GUIA TEORICA N 2 DESCRIPCIÓN DEL MOVIMIENTO. Apoyo el sistema copernicano y entre sus obras destacan Sidereus Nuntius,

Tamaño: px
Comenzar la demostración a partir de la página:

Download "GUIA TEORICA N 2 DESCRIPCIÓN DEL MOVIMIENTO. Apoyo el sistema copernicano y entre sus obras destacan Sidereus Nuntius,"

Transcripción

1 C U R S O : FÍSICA COMÚN MATERIAL N 0 GUIA TEORICA N DESCRIPCIÓN DEL MOVIMIENTO GALILEO GALILEI ( ) Físico, Maemáico y Asrónomo Ialiano. Descubrió Las Leyes de la Caída Libre, las del péndulo simple, la de la inercia y la de los movimienos relaivos. Consruyó un elescopio de refracción con el cual esudio el mundo celese. Con él comenzó la física en el senido moderno de la palabra. Apoyo el sisema copernicano y enre sus obras desacan Sidereus Nunius, Diálogo sopra due massimi sisemi del mondo, olemaico e copernicano. Acusado por el ribunal eclesiásico del Sano oficio de propagar la esis heliocénrica, fue condenado a prisión perpeua y prohibido sus libros.

2 GALILEO Y LA CINEMÁTICA Los aniguos invenaron máquinas muy ingeniosas que les ayudaban en sus rabajos, pero prácicamene no nos dejaron leyes correcas en ninguna ciencia experimenal, mienras que sus descubrimienos fueron muy numerosos en maemáica. Se ha dicho que el espíriu humano solamene iene que recogerse en sí mismo para hacer avanzar las maemáicas, mienras que la ciencia experimenal pide una marcha conraria; exige una gran acumulación de hechos y de observaciones precisas, y eso fue el gran defeco de la anigüedad. A parir de la razón sin la base sólida de la experiencia consruyeron sus eorías que como los edificios levanados sin un fondo consisene, se derrumban al menor soplo. El méodo experimenal no aparece bruscamene; resula de un esfuerzo colecivo. Si el renacimieno lierario es un regreso a la anigüedad, el renacimieno cienífico es una parida hacia el conocimieno del mundo maerial. GALILEO Galileo, en 1638 en su obra Diálogos sobre dos nuevas ciencias inició ese período. Y por primera vez, una ley en física, en paricular en cinemáica, el movimieno uniformemene acelerado, se escribe maemáicamene. Resumamos sus ideas sobre la caída de los cuerpos. Observa que si se lanza una bala horizonalmene, la gravedad que acúa vericalmene hacia abajo no podrá ni aumenar ni disminuir la velocidad horizonal y que por ano, ésa se conserva. Define la aceleración diciendo: Llamaré movimieno uniformemene acelerado a aquello que desde el comienzo confiere iguales incremenos de velocidad en iempos iguales. Esablece las ecuaciones del movimieno de los proyeciles y deduce que la rayecoria es una parábola y que el alcance es máximo para un ángulo de iro igual a 45. Se pregunaba si podemos saber mediane un experimeno si nos movemos con velocidad uniforme. Concluye sus observaciones con esa frase: La piedra que cae del másil de una nave golpea en el mismo lugar, esé quiea o en movimieno la nave. Noemos por lo ano que Galileo enunció por primera vez el principio de la relaividad para la mecánica. Einsein lo generalizó para odos los ipos de fenómenos. Es ineresane mosrar que Galileo nunca hizo una hipóesis que no pudiera comprobar, de aquí esas palabras: Cuál será la causa de la aceleración? Parece que ahora no es el momeno más propio para invesigar la causa de la aceleración de la caída de los cuerpos, respeco al cual han sido expresadas varias opiniones por varios filósofos... pero realmene no vale la pena. Por el presene, es propósio nuesro simplemene invesigar y demosrar siempre que sea posible, algunas de las propiedades del movimieno acelerado cualquiera que sea la causa del movimieno. Realmene fue Galileo el primero que analizó deenidamene cieros fenómenos, que aplicó inegralmene el méodo experimenal, que empleó las funciones maemáicas en las ciencias y que publicó sus invesigaciones; es por eso que se le conoce como el padre de la física.

3 1. DESCRIPCIÓN GENERAL La cinemáica esudia el movimieno prescindiendo de las causas que lo producen y de la nauraleza del cuerpo que se mueve, haciendo inervenir únicamene el ESPACIO y el TIEMPO como magniudes fundamenales. Para la descripción de los movimienos se hace absracción de las dimensiones de los cuerpos que se mueven, denominados PARTÍCULAS, PUNTOS MATERIALES o, simplemene, MOVILES. Un cuerpo se mueve cuando en el ranscurso del iempo cambia de POSICIÓN respeco de algún puno fijo considerado como SISTEMA DE REFERENCIA. Para efecuar mediciones elegimos, ligado a ese sisema de referencia, un SISTEMA DE COORDENADAS apropiado. El problema surge de la elección de ejes coordenados que esén en reposo absoluo, a los cuales referir odos los movimienos. Eso, en realidad, es imposible, ya que no disponemos de ningún puno de referencia que sea inmóvil. Pero para nuesro esudio consideraremos ejes coordenados ligados a la Tierra, porque, generalmene esamos acosumbrados a considerar el movimieno de los cuerpos suponiendo la Tierra en reposo. Es claro, enonces, que reposo y movimieno son concepos relaivos.. RAPIDEZ MEDIA Llamaremos TRAYECTORIA del movimieno a la curva que describe el cuerpo. En los casos más sencillos esa rayecoria es recilínea pero puede adopar cualquier forma regular o irregular. Supongamos una parícula que se mueva sobre una rayecoria cualquiera, como muesra la figura, enre dos punos fijos A Y B. B A Llamaremos d a la medida de la longiud del CAMINO RECORRIDO por la parícula enre A y B, y al iempo empleado en recorrer esa disancia, sin omar en cuena posibles irregularidades durane el rayeco. Se define RAPIDEZ MEDIA: d Vm = ( 1 ) en el S.I. se mide en m s 3

