SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY."

Transcripción

1 42 Funciones de vrible complej. Eleonor Ctsigers. 25 Abril FUNCIONES SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. Resumen Se prueb que tod función holomorf es nlític, y recíprocmente. Se desrroll l teorí de Cuchy-Gourst locl en un rectángulo. Se demuestrn el teorem de Cuchy globl, y l fórmul integrl de Cuchy globl pr l función y pr su derivd n-ésim. Se demuestr el principio del módulo máximo y otros teorems que son consecuencis de l Teorí de Cuchy. Se incluyen plicciones l cálculo de integrles impropis en vrible rel. 4. Síntesis de l primer prte. Se suponen conocidos ls siguiente notciones y conceptos, expuestos en l sección 1.1: El plno complejo C. Conceptos de conjunto bierto, cerrdo, cotdo y compcto en C. Ω indic un conjunto bierto. D R (z 0 ) es el disco bierto de centro z 0 y rdio R, D R (z 0 ) es el disco cerrdo. Conceptos de conjunto bierto conexo (región), y de componentes conexs. Ls curvs en son siempre C 1 trozos. Conceptos de curvs homotópics en Ω, y de curvs cerrds homotópics en Ω un punto. Concepto de bierto Ω simplemente conexo. Concepto de sum de curvs, y de curv opuest. Conceptos de límite y continuidd de funciones complejs de vrible complej. Concepto de funciones complejs de clse C r y de clse C. L función exponencil complej. El rgumento de un complejo como conjunto. Teorem de Green pr l integrción de cmpos de clse C 1 en el plno, y sus corolrios Derivción y funciones holomorfs. Los detlles sí como ls demostrciones de los teorems y proposiciones de est subsección pueden encontrrse en l sección 2. Se Ω bierto contenido en C, f : Ω C, z 0 Ω. Definición Función derivble en un punto y función holomorf. f(z) es derivble en z 0 si existe el límite siguiente, llmdo derivd de f en z 0 : f(z) f(z 0 ) lím = f (z 0 ) z z 0 z z 0 f es holomorf en Ω si es derivble en z 0 pr todo z 0 Ω. Notción: Se denot H(Ω) l conjunto de tods ls funciones holomorfs en Ω. Teorem Tod función holomorf es continu.

2 Funciones de vrible complej. Eleonor Ctsigers. 25 Abril Ejemplos de funciones holomorfs y lguns propieddes. ) Si f(z) = k constnte en Ω, entonces f (z) = 0, z Ω. b) Pr todo n nturl n 1, vle (z n ) = nz n 1, z C. c) Pr todo n nturl n 1, vle (z n ) = nz n 1, z C \ {}. d) L sum, el producto y l composición de funciones holomorfs son holomorfs. Vlen ls misms regls de derivción pr l sum, el producto y l composición, que pr funciones de vrible rel (en prticulr l regl de l cden pr derivr l composición de funciones). e) Los polinomios son funciones holomorfs en C. f) El cociente de funciones holomorfs en Ω es un función holomorf en Ω si no se nul el denomindor en Ω. g) e z es un función holomorf en C y (e z ) = e z pr todo complejo z. Teorem Ecuciones de Cuchy-Riemnn f es holomorf en Ω si y solo si u y v son diferencibles en todo punto de Ω y cumplen ls ecuciones de Cuchy- Riemnn siguientes: u x = v y, u y = v x, z Ω Teorem Expresión de l derivd. Si f es holomorf en Ω entonces donde f x = u x + iv x y f y = u y + iv y. f = u x iu y = v y + iv x, f = f x = if y Corolrio Si f H(Ω) tiene módulo constnte en el bierto conexo Ω entonces es constnte en Ω Integrción complej. Ls demostrciones de los teorems y proposiciones de est subsección se encuentrn en l sección 3.1. Definición Dd un función f : Ω C continu, y un curv C 1 trozos : z = z(t), t [, b], se define l integrl de f lo lrgo de como: b b b f(z)dz = f(z(t))ż(t)dt = Re[f(z(t))ż(t)] dt + i Im[f(z(t))ż(t)] dt Ejemplo Si C r es l circunferenci de centro en el punto y rdio r > 0, recorrid un sol vez en sentido ntihorrio, entonces: dz z = 2πi C r Proposición Propieddes de l integrl complej. 1. f(z)dz es independiente de l prmetrizción C1 trozos que se elij, con tl que se preserve l mism orientción de l curv. 2. f(z)dz = f(z)dz f(z)dz = 1 f(z)dz + 2 f(z)dz. 4. kf(z)dz = k f(z)dz si k es un constnte complej independiente de z pr z. 5. (f(z) + g(z))dz = f(z)dz + g(z)dz

