenes de Formas Bilineales y Determinantes 1 Problemas de exámenes de Formas Bilineales y Determinantes 1. Sea R 3 con el producto escalar ordinario. Sea f un endomorfismo de R 3 definido por las condiciones: a) La matriz de f respecto de la base

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

2 Espacios vectoriales

2 Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay

Más detalles

CLASIFICACIÓN AFÍN DE CÓNICAS

CLASIFICACIÓN AFÍN DE CÓNICAS Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS CLASIFICACIÓN AFÍN DE CÓNICAS Sea E un R-espacio vectorial de dimensión. Sean E = e 1, e un plano vectorial de E y e 0 un

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 8-7 Formas cuadráticas SEMANA 4: FORMAS CUADRÁTICAS 7 Formas cuadráticas y matrices definidas positivas

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Tema 3: Espacios eucĺıdeos

Tema 3: Espacios eucĺıdeos Marisa Serrano, Zulima Fernández Universidad de Oviedo 25 de noviembre de 2009 email: mlserrano@uniovi.es Índice 1 2 3.1 V, R espacio vectorial, la aplicación : V V R ( v, u) v u a) v 1, v 2, u V α, β

Más detalles

ÍNDICE. Capítulo 1. ESPACIOS VECTORIALES Conceptos Teóricos Ejercicios y Problemas resueltos... 13

ÍNDICE. Capítulo 1. ESPACIOS VECTORIALES Conceptos Teóricos Ejercicios y Problemas resueltos... 13 00_Principios 10/8/10 09:47 Página 7 ÍNDICE Prólogo... 9 Capítulo 1. ESPACIOS VECTORIALES... 11 Conceptos Teóricos... 11 Ejercicios y Problemas resueltos... 13 Capítulo 2. MATRICES Y DETERMINANTES... 21

Más detalles

1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS

1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS 1 1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS Sea f : V V un endomorfismo de V, f End(V, con V un K-espacio vectorial de dimensión n, y sean B = {e 1,..., e n } B = {e 1,..., e n} bases de V. La matriz de f

Más detalles

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a

Más detalles

Francisco Cabo García Bonifacio Llamazares Rodríguez

Francisco Cabo García Bonifacio Llamazares Rodríguez ÁLGEBRA LINEAL CON DERIVE 5 Francisco Cabo García Bonifacio Llamazares Rodríguez María Teresa Peña García Dpto. de Economía Aplicada (Matemáticas) Universidad de Valladolid Página 1 de 34 Ventana de Álgebra

Más detalles

PROBLEMAS RESUELTOS del espacio vectorial curso

PROBLEMAS RESUELTOS del espacio vectorial curso PROBLEMAS RESUELTOS del espacio vectorial curso - - Consideremos el conjunto R formado por todas las parejas () de números reales Se define en R la operación interna ()( )( ) una de las operaciones eternas

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS . ESPACIO EUCLÍDEO. ISOMETRÍAS. En el espacio euclídeo usual R 4 se consideran los subespacios vectoriales y W = {(x, y, z, t R 4 : x y =, z + t = } Hallar: W 2 = L{(,, 2, 2, (,,, } a Las ecuaciones de

Más detalles

Espacios vectoriales.

Espacios vectoriales. Unidad docente de Matemáticas Matemáticas (CC. Químicas) Espacios vectoriales. Si detectas cualquier error o errata por favor, comunicaselo al profesor de la asignatura. El subíndice can significa canónica/o..

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES X =, siendo 02 M2. tal que AC = B, siendo A =

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES X =, siendo 02 M2. tal que AC = B, siendo A = MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1.- Calcular, si es posible, los productos AB y BA A = ( 1 2 4), B = 5 3 0 2.- Comprobar que la matriz X = 4 2 1 3 verifica la ecuación X 2 7X

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases... Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u

Más detalles

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo.

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. Operaciones Binarias: Observamos las siguientes operaciones: ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. ( 1 0 2

Más detalles

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4.