4 3. RAPIDEZ INSTANTANEA La única forma de conocer el movimieno de un cuerpo en cada insane, es medir su rapidez media para disancias recorridas muy pequeñas durane inervalos de iempo ambién muy pequeños. Se define RAPIDEZ INSTANTANEA. lím d V = 0 ( ) El procedimieno maemáico para obener el límie de un cuociene como ese, incluye la base del Cálculo Diferencial (Maeria ajena a ese curso). Sin embargo veremos, más adelane, procedimienos a nuesro alcance que permian calcular la rapidez insanánea. Si la rapidez de la parícula es consane en el iempo. V m = V 4. MOVIMIENTO RECTILINEO Si una parícula se mueve sobre una rayecoria recilínea, diremos que iene MOVIMIENTO RECTILINEO. Definiremos la POSICIÓN de una parícula P (lugar que ocupa en el espacio, sobre la rayecoria, en un insane dado) ubicando un sisema de coordenadas, por ejemplo el eje, sobre la rayecoria, especificando su ORIGEN O y un SENTIDO POSITIVO sobre el eje. Diremos que el vecor que une el origen O a la parícula es el VECTOR POSICIÓN O P o P o Si el cuerpo se mueve sobre la reca, su abscisa dependerá del iempo. Eligiendo, arbirariamene el insane = O y con ayuda de un reloj, se puede asignar a cada posición de la parícula un iempo. Maemáicamene diremos que el vecor posición es una función del iempo y escribimos, = ( ), esa ecuación, ambién recibe el nombre de ITINERARIO. 4

5 Si la parícula se mueve desde la posición inicial o en el insane o, hasa la posición en el insane, diremos que el VECTOR DESPLAZAMIENTO es: = - o y que se realizó en el inervalo de iempo = - o La unidad de posición o desplazamieno en el S.I. es el mero. Nóese que el desplazamieno es independiene del origen de coordenadas. 5. VELOCIDAD MEDIA Se define VECTOR VELOCIDAD MEDIA de la parícula como el cuociene enre el vecor desplazamieno y el inervalo de iempo correspondiene y la anoamos. - V mx = o = ( 3 ) - o De la definición se desprende que la velocidad media es un vecor que iene siempre la misma dirección y senido que el desplazamieno, o sea, es un vecor en la dirección de la rayecoria. Una velocidad posiiva indica que el cuerpo se desplaza en el senido posiivo del eje coordenado. Una velocidad negaiva indicará lo conrario. Obsérvese que el módulo de la velocidad media es siempre menor o igual que la rapidez media. V mx Vm 6. VELOCIDAD INSTANTANEA La velocidad media no describe el movimieno en cada insane, por lo ano no es adecuada para una descripción precisa del movimieno. Podemos definir el VECTOR VELOCIDAD INSTANTANEA o, simplemene, VELOCIDAD en un insane dado, como la razón enre el desplazamieno y el inervalo de iempo correspondiene, cuando ese se aproxima a cero, es decir: V x = lím ( 4 ) 0 5

6 La velocidad es una función del iempo. V x = V x ( ) Obsérvese que el módulo de la velocidad corresponde a la rapidez insanánea de la parícula. V x = V 7. ACELERACIÓN Cuando la velocidad de una parícula cambia en el iempo (en el movimieno recilíneo sólo en amaño y/o senido) diremos que iene una ACELERACION, que es una medida de ese cambio, es decir, la aceleración es la rapidez con que cambia la VELOCIDAD INSTANTANEA de la parícula. ACELERACIÓN MEDIA Si la velocidad de una parícula varía de V ox ACELERACION MEDIA. en el insane o hasa un valor V x en el iempo, se define V x - V ox V a mx = = ( 5 ) - o El vecor a mx rayecoria. iene siempre la misma dirección y senido que el vecor V x, o sea, iene la dirección de la Cuando la parícula se dirige en el senido posiivo del eje, una aceleración posiiva indica que la velocidad esá creciendo, mienras que una aceleración negaiva muesra que la velocidad esá disminuyendo. Pero, cuando la parícula se dirige en el senido negaivo del eje, una aceleración posiiva nos dice que la velocidad esá disminuyendo, mienras que una aceleración negaiva muesra una velocidad cuyo amaño aumena. ACELERACIÓN INSTANTANEA Se define VECTOR ACELERACIÓN INSTANTANEA, o simplemene, ACELERACION. a = lím V x ( 6 ) O La unidad de aceleración en el S.I. es m s 6