3 44 Funciones de vrible complej. Eleonor Ctsigers. 25 Abril Definición Dd un función f : Ω C se llm primitiv de f en Ω, si existe lgun, culquier función holomorf F H(Ω) tl que F (z) = f(z) z Ω. Teorem Regl de Brrow. Si f es continu y si existe F primitiv de f en Ω, entonces: f(z)dz = F(z 2 ) F(z 1 ) pr tod curv Ω con extremo inicil z 1 y extremo finl z 2. En prticulr f(z)dz = 0 pr tod curv cerrd Ω. Ejemplo Se m un número entero, m 1. L función (z ) m+1 /(m+1) es primitiv de (z ) m en C \ {}. Luego, pr tod curv cerrd que no pse por : (z ) m dz = 0 si m 1 En prticulr si m 0 entonces vle pr tod curv cerrd unque pse por. Ejemplo L función 1/(z ) es continu en Ω = C \ {}. Sin embrgo su integrl lo lrgo de l circunferenci C r Ω es 2πi 0. Luego, usndo el contrrrecíproco de l Regl de Brrow, se deduce que no existe primitiv de 1/(z ) en Ω. Corolrio Corolrio de l Regl de Brrow. Si f H(Ω) cumple f (z) = 0 z Ω entonces f es constnte en cd componente conex de Ω. Teorem Teorem fundmentl del cálculo. Se f es continu en Ω. ) Si existe lgun función F definid en Ω que cumple pr tod componente conex R de Ω F(z 1 ) F(z 0 ) = f(z)dz pr lgún punto z 0 R, pr todo z 1 R y pr tod curv Ω que un z 0 con z 1, entonces F es un primitiv de f en Ω (es decir F H(Ω) y F = f). b) Si f(z)dz = 0 pr tod curv cerrd contenid en Ω entonces existe primitiv de f en Ω. Teorem Acotción de integrles. Se Ω un curv culquier C 1 trozos, con longitud L, y prmetrizd con z = z(t), t [, b]. Se f continu en Ω, y se M máx z f(z). Se cumple l siguiente desiguldd: f(z)dz f(z) dz ML donde dz = ż(t) dt = ẋ 2 + ẏ 2 dt = ds, siendo s [0, L] l bscis curvilíne de l curv orientd pr t creciente.

4 Funciones de vrible complej. Eleonor Ctsigers. 25 Abril Convergenci uniforme de series de funciones complejs. Los detlles sí como ls demostrciones de los teorems y proposiciones de est subsección se encuentrn en l sección 3.2. Se K un conjunto no vcío de complejos. Se pr cd nturl n 0 un función complej f n definid pr todo z K (no necesrimente continu). f n (z) = f(z) z K l serie que converge l función f(z) puntulmente en K, es decir, pr cd z fijo en K. (Ver definición de convergenci puntul en ) f n = f (C.U. en K) l serie que converge uniformemente en el conjunto K l función f(z). (Ver definición de convergenci uniforme en ) f n = f (C.A. z K) l serie que converge bsolutmente en el conjunto K l función f(z). Es decir, l serie de los módulos f n(z) converge puntulmente pr cd z K fijo. Luego, l serie dd, sin los módulos, converge tmbién puntulmente ciert función f(z). Not: Si un serie de funciones converge uniformemente en K f, entonces converge puntulmente f(z) pr todo z K fijo. El recíproco es flso. Ejemplo L serie geométric de rzón z definid como zn 2 converge puntulmente 1/(1 z) pr todo z tl que z < 1. Es decir z n = 1 1 z z D 1(0) Sin embrgo l serie zn no converge uniformemente en D 1 (0). Teorem Criterio de l myornte de Weierstrss. Si f n (z) A n, independiente de z, pr todo z K y si A n converge, entonces f n (z) converge uniformemente y bsolutmente en K Ejemplo L serie geométric zn = 1/(1 z) converge uniformemente en culquier conjunto compcto K contenido en D 1 (0). Teorem Convergenci uniforme y continuidd. Si pr todo n 0 l función f n es continu en K, y si f n = f (C.U. en K), entonces f es continu en K. 2 Por convención z 0 = 1 pr todo z, ún busndo de l notción, cundo z = 0.

5 46 Funciones de vrible complej. Eleonor Ctsigers. 25 Abril Teorem Convergenci uniforme e integrción. Si pr todo n 0 l función f n es continu en K, y si f n converge uniformemente en K, entonces ( ) f n (z) dz = pr culquier curv C 1 trozos contenid en K. ( ) f n (z)dz

3. Integración y Convergencia Uniforme.

3. Integración y Convergencia Uniforme. 30 Funciones de vrible complej. Eleonor Ctsigers. 8 Myo 2006. 3. Integrción y Convergenci Uniforme. 3.1. Integrción complej. Definición 3.1.1. Dd un función f : Ω C continu, y un curv C 1 trozos : z =

Más detalles

Integrales de ĺınea complejas

Integrales de ĺınea complejas Tem Integrles de ĺıne complejs. Integrles de líne.. Funciones complejs de vrible rel Un función complej de vrible rel llev socid un función vectoril de vrible rel, por lo que ls definiciones y resultdos

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Universidd Antonio Nriño Mtemátics Especiles Guí N 4: Integrción omplej Grupo de Mtemátics Especiles Resumen Se estudi el concepto de integrción tnto pr funciones de vrible rel y vlor complejo, como pr

Más detalles

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales Tem 8.4: Teorem de Runge. Aproximción de funciones holomorfs por funciones rcionles Fcultd de Ciencis Experimentles, Curso 2008-09 Enrique de Amo, Universidd de Almerí Sbemos que ls funciones holomorfs

Más detalles

Funciones continuas. Mariano Suárez-Alvarez. 4 de junio, Índice

Funciones continuas. Mariano Suárez-Alvarez. 4 de junio, Índice Funciones continus Mrino Suárez-Alvrez 4 de junio, 2013 Índice 1. Funciones continus................... 1 2. Alguns propieddes básics............ 3 3. Los teorems de Weierstrss y Bolzno... 6 4. Funciones

Más detalles

Resumen Segundo Parcial, MM-502

Resumen Segundo Parcial, MM-502 Resumen Segundo Prcil, MM-502 Jose Alvreng 18 de febrero de 2015 1. Integrles de líne ) Definición Se r(t) = f(t)i + g(t)j un función vectoril con dominio D, y L un vector. Decimos que r tiene limite L

Más detalles

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2:

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2: 112 Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. TERCERA PARTE. SINGULARIDADES Y TEORÍA DE LOS RESIDUOS. Resumen Se estudian las singularidades aisladas: evitables, polos y esenciales

Más detalles

Primitivas e Integrales

Primitivas e Integrales Cpítulo 25 Primitivs e Integrles En este cpítulo vmos trbjr con funciones de un vrible. En él estbleceremos un cso prticulr del Teorem Fundmentl del Cálculo Integrl (ver [3] pr el cso generl), con el que

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:

Más detalles

APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elaborados por José Manuel Rodríguez Versión abreviada de Dmitry Yakubovich (2011)

APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elaborados por José Manuel Rodríguez Versión abreviada de Dmitry Yakubovich (2011) APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elbordos por José Mnuel Rodríguez Versión brevid de Dmitry Ykubovich (20). INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Se define el conjunto de

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos 1. Estimr el áre debjo de l gráfic de f(x) = cosx desde x = hst x = π/2, usndo cutro rectángulos de proximción y como puntos muestr, los extremos derechos de los intervlos. Dibuje l curv y los rectángulos

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

Introducir los elementos básicos del cálculo diferencial e integral de funciones numéricas de una variable real.

Introducir los elementos básicos del cálculo diferencial e integral de funciones numéricas de una variable real. 2003 en delnte MA 12-A CALCULO (Curso Anul - 20 U.D.) DISTRIBUCION HORARIA: 4.5 hrs. clses/semn 1.5 hrs. de ejercicios semnles 4.0 hrs. de trbjo personl REQUISITOS: no tiene OBJETIVOS: Introducir los elementos

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 203-204 Contents

Más detalles

Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) "x D

Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) x D INTEGRAL DE RIEMANN 1- Primitivs e integrl indefinid - Integrl de Riemnn 3- Interpretción geométric de ls integrles de Riemnn 4- Propieddes de ls integrles de Riemnn 5- Cmio de vrile en ls integrles de

Más detalles

La Integral Definida

La Integral Definida Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm

Más detalles

4.6. Teorema Fundamental del Cálculo

4.6. Teorema Fundamental del Cálculo Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 07-2 SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl del Cálculo Proposición 4.5. Se un

Más detalles

2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teoremas de punto fijo

2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teoremas de punto fijo 2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teorems de punto fijo Definición 1. Se X un espcio vectoril rel. Se dice que un

Más detalles

SEMANA 8: INTEGRAL DE RIEMANN

SEMANA 8: INTEGRAL DE RIEMANN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Ingenierí Mtemátic Universidd de Chile SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl

Más detalles

2. LAS INTEGRALES DEFINIDA E INDEFINIDA

2. LAS INTEGRALES DEFINIDA E INDEFINIDA 2. LAS INTEGRALES DEFINIDA E INDEFINIDA Ojetivo: El lumno identificrá los conceptos de ls integrles definid e indefinid y los plicrá en el cálculo y otención de integrles Notción sum Se k un numero rel

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

Guía de Definiciones y Teoremas estudiados en el curso de Funciones de Variable Compleja. Prof. Guillermo Calandrini

Guía de Definiciones y Teoremas estudiados en el curso de Funciones de Variable Compleja. Prof. Guillermo Calandrini Guí de Definiciones y Teorems estudidos en el curso de Funciones de Vrible Complej. Prof. Guillermo Clndrini 2do. cutrimestre 26 ... FUNCIONES DE VARIABLE COMPLEJA 2º Cutrimestre 26 RÉGIMEN DE CURSADO

Más detalles

Tema 1.3: Concepto de derivada. Ecuaciones de Cauchy-Riemann. De nición y primeras propiedades de las funciones holomorfas

Tema 1.3: Concepto de derivada. Ecuaciones de Cauchy-Riemann. De nición y primeras propiedades de las funciones holomorfas Tem 1.3: Concepto de derivd. Ecuciones de Cuchy-Riemnn. De nición y primers propieddes de ls funciones holomorfs Fcultd de Ciencis Experimentles, Curso 2008-09 E. de Amo L estructur de cuerpo pr C tiene

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

Integración en el campo complejo

Integración en el campo complejo Cpítulo 4 Integrción en el cmpo complejo Objetivos Relizr integrles de funciones complejs lo lrgo de curvs. Comprender los conceptos de independenci del cmino y homologí. Clculr integrles por medio de

Más detalles

4. Definición: Convergencia uniforme de una sucesión de funciones

4. Definición: Convergencia uniforme de una sucesión de funciones 1. Teorem de l funcion invers Se A un ierto de R N, f : A R m un funcion de clse n (n 1), se A tl que det(jf()) 0. Entonces existe un entorno U de tl que U A tl que: (1). det(jf (x)) 0 pr todo x U (2).

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

Teorema fundamental del Cálculo.

Teorema fundamental del Cálculo. Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.

Más detalles

Funciones de variable compleja

Funciones de variable compleja Funciones de vrible complej Integrles impropis. Mrí Eugeni Torres Universidd Ncionl de Entre Ríos Fcultd de Ingenierí Funciones de Vrible Complej (Bioingenierí, Pln 28) Myo 29 Integrles impropis Alcnce

Más detalles

Integral impropia Al definir la integral definida b

Integral impropia Al definir la integral definida b Mte Univ II, 14 FCE-BUAP CÁLCULO INTEGRAL ALEJANDRO RAMÍREZ PÁRAMO 1. Sucesiones y series Integrl impropi Al definir l integrl definid b f(x)dx, pretendimos que l función f estb definid; demás de cotd,

Más detalles

La Integral Multiplicativa

La Integral Multiplicativa Universidd del Pís Vsco Mtemátic Aplicd y Estdístic L Integrl Multiplictiv Jun-Miguel Grci Extrcto: Se nliz l relción de l integrl multiplictiv de Volterr con l derivd logrítmic y los sistems diferenciles

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0. CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

8. Consecuencias de la Teoría de Cauchy.

8. Consecuencias de la Teoría de Cauchy. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 2006. 77 8. Consecuencias de la Teoría de Cauchy. 8.1. Principio del módulo máximo. Definición 8.1.1. Sea f una función continua en Ω. Se dice

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

Campos Vectoriales. = 2(x2 + y 2 ) = 1. θ = arc cos 2

Campos Vectoriales. = 2(x2 + y 2 ) = 1. θ = arc cos 2 Unidd Integrl de Líne. Integrl de funciones vectoriles Cmpos Vectoriles Denición. Un cmpo vectoril en el plno R es un función F : R R que sign cd vector x D R un único vector F (x) R con F (x) = P (x)i

Más detalles

El Teorema de Arzela-Ascoli Rodrigo Vargas

El Teorema de Arzela-Ascoli Rodrigo Vargas El Teorem de Arzel-Ascoli Rodrigo Vrgs Definición 1. Sen M, N espcios métricos y E un conjunto de plicciones f : M N. El conjunto E se dice equicontinuo en el punto M cundo, pr todo ε > eiste δ > tl que

Más detalles

La integral de Riemann

La integral de Riemann L integrl de Riemnn 1 Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cerrdo y cotdo, es decir [,] con < R, y l definición que dremos de integrl

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

VISUALIZACIÓN DE LA RELACIÓN GEOMÉTRICA ENTRE LOS TEOREMAS FUNDAMENTALES DEL CÁLCULO CON GEOGEBRA

VISUALIZACIÓN DE LA RELACIÓN GEOMÉTRICA ENTRE LOS TEOREMAS FUNDAMENTALES DEL CÁLCULO CON GEOGEBRA VISUALIZACIÓN DE LA RELACIÓN GEOMÉTRICA ENTRE LOS TEOREMAS FUNDAMENTALES DEL CÁLCULO CON GEOGEBRA Doris Espernz Álvrez Quintero Profesor Colegio Los Nogles Bogotá D.C, Colombi dorislv@gmil.com Mrth Cristin

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

Notas de Integral de Riemann-Stieltjes

Notas de Integral de Riemann-Stieltjes Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

PROGRAMA. a) Presentar en forma secuencialmente lógica las materias del Cálculo Integral y el estudio de Series.

PROGRAMA. a) Presentar en forma secuencialmente lógica las materias del Cálculo Integral y el estudio de Series. PONTIFICIA UNIVERSIDAD CATOLICA DE VALPARAISO INSTITUTO DE MATEMATICAS LUISA ABURTO HAGEMAN, Secretri Acdémic del Instituto de Mtemátics Certific este, PROGRAMA Asigntur MAT 223 CALCULO 2 I DATOS GENERALES

Más detalles

7. Teoría de Cauchy global.

7. Teoría de Cauchy global. 68 Funciones de variable compleja. Eleonora Catsigeras. 25 Abril 26. 7. Teoría de Cauchy global. 7.. Teorema de Cauchy global. Sea un abierto no vacío Ω C. Teorema 7... Teorema de Cauchy global. Sea f

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. 5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

Tema 4. Integración compleja

Tema 4. Integración compleja Not: Ls siguientes línes son un resuen de ls cuestiones que se hn trtdo en clse sore este te. El desrrollo de todos los tópicos trtdos está recogido en l iliogrfí recoendd en l Progrción de l signtur.

Más detalles

Funciones Vectoriales

Funciones Vectoriales Pntoj Crhuvilc Cálculo Agend Algebr de Función Algebr de Función Consideremos un prtícul en movimiento sobre un plno. Su posición en un determindo instnte t viene determindo por dos coordends x(t) e y(t)

Más detalles

Anexo 3: Demostraciones

Anexo 3: Demostraciones 170 Mtemátics I : Cálculo integrl en IR Anexo 3: Demostrciones Integrl de Riemnn Demostrción de: Propieddes 264 de l págin 142 Propieddes 264.- Se f: [, b] IR un función cotd. ) Pr tod P P[, b], se verific

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

6. Teoría de Cauchy local.

6. Teoría de Cauchy local. Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 59 6. Teoría de Cauchy local. Dado un abierto Ω C, se denota con R Ω a un rectángulo contenido en Ω. R indica el conjunto de puntos que

Más detalles

geometria proyectiva primer cuatrimestre 2003 Práctica 5

geometria proyectiva primer cuatrimestre 2003 Práctica 5 geometri proyectiv primer cutrimestre 2003 Práctic 5 1. Encontrr un curv prmetrizd α cuy trz se el círculo x 2 + y 2 = 1, que lo recorr en el sentido de ls gujs del reloj y tl que α(0) = (0, 1). 2. Se

Más detalles

TEMA 4. Cálculo integral

TEMA 4. Cálculo integral TEMA 4. Cálculo integrl En este tem considerremos el cálculo integrl, que es un complemento nturl del cálculo diferencil y tiene múltiples plicciones en otrs ciencis. 4.. Introducción l cálculo integrl

Más detalles

Operador nabla. El operador nabla es: = xˆ. Definimos el gradiente de un campo escalar ϕ(x ) por: La divergencia de A se define por

Operador nabla. El operador nabla es: = xˆ. Definimos el gradiente de un campo escalar ϕ(x ) por: La divergencia de A se define por Operdor nbl El operdor nbl es: = xˆ x + ŷ y + ẑ z Definimos el grdiente de un cmpo esclr ϕ(x ) por: ϕ =xˆ ϕ x + ŷ ϕ y + ẑ ϕ z e A (x ) =A x (x )xˆ +A y (x )ŷ +A z (x )ẑ un cmpo vectorl. L divergenci de

Más detalles

6. Curvas en el espacio

6. Curvas en el espacio FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 08-2 Bsdo en el punte del rmo Mtemátics Aplicds, de Felipe Álvrez, Jun Diego Dávil, Roberto Cominetti y Héctor

Más detalles

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e Selectividd CCNN 5. [ANDA] [JUN-A] Se sbe que ls dos gráfics del dibujo corresponden l función f: definid por f() = e y su función derivd f'. ) Indic, rzonndo l respuest, cuál es l gráfic de f y cuál l

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar Funciones de Vrile omplej - lse 7-8/08/01 [ ] ω : I =, R t I ω Donde : ω = u + iv( y) L derivd de ω se define como: [ ] ω : I =, R t I ω Donde : ω = u + iv L integrl definid de funciones ω sore t, se define

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

Integrales sobre caminos

Integrales sobre caminos Cpítulo 9 Integrles sobre cminos Hst hor hemos estudido integrción de funciones sobre conjuntos (con volumen) de R n. En este y los próximos cpítulos discutiremos l integrción de funciones sobre cminos

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

y se dice que dicha aplicación σ = σ(t) es una parametrización de la curva C.

y se dice que dicha aplicación σ = σ(t) es una parametrización de la curva C. Cpítulo I Concepto de curv 1. Curvs regulres Intuitivmente, un curv en R n es un conjunto C R n que puede describirse con un único prámetro que vrí en un intervlo I de l rect rel R. Dich descripción se

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

15. Teoría de los residuos.

15. Teoría de los residuos. 162 Funciones de variable compleja. Eleonora Catsigeras. 12 Julio 2006. 15. Teoría de los residuos. 15.1. Residuos. Definición 15.1.1. Residuo de una función en una singularidad aislada. Dada una función

Más detalles

Cálculo integral y series de funciones

Cálculo integral y series de funciones UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Cálculo integrl y series de funciones Rmón Bruzul Mrisel Domínguez Crcs, Venezuel Febrero 2005

Más detalles

5. Aplicación de la Integral de Riemann

5. Aplicación de la Integral de Riemann Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 8-2 Ingenierí Mtemátic Universidd de Chile SEMANA 9: APLICACIONES DE LA INTEGRAL 5. Aplicción

Más detalles

Integral de ĺınea. Tema Caminos y curvas en IR n.

Integral de ĺınea. Tema Caminos y curvas en IR n. Tem 3 Integrl de ĺıne 3.1 minos y curvs en IR n. Definición 3.1 Se [, b] IR, diremos que α: [, b] IR n es un cmino en IR n si α es continu en [, b]. A los puntos α y αb de IR n los llmremos extremos del

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. CÁLCULO Ingenierí Industril. Curso 9-1. Deprtmento de Mtemátic Aplicd II. Universidd de Sevill. Lección. Métodos numéricos en un vrible. Resumen de l lección..1. Método de Newton pr l resolución de ecuciones.

Más detalles

Capítulo 4 INTEGRACIÓN

Capítulo 4 INTEGRACIÓN pítulo 4 INTEGRAIÓN En el primer curso de álculo, se prendió el concepto de integrl indefinid y definid de funciones reles de vrible rel, y se dedujeron vris propieddes de ls misms: linelidd, monotoní,

Más detalles

TEMA 8. DERIVADAS. Derivadas laterales: Derivada por la derecha: Derivada por la izquierda:

TEMA 8. DERIVADAS. Derivadas laterales: Derivada por la derecha: Derivada por la izquierda: I.E.S. Tierr de Ciudd Rodrio TEMA 8. DERIVADAS Deinición de derivd de un unción en un punto. Consideremos un unción, se un punto de su dominio. Se llm derivd de l unción en el punto se desin por l siuiente

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

Contenidos. Tema 1. Geometría Diferencial. Producto Escalar y Vectorial Producto escalar.

Contenidos. Tema 1. Geometría Diferencial. Producto Escalar y Vectorial Producto escalar. Contenidos Tem 1. Geometrí Diferencil Curvs en el espcio Análisis Vectoril y Estdístico Preliminres Operciones con vectores en R 3 Producto esclr Producto Vectoril Deprtmento de Mtemátic Aplicd E.P.S.

Más detalles

CALCULO VECTORIAL. Campos vectoriales

CALCULO VECTORIAL. Campos vectoriales mpos vectoriles ALULO VETORIAL Un cmpo vectoril o cmpo de vectores es un función que sign un vector un punto del plno o del espcio. Si M y N son funciones de vriles definids en un región R del plno, un

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Mtemático Tem: L integrl Integrl Herrmients digitles de uto-prendizje pr Mtemátics, Grupo de Innovción Didáctic Deprtmento de Mtemátics Universidd de Extremdur Mtemático Tem: L integrl Integrl Mtemático

Más detalles

3.- Derivada e integral de funciones de variable compleja.

3.- Derivada e integral de funciones de variable compleja. 3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.

Más detalles

Teorema de Green. 6.1 Introducción

Teorema de Green. 6.1 Introducción SESIÓN 6 6.1 Introducción En est sesión se revis el primero de los 3 teorem clves del cálculo vectoril: el. Este teorem estblece que un integrl doble sobre un región del plno es igul un integrl de líne

Más detalles

Teoremas de convergencia

Teoremas de convergencia Cpítulo 3 Teorems de convergenci L necesidd de considerr límites de sucesiones o series de funciones es básic en el estudio del nálisis. Por tnto, es nturl preguntrse bjo qué condiciones se tiene que un

Más detalles

Integración en el plano complejo

Integración en el plano complejo Integrción en el plno complejo 4.1. Funciones complejs de vrible rel Un función complej de vrible rel es un función w : [, b] C, donde b. L prte rel y l prte imginri de w son dos funciones reles de vrible

Más detalles

NÚMEROS COMPLEJOS. Números reales Intervalos El conjunto R 2 Discos Números complejos Teorema fundamental del Álgebra

NÚMEROS COMPLEJOS. Números reales Intervalos El conjunto R 2 Discos Números complejos Teorema fundamental del Álgebra NÚMEROS COMPLEJOS Números reles Intervlos El conjunto R 2 Discos Números complejos Teorem fundmentl del Álgebr NÚMEROS REALES Números nturles, enteros rcionles e irrcionles En mtemátics son importntes

Más detalles

Teorema del punto fijo Rodrigo Vargas

Teorema del punto fijo Rodrigo Vargas Teorem del punto fijo Rodrigo Vrgs Definición 1. Un punto fijo de un plicción f : M M es un punto x M tl que f(x) = x. Definición 2. Sen M, N espcios métricos. Un plicción f : M N es un contrcción cundo

Más detalles