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4. 1 Tema 2. Sección 1. Espacio vectorial de Minkowski. Manuel Gutiérrez. Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. 29071-Málaga. Spain. Abril de 2010. En este capítulo se recordará

Más detalles

Proposición Sea V un espacio vectorial sobre K de dimensión n y B una base de V. Gl(n, K) = {A M(n n, K) A = 0}.

Proposición Sea V un espacio vectorial sobre K de dimensión n y B una base de V. Gl(n, K) = {A M(n n, K) A = 0}. Tema 6 Formas canónicas 6.1 Introducción Proposición 6.1.1. Sea V un espacio vectorial sobre K de dimensión n y B una base de V. La aplicación Φ B : End(V ) M(n n, K) definida por Φ B (f) = M B (f), es

Más detalles

Diagonalización de Matrices Cuadradas.

Diagonalización de Matrices Cuadradas. de Matrices Cuadradas. * Vector propio * Valor propio * Polinomio característico * Cómo se hallan? * Diagonalizabilidad. * Criterios * Aplicaciones Cuadernos Genius, el secreto de los mejores. Tema: de

Más detalles

Transformaciones lineales autoadjuntas (hermíticas)

Transformaciones lineales autoadjuntas (hermíticas) Transformaciones lineales autoadjuntas (hermíticas) Objetivos. Estudiar propiedades elementales de transformaciones lineales autoadjuntas. Demostrar que para toda transformación lineal autoadjunta en un

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

1 Autovalores y autovectores asociados a un endomor smo f. Diagonalización.

1 Autovalores y autovectores asociados a un endomor smo f. Diagonalización. utovalores y autovectores asociados a un endomor smo f Diagonalización Dado un endomor smo f de un espacio vectorial real V y jada una base B de V obtenemos una única matriz asociada a f respecto de la

Más detalles

EJERCICIOS RESUELTOS DE DETERMINANTES

EJERCICIOS RESUELTOS DE DETERMINANTES EJERCICIOS RESUELTOS DE DETERMINANTES 1. Calcular los siguientes determinantes: a) - 13 b) 4-3 8 1 0 3-1 -1 1 3-4 a) - 13 = (-)(-3) 4.13 = 1 2 = -37 4-3 b) 8 1 0 3-1 -1 1 3-4 = 8(-1)(-4) + 1(-1)1 + 0 0

Más detalles

Rango de una matriz. Antes de nada daremos algunas definiciones. Para ello supongamos que tenemos una matriz de orden m n: A M m n.

Rango de una matriz. Antes de nada daremos algunas definiciones. Para ello supongamos que tenemos una matriz de orden m n: A M m n. En un artículo anterior dijimos que el rango de una matriz A, ra), es el número de filas que son linealmente independientes. También se hizo uso del método de Gauss para calcular el rango de una matriz:

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES EJERCICIOS DE TEMA APLICACIONES LINEALES APLICACIONES LINEALES ) Estudiar cuáles de las siguientes aplicaciones son lineales entre los espacios vectoriales dados: x y a) f: f(x, y) = x y x b) f: x f(x)

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

Evaluaciones Matemáticas (ADE) ceformativos.com

Evaluaciones Matemáticas (ADE) ceformativos.com 1 Evaluación 1 Primer Parcial 1. En una panificadora se elaboran tres tipos de panes: hogaza, rosca y pan de cereales. Para la fabricación de los panes se utilizan dos factores productivos: harina y levadura.

Más detalles

Algunos objetivos de la signatura 2. Sean x 1,x 2,...,x n números reales distintos y sean y 1,y 2,...,y n números reales.

Algunos objetivos de la signatura 2. Sean x 1,x 2,...,x n números reales distintos y sean y 1,y 2,...,y n números reales. Algunos objetivos de la signatura 2 Ajustes por mínimos cuadrados Sean x 1,x 2,...,x n números reales distintos y sean y 1,y 2,...,y n números reales. Algunos objetivos de la signatura 2 Ajustes por mínimos

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Núcleo e Imagen de una aplicación lineal.