7 El vecor aceleración es una función del iempo, lo que escribimos a x = a x ( ) Las ecuaciones = ( ) ; V x = V x ( ) y a x = a x ( ) se denominan ECUACIONES CINEMÁTICAS DEL MOVIMIENTO movimieno. ya que deerminan compleamene cualquier Nóese que esas ecuaciones vecoriales se ransforman rápidamene en ecuaciones ESCALARES para el movimieno recilíneo ya que odos los vecores posición, velocidad y aceleración ienen la dirección de la rayecoria y el signo + o - que pueden ener, nos indicará el senido de cada vecor. Luego escribimos las ecuaciones cinemáicas del movimieno: = ( ) ; V x = V x ( ) ; a x = a x ( ) 8. MOVIMIENTO RECTILÍNEO UNIFORME (M.R.U.) A odo movimieno con RAPIDEZ CONSTANTE se le llama UNIFORME. En ese caso, como la rayecoria es recilínea la VELOCIDAD es CONSTANTE y la ACELERACIÓN NULA. En esas condiciones los valores medio e insanáneo de la velocidad son iguales y podemos escribir: Vx = - o - o Consideraremos como CONDICIÓN INICIAL que en el insane o = O, la posición era o ó Vx = - o = V x + o ( 7 ) En resumen, las ecuaciones cinemáicas del M.R.U. son a x = O V x = CTE x = V x + o 7

8 Es conveniene dibujar las gráficas represenadas por esas ecuaciones. Vx = CTE, es una reca paralela al eje V x O = V x + o es una reca que cora al eje en o y cuya pendiene es V x o O 9. MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO (M.R.U.A) Diremos que un movimieno recilíneo es UNIFORMEMENTE ACELERADO cuando su aceleración a x es CONSTANTE en el iempo, es decir, los valores medio e insanáneo de la aceleración son iguales, luego podemos escribir. a x = V x - V ox - o Tomaremos como primera condición inicial que en el insane o = O, la velocidad inicial sea V ox, así. a x = V x - V ox ó ( 1 ) V x = a x + V ox Cuando la velocidad cambia uniformemene su valor medio se puede calcular pero V mx = 1 ( V x + V ox ) V mx = - o - o 8

9 Supondremos, como segunda condición inicial, que en el insane o = O, la posición inicial era o, enonces - o V x + V ox = ó ( ) = V x + V ox + o Las ecuaciones ( 1 ) y ( ) son suficienes para obener TODA la información acerca del M.R.U.A., sin embargo, es úil agregar oras dos ecuaciones. Reemplazando ( 1 ) en ( ) se obiene = 1 a x + V ox + o Si despejamos el iempo de la ecuación ( 1 ) y lo reemplazamos en ( ), resula a ( - o ) = V x - Vox En resumen, las ecuaciones cinemáicas del M.R.U.A son a x = CTE V x = a x + V ox = Vx + Vox + o = 1 a x + V ox + o a ( - o ) = V x - Vox Las gráficas represenadas por esas ecuaciones son a x = CTE, una reca paralela al eje. a x O 9

10 V x = a x + V ox, una reca que cora al eje V x en V ox y cuya pendiene es a x V x V ox O = 1 a x + V ox + o, una parábola O 10. ESTUDIO GRÁFICO DE LOS MOVIMIENTOS RECTILINEOS Por medios algebraicos, obuvimos las ecuaciones cinemáicas de DOS movimienos recilíneos. A coninuación, mediane el análisis gráfico de los diagramas posición iempo, velocidad iempo y aceleración iempo, esudiaremos CUALQUIER movimieno recilíneo. POSICIÓN TIEMPO (ITINERARIO) La figura represena la posición, en función del iempo, del movimieno recilíneo de un cuerpo. B o A B B o 0 Cuando el cuerpo se mueve de o hasa, su velocidad media es: - o V mx = = - o en el gráfico esa expresión represena la PENDIENTE DE LA RECTA SECANTE que une los punos A y B. 10

11 Si el cuerpo se mueve de A hasa B o B, los desplazamienos ( ) y ( ), y los correspondienes inervalos de iempo ( )` y ( ) son cada vez más pequeños. Las velocidades medias ( )` y ( )``, pendienes de las recas AB y AB se acercaran en esos sucesivos pasos a la definición de velocidad insanánea. En el límie, cuando B se confunde con A, la reca AB se ransforma en TANGENTE a la curva en el puno A y la velocidad insanánea será la pendiene de esa angene en el puno A. A B`` RAPIDEZ TIEMPO La figura represena la gráfica de la rapidez, en función del iempo, de un movimieno recilíneo. V Q P Q`` Q` 0 Si seguimos el mismo razonamieno que para el gráfico, podemos concluir que la aceleración media queda represenada por la pendiene de la reca secane que une los punos del gráfico enre los que se calcula (PQ, por ejemplo). La aceleración insanánea corresponde a la pendiene de la reca angene a la curva en el insane requerido. 11

12 El gráfico V x - nos permie obener ora información. Consideremos el recángulo achurado de la figura. V Q V P 0 o + 1 El AREA de ese recángulo es: A = V x Nóese que, si se aproxima a cero, el área del recángulo se confunde con el área deerminada por la curva, las ordenadas de y + y el eje Como Vx = lím O = V x = A cuando O Lo que nos indica que el área del recángulo es igual al desplazamieno del cuerpo (cuando O) Si ahora dividimos oda el AREA BAJO LA CURVA y limiada por las ordenadas de o y 1, y el eje en una infinidad de pequeños recángulos semejanes al anerior la suma de odas sus áreas será igual al desplazamieno oal enre o y 1. ACELERACIÓN - TIEMPO Si se sigue el mismo razonamieno que en la segunda pare del gráfico V x -, concluimos que en un gráfico a x - el AREA BAJO LA CURVA mide el cambio de velocidad V x. 1

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia Magniudes fundamenales Son las magniudes que se pueden medir direcamene 1.CINEMÁTICA Definiciones Reposo Se define como el no cambiar de posición respeco a un sisema de referencia. No hay ningún cuerpo

Más detalles

MOVIMIENTO RECTILÍNEO

MOVIMIENTO RECTILÍNEO Transparencia Nº 1. CINEMÁTICA. MOVIMIENTO QUÉ ES EL MOVIMIENTO? Cambio de posición de un móvil con el iempo. TIPOS DE MOVIMIENTO Según su rayecoria Todo movimieno es RELATIVO Lo rápido del cambio lo indoca

Más detalles

TEMA 2: CINETICA DE LA TRASLACIÓN

TEMA 2: CINETICA DE LA TRASLACIÓN TEMA 2: CINETICA DE LA TRASLACIÓN 1.1. Inroducción. Para ener caracerizado un movimieno mecánico cualquiera, hay que esablecer primero respeco a que cuerpo (s) se va a considerar dicho movimieno. Ese cuerpo

Más detalles

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce.

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce. CINEMÁTICA La Cinemáica es la pare de la Física que esudia los moimienos sin preocuparse de la causa que los produce. SISTEMA DE REFERENCIA, POSICIÓN Y TRAYECTORIA Un cuerpo esá en moimieno cuando su posición

Más detalles

FÍSICA Y QUÍMICA 1º BACHILLERATO

FÍSICA Y QUÍMICA 1º BACHILLERATO FÍSICA Y QUÍMICA 1º BACHILLERATO BLOQUE I: MECÁNICA Unidad 1: Cinemáica 1. INTRODUCCIÓN (pp. 8-3) 1.1. Definición de movimieno. Relaividad del movimieno Un cuerpo esá en movimieno cuando cambia de posición

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración CONTENIDO Sisemas de coordenadas Ecuación de la rayecoria Vecores posición, velocidad y aceleración Componenes inrínsecas de la aceleración Movimieno circular Sisemas de referencia Movimieno relaivo: ransformaciones

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal Física General I Paralelos 5 y. Profesor Rodrigoergara R ) Movimieno Recilíneo Horizonal ) Concepos basicos Definir disancia recorrida, posición y cambio de posición. Definir vecores posicion, velocidad

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. La velocidad de una parícula viene dada por v( ) 6 +, con en segundos y v en m/s. a) Hacer un gráfico de v() y hallar el área limiada por

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I INSTRUCTIVO PRÁCTICA Nº 5. MOVIMIENTO RECTILINEO Preparado por. Ing. Ronny J. Chirinos S., MSc prácica

Más detalles

TIPOS Y ESTUDIO DE LOS PRINCIPALES MOVIMIENTOS (CINEMÁTICA).

TIPOS Y ESTUDIO DE LOS PRINCIPALES MOVIMIENTOS (CINEMÁTICA). 1 TIPOS Y ESTUDIO DE LOS PRINCIPALES MOVIMIENTOS (CINEMÁTICA). Movimieno recilíneo uniforme. 1.- Un objeo se encuenra en el puno de coordenadas (4,) en unidades del SI moviéndose en el senido posiivo del

Más detalles

Sistemas de coordenadas en movimiento relativo

Sistemas de coordenadas en movimiento relativo Capíulo 4 Sisemas de coordenadas en movimieno relaivo 4.1 Sisemas de coordenadas acelerados y Principio de Equivalencia Para complear la descripción de los sisemas de coordenadas no inerciales, consideremos

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales?

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales? Razón de cambio de una función cuadráica Ejemplo.5 Un puno se desplaza en el plano describiendo el lugar geomérico correspondiene a la función f ( x x 6x 3. Obén la razón promedio de cambio. Considera

Más detalles

Unidad Temática IX. Cinemática del Cuerpo Rígido

Unidad Temática IX. Cinemática del Cuerpo Rígido 0//06 Unidad Temáica IX Cinemáica del Cuerpo ígido Conenido: Traslación y roación de un cuerpo rígido. Medidas angulares. Coordenadas angulares, velocidad y aceleración angulares. Cinemáica de la roación

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

03) Rapidez de Cambio. 0302) Rapidez de Cambio

03) Rapidez de Cambio. 0302) Rapidez de Cambio Página 3) Rapidez de Cambio 3) Rapidez de Cambio Desarrollado por el Profesor Rodrigo Vergara Rojas Ocubre 7 Ocubre 7 Página A) Rapidez media de cambio Considere una canidad física (), como la mosrada

Más detalles

2.1. ASPECTOS GENERALES DE LA DINÁMICA (continuación)

2.1. ASPECTOS GENERALES DE LA DINÁMICA (continuación) .1. ASPECTOS GENERALES DE LA DINÁMICA (coninuación).1.3. Sobre un plano inclinado (ángulo de inclinación alfa), esá siuado un cuerpo de masa M. Suponiendo despreciable el rozamieno enre el cuerpo y el

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyeco PMME - Curso 007 Insiuo de Física Faculad de Ineniería UdelaR TITULO AUTORES MAQUINA DE ATWOOD EPERIMENTAL Maximiliano Bellas, Erneso Pasarisa INTRODUCCIÓN Geore Awood (745-807),

Más detalles

Tema 2: Cinemática de la Partícula

Tema 2: Cinemática de la Partícula Física I-Grupo 3 (Curso 013/14) Tema : Cinemáica de la Parícula Grado en Ingeniería Diseño Indusrial y Des. Prod. Doble Gra. en Ing. Diseño Ind. y D.P e Ing. Mecánica Escuela Poliécnica Superior Universidad

Más detalles

TEMA 5 TRABAJO Y ENERÍA MECÁNICA. En el presente tema trataremos exclusivamente de la energía mecánica.

TEMA 5 TRABAJO Y ENERÍA MECÁNICA. En el presente tema trataremos exclusivamente de la energía mecánica. TEMA 5 TRABAJO Y ENERÍA MECÁNICA ENERGÍA Se denomina energía a la capacidad que ienen los cuerpos para producir ransformaciones, como, por ejemplo, realizar un rabajo. Hay múliples formas de energía: Energía

Más detalles

Mov. Rectilíneo Uniforme

Mov. Rectilíneo Uniforme COLEGIO LAS AMERICAS IED. Hombres y mujeres líderes para la sociedad ÁREA DE CIENCIAS NATURALES: FÍSICA Guía de movimieno Recilíneo uniforme NOMBRE: CURSO: FECHA. Cada esudiane debe ener en su carpea de

Más detalles

PONENCIA: DEMOSTRACIÓN, SIN CÁLCULO DIFERENCIAL, DE LAS ECUACIONES DE LA POSICIÓN EN EL MOVIMIENTO PARABÓLICO. Introducción

PONENCIA: DEMOSTRACIÓN, SIN CÁLCULO DIFERENCIAL, DE LAS ECUACIONES DE LA POSICIÓN EN EL MOVIMIENTO PARABÓLICO. Introducción PONENCIA: DEMOSTRACIÓN, SIN CÁLCULO DIFERENCIAL, DE LAS ECUACIONES DE LA POSICIÓN EN EL MOVIMIENTO PARABÓLICO Presenada por: Prof. Yuri Posadas Velázquez Seminario LAC. 24 de ocubre de 2013 Inroducción

Más detalles

DPTO. DE ÁREA DE FÍSICA

DPTO. DE ÁREA DE FÍSICA UNIVERSIDD UTÓNOM CHPINGO DPTO. DE PREPRTORI GRÍCOL ÁRE DE FÍSIC Movimieno Recilíneo Uniforme Guillermo ecerra Córdova E-mail: gllrmbecerra@yahoo.com TEORÍ La Cinemáica es la ciencia de la Mecánica que

Más detalles

TRABAJO Y ENERGIA: IMPULSO

TRABAJO Y ENERGIA: IMPULSO TRABAJO Y ENERGIA: IMPULSO Un paquee de 10 kg cae de una rampa con v = 3 m/s a una carrea de 25 kg en reposo, pudiendo ésa rodar libremene. Deerminar: a) la velocidad final de la carrea, b) el impulso

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Energía I: trabajo y potencia mecánica

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Energía I: trabajo y potencia mecánica SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Energía I: rabajo y poencia mecánica SGUICES020CB32-A16V1 Solucionario guía Energía I: rabajo y poencia mecánica Íem Alernaiva Habilidad 1 D Comprensión 2 C Aplicación

Más detalles

Funciones trigonométricas

Funciones trigonométricas 0 Funciones rigonoméricas Tenemos en el plano R² la circunferencia C de radio con cenro (0,0. En ella disinguimos el puno (,0, que es el puno de inersección dec con el semieje de las x posiivas. Si pariendo

Más detalles

CINEMÁTICA. 2/34 Pon dos ejemplos de movimientos con trayectoria rectilínea y de movimientos con trayectoria circular.

CINEMÁTICA. 2/34 Pon dos ejemplos de movimientos con trayectoria rectilínea y de movimientos con trayectoria circular. CINEMÁTICA /34 Un ren pare de una esación. Una niña senada en su inerior lanza hacia arria una peloa y la recoge al caer. Diuja la rayecoria de la peloa al como la ven la niña y la jefe de esación siuada

Más detalles

Capítulo 2 Cinemática

Capítulo 2 Cinemática Capíulo 2 Cinemáica 32 Problemas de selección - página 29 (soluciones en la página 104) 17 Problemas de desarrollo - página 40 (soluciones en la página 105) 27 2.A PROBLEMAS DE SELECCIÓN Sección 2.A Problemas

Más detalles

TEMA 1: Conceptos fundamentales

TEMA 1: Conceptos fundamentales Esquema: TEMA 1: Concepos fundamenales TEMA 1: Concepos fundamenales...1 1.- Inroducción...1 2.- Trabajo...2 2.1.- Trabajo realizado por una fuerza variable o no consane...2 2.2.- epresenación gráfica

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

GUIA 1 La culpa la tiene Galileo!!! Cuáles son los conceptos asociados a movimiento?

GUIA 1 La culpa la tiene Galileo!!! Cuáles son los conceptos asociados a movimiento? GUIA 1 La culpa la tiene Galileo!!! Definitivamente Galileo es culpable, es fue el primero que analizó detenidamente ciertos fenómenos, fue el que aplicó integralmente el método experimental, que empleó

Más detalles

Unidad II. Cinemática

Unidad II. Cinemática Unidad II. Cinemáica Conenido Definiciones Diagramas de moimieno Marco de referencia Magniudes de la cinemáica Clasificación del moimieno Moimieno recilíneo uniforme Moimieno uniformemene ariado Moimieno

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

Laboratorio N 3, Funciones vectoriales, Curvas. Introducción.

Laboratorio N 3, Funciones vectoriales, Curvas. Introducción. Universidad Diego Porales Faculad de Ingeniería Insiuo de Ciencias Básicas Asignaura: Cálculo III Laboraorio N, Funciones vecoriales, Curvas Inroducción En la primera pare de ese laboraorio vamos a esudiar

Más detalles

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA)

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA) CINEMÁTICA PUNTO MATERIAL O PARTÍCULA: OBJETO DE DIMENSIONES DESPRECIABLES FRENTE A LAS DISTANCIAS ENTRE ÉL Y LOS OBJETOS CON LOS QUE INTERACCIONA. SISTEMA DE REFERENCIA: CONUNTO BIEN DEFINIDO QUE, EN

Más detalles

FÍSICA - LAB. 2. x = x ( t ) v = v ( t ) a = a ( t )

FÍSICA - LAB. 2. x = x ( t ) v = v ( t ) a = a ( t ) FÍSICA - LAB. CINEMÁTICA Y DINÁMICA LINEAL NOTA IMPORTANTE: para la realización de ese laboraorio cada alumno deberá raer calculadora y dos hojas de papel milimerado, las que al concluir el laboraorio

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

ANEXO A LA PRÁCTICA CARGA Y DESCARGA DE UN CAPACITOR EN UN CIRCUITO RC

ANEXO A LA PRÁCTICA CARGA Y DESCARGA DE UN CAPACITOR EN UN CIRCUITO RC ANEXO A LA PRÁTIA ARGA Y DESARGA DE UN APAITOR EN UN IUITO Inroducción. En esa prácica se esudia el comporamieno de circuios. En una primera pare se analiza el fenómeno de carga y en la segunda pare la

Más detalles

CINEMATICA. que interpretemos erróneamente cuándo un cuerpo se acelera

CINEMATICA. que interpretemos erróneamente cuándo un cuerpo se acelera CINEMTIC Inroducción Cinemáica es la pare de la física que esudia el movimieno de los cuerpos, aunque sin ineresarse por las causas que originan dicho movimieno. Un esudio de las causas que lo originan

Más detalles

Las señales pueden ser también, señales continuas o señales alternas.

Las señales pueden ser también, señales continuas o señales alternas. INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de

Más detalles

Profesor: Héctor Palma Aguayo Liceo: Miguel de Cervantes y Saavedra Apuntes de Física para 2 Medio 2014

Profesor: Héctor Palma Aguayo Liceo: Miguel de Cervantes y Saavedra Apuntes de Física para 2 Medio 2014 Liceo: Miguel de Cervanes y Saavedra Apunes de Física para Medio 04 INTRODUCCIÓN GENERAL. Es imporane decir que nuesra capacidad como ser humano, esá limiado por nuesros senidos y nuesra capacidad de absracción,

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Acividades del final de la unidad ACTIVIDADES DEL FINAL DE LA UNIDAD. Dibuja las gráficas x- y v- de los movimienos que corresponden a las siguienes ecuaciones: a) x = +. b) x = 8. c) x = +. Calcula la

Más detalles

ESQUEMA DE DESARROLLO

ESQUEMA DE DESARROLLO Movimieno oscilaorio. Inroducción ESQUEM DE DESRROLLO 1.- Inroducción..- Cinemáica del movimieno armónico simple. 3.- Dinámica del movimieno armónico simple. 4.- Energía de un oscilador armónico. 5.- Ejemplos

Más detalles

CINEMÁTICA Y DINÁMICA DE UNA PARTÍCULA

CINEMÁTICA Y DINÁMICA DE UNA PARTÍCULA Inroducción a la Física Experimenal Universidad de La Laguna CINEMÁTIC Y DINÁMIC DE UN PRTÍCUL Para la realización de esa prácica el alumno deberá venir al laboraorio proviso con hojas de papel milimerado

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

Lección 13 Introducción a los sistemas no lineales de ecuaciones diferenciales

Lección 13 Introducción a los sistemas no lineales de ecuaciones diferenciales Lección Inroducción a los sisemas no lineales de ecuaciones diferenciales Un modelo de Gierer-Meinhard para ecuaciones de ipo Acivador-Inhibidor Modelo G-M: con = [A], = [B]. k = k = k = k 4 = A B A +

Más detalles

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN Problemas de Maemáicas º Bachillerao OPTIMIZACIÓN En ese documeno se eplica brevemene cómo se resuelven los problemas de opimización, y se ilusra mediane un ejemplo. Como sabéis, los problemas de opimización

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Modelo de eamen Junio MODELO JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN. (Punuación máima: punos) Se dice que una mari cuadrada es orogonal si T I: Noa: La noación T significa mari ranspuesa de.

Más detalles

IES Francisco Giner de los Ríos 2016/2017 Física y Química 1º Bachillerato nocturno (FQ NB1B-Noct) UD 8. El movimiento

IES Francisco Giner de los Ríos 2016/2017 Física y Química 1º Bachillerato nocturno (FQ NB1B-Noct) UD 8. El movimiento UD 8. El movimiento 1- Sistemas de referencia. 2- Magnitudes vectoriales. 3- Interpretaciones gráficas de los movimientos. 4- Componentes intrínsecas de la aceleración. 1- Sistemas de referencia: 1.1.

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

EL CERTAMEN TIENE 5 PÁGINAS CON 20 PREGUNTAS EN TOTAL.

EL CERTAMEN TIENE 5 PÁGINAS CON 20 PREGUNTAS EN TOTAL. FÍSICA 1 CETAEN Nº 3 de Noviembre de 9 A. ATENO A. ATENO NOBE OL US - EL CETAEN TIENE 5 ÁGINAS CON EGUNTAS EN TOTAL. TIEO: 9 INUTOS SIN CALCULADOA SIN TELÉFONO CELULA SIN EODUCTO DE ÚSICA COECTA: 5 UNTOS

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Cenro Educaivo de Nivel Secundario Nº 45 Anexo Universidad Tecnológica Nacional Dirección de Capaciación No Docene Dirección General de Culura y Educación Provincia de Buenos Aires FÍSICA Segundo Año Unidad

Más detalles

Material sobre Diagramas de Fase

Material sobre Diagramas de Fase Maerial sobre Diagramas de Fase Ese maerial esá dedicado a los esudianes de Conrol 1, para inroducirse a los diagramas de fase uilizados para el Análisis de Esabilidad de los punos de equilibrio del sisema

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA CICLO BÁSICO DEPARTAMENTO DE QUÍMICA CÁTEDRA QUIMICA II CINETICA MARACAIBO, FEBRERO DE 2015

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA CICLO BÁSICO DEPARTAMENTO DE QUÍMICA CÁTEDRA QUIMICA II CINETICA MARACAIBO, FEBRERO DE 2015 UNIVERSIDD DEL ZULI FCULTD DE INGENIERÍ CICLO BÁSICO DEPRTMENTO DE QUÍMIC CÁTEDR QUIMIC II CINETIC MRCIBO, FEBRERO DE 205 Profesora: Ing. Neida Núñez CINÉTIC Es una pare de la química que se encarga de

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

Magnitudes y Medidas MAGNITUDES Y MEDIDAS

Magnitudes y Medidas MAGNITUDES Y MEDIDAS Magniudes y Medidas MAGNITUDES Y MEDIDAS 1.- a Física: Es una ciencia fundamenal dedicada a la compresión de los fenómenos naurales que ocurren en nuesro universo. Es una ciencia que se basa en observaciones

Más detalles

Física 2º Bach. Tema: Ondas 27/11/09

Física 2º Bach. Tema: Ondas 27/11/09 Física º Bach. Tema: Ondas 7/11/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 PUNTOS: 1 / APARTADO] 1. Una onda ransversal se propaga en el senido negaivo de las X con una velocidad de 5,00

Más detalles

Movimiento rectilíneo uniformemente variado (parte 1)

Movimiento rectilíneo uniformemente variado (parte 1) Moimieno recilíneo uniformemene ariado Moimieno recilíneo uniformemene ariado Empecemos! A diferencia del MRU cuya elocidad es consane, en nuesra ida diaria obseramos oro ipo de moimieno en el que hay

Más detalles

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos.

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. 4. Curvas paramerizadas: ejemplos. La descripción más direca y flexible de una curva es una represenación paramérica. En lugar de considerar una de las coordenadas

Más detalles

i = dq dt La relación entre la diferencia de potencial de las armaduras del condensador y su capacidad es V a V b =V ab = q C V c =V bc

i = dq dt La relación entre la diferencia de potencial de las armaduras del condensador y su capacidad es V a V b =V ab = q C V c =V bc aleos Física para iencias e ngeniería APÍTUL 1.09-2 UT 1 1.09 2.1 arga de un condensador a ravés de una resisencia La figura muesra un condensador descargado de capacidad, en un circuio formado por una

Más detalles

Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 8

Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 8 INSTITUTO POLITÉCNICO NACIONAL Cenro De Esudios Cieníficos Y Tecnológicos I Wilfrido Massieu LABORATORIO DE FÍSICA I ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 8 I. NOMBRE: MOVIMIENTOS RECTILÍNEO

Más detalles

1. Magnitudes características del movimiento: trayectoria, posición, desplazamiento, espacio recorrido, velocidad y aceleración.

1. Magnitudes características del movimiento: trayectoria, posición, desplazamiento, espacio recorrido, velocidad y aceleración. BLOQUE 2. Fuerzas y movimientos. Tema 2: Características generales del movimiento 1. Magnitudes características del movimiento: trayectoria, posición, desplazamiento, espacio recorrido, velocidad y aceleración.

Más detalles

Actividades de recuperación

Actividades de recuperación Acividades de recuperación.- Dados los vecores a y b de la figura. Calcula: a) a + b ; b) a b + c ; c) a ; d) a b..- Dados los punos A(3, -), B(4, 3) y C(5, -3), se pide: a) Hallar las coordenadas de los

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

CINEMÁTICA ESTUDIO DEL MOVIMIENTO DE LOS CUERPOS 1.- Movimiento y desplazamiento (Conceptos previos)

CINEMÁTICA ESTUDIO DEL MOVIMIENTO DE LOS CUERPOS 1.- Movimiento y desplazamiento (Conceptos previos) CINEMÁTICA ESTUDIO DEL MOVIMIENTO DE LOS CUERPOS 1.- Movimiento y desplazamiento (Conceptos previos) Para poder definir el movimiento, se necesitan tres factores: - El SISTEMA DE REFERENCIA es el punto

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

Capítulo 11A Movimiento Angular SAI JORGE

Capítulo 11A Movimiento Angular SAI JORGE Capíulo 11A Movimieno Angular SAI JOGE 01 Las TUBINAS DE VIENTO como ésas pueden generar energía significaiva en una forma que es ambienalmene amisosa y renovable. Los concepos de aceleración roacional,

Más detalles

Facultad de Ciencias Exactas. UNLP Página 1

Facultad de Ciencias Exactas. UNLP Página 1 ANÁLISIS MATEMÁTICO I. CIBEX-FÍSICA MÉDICA. Primer cuarimesre 0 UNIDAD I. GUÍA FUNCIONES. DOMINIO. GRÁFICA Comenzaremos nuesro curso repasando el concepo de función. Las funciones represenan el principal

Más detalles

M O D E L O S D E I N V E N T A R I O

M O D E L O S D E I N V E N T A R I O nvesigación Operaiva Faculad de iencias Exacas - UNPBA M O E L O E N V E N T A O El objeivo de la eoría de modelos de invenario es deerminar las reglas que pueden uilizar los encargados de gesión para

Más detalles

Percusiones. Mecánica II Tema 8. Manuel Ruiz Delgado. Escuela Técnica Superior de Ingenieros Aeronáuticos Universidad Politécnica de Madrid

Percusiones. Mecánica II Tema 8. Manuel Ruiz Delgado. Escuela Técnica Superior de Ingenieros Aeronáuticos Universidad Politécnica de Madrid Percusiones p. 1/16 Percusiones Mecánica II Tema 8 Manuel Ruiz Delgado Escuela Técnica Superior de Ingenieros Aeronáuicos Universidad Poliécnica de Madrid Percusiones Percusiones p. 2/16 Movimienos impulsivos

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos.

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. Física 1º bachillerato Cinemática 1 CINEMÁTICA La cinemática es

Más detalles

Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y

Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y CINEMÁTICA CINEMÁTICA (MRU) CONCEPTO DE CINEMÁTICA Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y de

Más detalles

Elección 0 Altivar 71

Elección 0 Altivar 71 Elección de velocidad Alivar 7 Opciones: módulos y resisencias de frenado Deerminación del módulo y de la resisencia de frenado El cálculo de las diferenes poencias de frenado permie deerminar el módulo

Más detalles

Prof. Jorge Rojo Carrascosa CINEMÁTICA

Prof. Jorge Rojo Carrascosa CINEMÁTICA CINEMÁTICA La cinemática estudia el movimiento de los cuerpos sin tener en cuenta las causas que los producen. Por tanto, tan sólo se ocupa de los aspectos externos como son el desplazamiento, el espacio

Más detalles

1-Características generales del movimiento

1-Características generales del movimiento 1-Caracerísicas generales del movimieno La pare de la física que se encarga de esudiar los movimienos de los cuerpos se llama Cinemáica. 1.1-Sisema de referencia, posición y rayecoria. Decimos que un cuerpo

Más detalles

8 Introducción al estudio del movimiento

8 Introducción al estudio del movimiento Inroducción al esudio del movimieno - 8 Inroducción al esudio del movimieno. Observa, algo se mueve Sisema de referencia SR Los sisemas de referencia se emplean para describir la posición y el movimieno

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyeco PMME - Curso 8 Insiuo de Física Faculad de Ineniería UdelaR CÓMO GANAR UN PARTIDO DE FÚTBOL SABIENDO FÍSICA Nahuel Barrios, Juan Pablo Gadea, Valenina Groposo, Luciana Marínez. INTRODUCCIÓN

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMEMTO DE FISICA Y MATEMÁTICA NUCLEO LOS PEROZO UNIDAD CURRICULAR:

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMEMTO DE FISICA Y MATEMÁTICA NUCLEO LOS PEROZO UNIDAD CURRICULAR: UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMEMTO DE FISICA Y MATEMÁTICA NUCLEO LOS PEROZO UNIDAD CURRICULAR: FISICA GENERAL Profa. Melissa Mora Santa Ana de Coro,

Más detalles

Ecuaciones de Primer Orden e Intervalo Maximal

Ecuaciones de Primer Orden e Intervalo Maximal 2 Ecuaciones de Primer Orden e Inervalo Maximal 2.1 Algunos Méodos de Resolución En general, es muy difícil resolver ecuaciones diferenciales de primer orden. Pero hay cieros ipos canónicos de ésas para

Más detalles

DERIVADAS INTRODUCCIÓN 1. MEDIDA DEL CRECIMIENTO DE UNA FUNCIÓN 1.1. TASA DE VARIACIÓN MEDIA

DERIVADAS INTRODUCCIÓN 1. MEDIDA DEL CRECIMIENTO DE UNA FUNCIÓN 1.1. TASA DE VARIACIÓN MEDIA INTRODUCCIÓN DERIVADAS La observación de un fenóeno, un cabio, conduce a una función. Observaos, por ejeplo, la inflación a lo largo del iepo en una econoía paricular. Observaos en un ebalse coo el nivel

Más detalles

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz Cuadernillo de Apunes de Maemáicas III M. en C.Luis Ignacio Sandoval Paéz Índice Unidad I vecores. Definición de un vecor en R, R (Inerpreación geomérica), y su n generalización en R.. Operaciones con

Más detalles

Tema 2: Movimiento unidimensional

Tema 2: Movimiento unidimensional Tema 2: Movimiento unidimensional FISICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Vector de posición

Más detalles

CORRIENTE ELÉCTRICA ANÁLISIS GRÁFICO EN EL TIEMPO

CORRIENTE ELÉCTRICA ANÁLISIS GRÁFICO EN EL TIEMPO hp://comunidad.udisrial.edu.co/elecriciyprojecudisrial/ Elecriciy Projec UD 2017 CORRIENTE ELÉCTRICA La corriene es la asa de variación de la carga respeco al iempo [1]. La Unidad de medida es el Ampere

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA

REPÚBLICA BOLIVARIANA DE VENEZUELA EXPERIMENTAL LA VICTORIA REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA EDUCACIÓN SUPERIOR INSTITUTO UNIVERSITARIO EXPERIMENTAL DE TECNOLOGÍA LA VICTORIA LA VICTORIA- ESTADO ARAGUA

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

CINEMÁTICA DE UNA PARTÍCULA. Ing. Ronny Altuve

CINEMÁTICA DE UNA PARTÍCULA. Ing. Ronny Altuve UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA Escuela de Industrial/Computación CINEMÁTICA DE UNA PARTÍCULA Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Junio de 2015 INTRODUCCIÓN MECÁNICA Mecánica

Más detalles

Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA

Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA CONCEPTOS BÁSICOS Se dice que un objeto está en movimiento cuando su posición cambia respecto a un sistema de referencia que se considera

Más detalles