Núcleo e Imagen de una aplicación lineal. PRÁCTICA Nº 8 Núcleo e Imagen de una aplicación lineal. Con esta práctica se pretende utilizar el cálculo de la expresión matricial de una aplicación lineal respecto de las bases del dominio y codominio

Más detalles

Aquella que tiene nulos los elementos nos situados en la diagonal principal. Los elementos situados por encima de la diagonal principal son nulos.

Aquella que tiene nulos los elementos nos situados en la diagonal principal. Los elementos situados por encima de la diagonal principal son nulos. Álgebra lineal Matrices Rango de una matriz Orden del mayor menor complementario no nulo. Matriz regular det A Diagonal principal Elementos a ii de la matriz. Si la matriz es cuadrado son los elementos

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales.

Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales. Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales. Ejercicio 2: Determine si los siguientes conjuntos

Más detalles

A.M. Urbano, R. Cantó, B. Ricarte Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, E Valencia

A.M. Urbano, R. Cantó, B. Ricarte Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, E Valencia Factorización de Cholesky de matrices singulares A.M. Urbano, R. Cantó, B. Ricarte Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, E-460 Valencia amurbano@mat.upv.es,rcanto@mat.upv.es,bearibe@mat.upv.es,

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 12 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor, que vimos en el capítulo anterior, es el estudio de los extremos relativos de una función escalar. Aunque la analogía

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

Matemáticas. Álgebra lineal (parte final ampliada)

Matemáticas. Álgebra lineal (parte final ampliada) Master en Estadística e Investigación Operativa Matemáticas Álgebra lineal (parte final ampliada) Vera Sacristán Departament de Matemàtica Aplicada II Facultat de Matemàtiques i Estadística Universitat

Más detalles

DETERMINANTES MATRICES EQUIVALENTES POR FILAS RANGO DE UNA MATRIZ. APLICACIONES

DETERMINANTES MATRICES EQUIVALENTES POR FILAS RANGO DE UNA MATRIZ. APLICACIONES Tema 2.- DETERMINANTES DETERMINANTES MATRICES EQUIVALENTES POR FILAS RANGO DE UNA MATRIZ. APLICACIONES 1 Un poco de historia Los determinantes es uno de los temas más útiles del Álgebra Lineal, con muchas

Más detalles

Una matriz es un conjunto de elementos pertenecientes a un cuerpo ( o, normalmente). Los elementos están ordenados en filas y columnas:

Una matriz es un conjunto de elementos pertenecientes a un cuerpo ( o, normalmente). Los elementos están ordenados en filas y columnas: CAPÍTULO 1: ANÁLISIS MATRICIAL 1- Definiciones y nomenclatura. 1.1- Definición: matriz. Una matriz es un conjunto de elementos pertenecientes a un cuerpo ( o, normalmente). Los elementos están ordenados

Más detalles

1. Espacio vectorial. Subespacios vectoriales

1. Espacio vectorial. Subespacios vectoriales Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Sea k un cuerpo. 1. Espacio vectorial. Subespacios vectoriales Definición 1.1. Un k-espacio vectorial o espacio vectorial

Más detalles

1 CÓNICAS Cónicas. Estudio particular. 1 x y. 1 x y. a 00 a 01 a 02 a 10 a 11 a 12 a 20 a 21 a 22

1 CÓNICAS Cónicas. Estudio particular. 1 x y. 1 x y. a 00 a 01 a 02 a 10 a 11 a 12 a 20 a 21 a 22 CÓNICAS. CÓNICAS.. Cónicas. Estudio particular. Una cónica se dene como el lugar geométrico de los puntos del plano euclídeo que, respecto de una referencia cartesiana rectangular, satisfacen una ecuación

Más detalles

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Matrices 1 Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se

Más detalles

SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales.

SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales. SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales. A) Soluciones a las Cuestiones C-1) a) Sí, por ejemplo el eje X, formado por los vectores de la forma (λ, 0), que se identificarían con el número

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Espacio ectorial real. Es un conjunto V no acío cuyos elementos reciben el nombre de ectores dotado de dos operaciones: ª.- Una interna llamada suma que cumple las siguientes propiedades:

Más detalles

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? MATRICES Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? La multiplicación de matrices cuadradas, tiene la propiedad conmutativa?

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

Tema 6: Diagonalización de matrices

Tema 6: Diagonalización de matrices Tema 6: Diagonalización de matrices La intención en este tema es, dada una matriz cuadrada, ver si existe otra matriz semejante a ella que sea diagonal. Recordemos del Tema 4 que dos matrices cuadradas

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

Semana 14 [1/28] Matrices. 22 de julio de Matrices

Semana 14 [1/28] Matrices. 22 de julio de Matrices Semana 14 [1/28] 22 de julio de 2007 Definiciones básicas Semana 14 [2/28] Definiciones básicas Matriz Una matriz A, de m filas y n columnas con coeficientes en el cuerpo à (en este apunte à será Ê ó C)

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE E.T.S. DE INGENIERÍA INFORMÁTICA BOLETÍN DE PROBLEMAS DE ÁLGEBRA LINEAL para las titulaciones de INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN 1. Matrices y determinantes Ejercicio 1.1 Demostrar

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO 1.- PUNTOS Y VECTORES. ESPACIO AFÍN y una base de vectores de V cualquiera {,, B = u1 u2 u} A cada punto del espacio, P, le asociamos el vector OP, que tendrá unas

Más detalles

4. Aplicaciones: rango de una matriz y ecuaciones de un subespacio

4. Aplicaciones: rango de una matriz y ecuaciones de un subespacio TEMA 2 ESPACIOS VECTORIALES 35 4 Aplicaciones: rango de una matriz y ecuaciones de un subespacio Terminaremos este tema aprovechando la teoría de espacios vectoriales que hemos estudiado para obtener algunas

Más detalles

6.8. Descomposición mediante valores singulares. v 2 =

6.8. Descomposición mediante valores singulares. v 2 = 68 Descomposición mediante valores singulares Los valores singulares de una matriz m n Supongamos que A es una matriz real cualquiera Los autovalores de A T A tienen la siguiente propiedad A T Ax = λx

Más detalles

Clase 7 Herramientas de Álgebra Lineal

Clase 7 Herramientas de Álgebra Lineal Clase 7 Herramientas de Álgebra Lineal 1 Formas cuadráticas La descomposición en valores singulares 3 Normas de matrices 4 Ejercicios Dada una matriz M R n n, la función escalar x T Mx, donde x R n, es

Más detalles

Relación de problemas. Álgebra lineal.

Relación de problemas. Álgebra lineal. Relación de problemas Álgebra lineal Tema 1 Sección 1 Matrices Determinantes Sistemas lineales Matrices Ejercicio 11 Consideremos las siguientes matrices: ( 1 2 A = 1 1 ) ( 1 1 B = 0 1 ) C = 1 0 0 0 1

Más detalles

TEMA 1 Álgebra de matrices 4 sesiones. TEMA 2 Determinantes 4 sesiones. TEMA 3 Sistemas de ecuaciones 4 sesiones

TEMA 1 Álgebra de matrices 4 sesiones. TEMA 2 Determinantes 4 sesiones. TEMA 3 Sistemas de ecuaciones 4 sesiones 1.1. MATEMÁTICAS II TEMPORALIZACIÓN Y SECUENCIACIÓN: TEMA 1 Álgebra de matrices 4 sesiones TEMA 2 Determinantes 4 sesiones TEMA 3 Sistemas de ecuaciones 4 sesiones TEMA 4 Vectores en el espacio 4 sesiones

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles