Aplica la regla Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aplica la regla Plan de clase (1/3) Escuela: Fecha: Profesor (a):"

Transcripción

1 Aplica la regla Plan de clase (1/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 7 Eje temático: SN y PA Contenido: Construcción de sucesiones de números o de figuras a partir de una regla dada en lenguaje común. Formulación en lenguaje común de expresiones generales que definen las reglas de sucesiones con progresión aritmética o geométrica, de números y de figuras. Intenciones didácticas: Que los alumnos construyan sucesiones de números con progresión aritmética y con progresión geométrica a partir de la regla general o de la regla de la regularidad, respectivamente, dadas en lenguaje común. Consigna: Organizados en equipos realicen lo que se indica a continuación. 1. El siguiente esquema representa lo que realiza una máquina al introducir las posiciones de los primeros cinco términos de una sucesión. ENTRADA Posición 1, 2, 3, 4, 5,... MÁQUINA Regla general: Al número de la posición se multiplica por dos y al resultado se le resta dos. SALIDA Sucesión 0, 2, 4, 6, 8,... a) Aplica la regla que emplea la máquina y determina los términos que están en las posiciones 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 de la sucesión. b) Si se introducen los números 50, 100, 500 y 1000, cuáles son los términos de la sucesión que corresponden a estas posiciones? 2. Otra máquina emplea la regla de regularidad siguiente: Al número anterior se multiplica por 3 para obtener el siguiente término. Si el primer término de la sucesión es 5, determina los primeros 6 términos de la sucesión:

2 Consideraciones previas: Es importante dejar claro que cuando se dice regla general, se hace referencia a la regla que permite determinar cualquier término de una sucesión en función de su posición. Y cuando se dice regla de la regularidad, se refiere al enunciado que indica el patrón de comportamiento de los términos de una sucesión, por ejemplo: En la sucesión: 5, 8, 11, 14, 17, 20, 23, La regla general es 3n + 2, en donde n es el número de la posición. Si deseamos conocer el término de la posición 20, basta sustituir a n por 20 en 3n + 2. La regla de la regularidad de los elementos de la sucesión puede enunciarse de varias maneras, por ejemplo: va de tres en tres, al término anterior se le suma 3 y se obtiene el siguiente, etcétera. Dicho lo anterior, en la sucesión del primer problema, la cual representa una progresión aritmética, se emplea la regla general; mientras que la sucesión del segundo problema que representa una progresión geométrica, se utiliza la regla de la regularidad. La razón por la cual en el segundo problema no se utiliza la regla general es porque su deducción es compleja para este nivel, su representación simbólica es una función exponencial. En el primer problema, se espera que los alumnos no tengan ninguna dificultad para determinar los términos de la sucesión que están en las posiciones10, 11, 12, 13, 14, 15, 16, 17, 18, 19 y 20. Por ejemplo, para el término que está en la posición 10, basta multiplicar este número por 2 y al resultado restarle 2, en este caso, el término que resulta es 18. Lo mismo se debe hacer para calcular los números de la sucesión que están en las posiciones 50, 100, 500 y Es probable que algunos alumnos confundan entre el número de la posición y el término de una sucesión; por lo que hay que estar pendiente de esta situación y en caso de que suceda, vale la pena aclararlo desde un principio y que no sea obstáculo para que los alumnos realicen adecuadamente los cálculos. En el segundo problema se trata de que los alumnos a partir de la regla de regularidad, determinen los primeros seis términos de la sucesión geométrica (5. 15, 45, 135, 405, 1215, ) Para reafirmar los conocimientos adquiridos, se sugiere proponer los siguientes problemas: Si la regla que permite determinar cualquier término de una sucesión es: Al número de la posición del término se multiplica por 2 y el resultado se le suma 3. Encuentra los primeros 10 términos de la sucesión. Una sucesión está determinada por la siguiente regla de regularidad. Al número anterior se multiplica por 3 para obtener el siguiente término. Si el primer término de la sucesión es 10 cuáles son los primeros 5 términos de la sucesión?

3 Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

4 Encuentra la regla Plan de clase (2/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 7 Eje temático: SN y PA Contenido: Construcción de sucesiones de números o de figuras a partir de una regla dada en lenguaje común. Formulación en lenguaje común de expresiones generales que definen las reglas de sucesiones con progresión aritmética o geométrica, de números y de figuras. Intenciones didácticas: Que los alumnos formulen, en lenguaje común, reglas generales que permitan determinar cualquier término de sucesiones con progresión aritmética. Consigna: Organizados en equipos resuelvan el siguiente problema: Cada vez que Claudia resuelve problemas de sucesiones, la estrategia que le funciona es representar la información en una tabla para relacionar el número de la posición de la figura y el número de elementos que la componen; por ejemplo, para la sucesión: La tabla que construyó en su análisis de la sucesión es la siguiente: Número de la posición de la figura Número de cuadrados Diferencia del número de cuadrados entre dos figuras consecutivas Con sus propias palabras, formulen una regla que permita determinar el número de cuadrados de cualquier figura de la sucesión. Regla: Consideraciones previas: Para encontrar la regla de formación de la sucesión es necesario relacionar el número de la posición de la figura con el números de elementos de la misma; por lo que si los alumnos no se les ocurre cómo relacionar el número de la posición con cada término de la sucesión, se les puede plantear la siguiente pregunta: Qué operación hay que hacer con el número de la posición de la figura para obtener el número de cuadrados que la conforman? A partir de esta pregunta, se espera que los alumnos prueben con varios cálculos; por ejemplo, que multipliquen por 5 el número de la posición.

5 Cada vez que den una respuesta verbal, pedirles que verifiquen si se cumple con las otras parejas de números de la tabla, si no es así, que continúen en la búsqueda. Es probable que surjan respuestas verbales que corresponde a la regularidad que encuentran en la sucesión, pero que no es la regla general; por ejemplo: Le va sumando de cuatro en cuatro Le suma cuatro al término anterior para obtener el siguiente término Sumarle cuatro al término En caso de que a nadie se le ocurra probar con multiplicar el número de la posición por la constante aditiva (4), sugerirles que lo hagan y luego que vean cuánto se debe sumar o restar al producto para obtener el número de la sucesión. La regla que permite determinar el número de cuadrados de cualquier figura de la sucesión es: Multiplicar por 4 la posición del término y al resultado sumarle 1. Se pretende que a partir de resolver varios problemas, los alumnos lleguen a darse cuenta que una forma de encontrar la regla general de una sucesión con progresión aritmética, es multiplicar el número de la posición del término por la constante aditiva y analizar cuánto se tiene que sumar o restar al resultado para obtener el término de la sucesión; por lo que es importante no darles la receta. Si el tiempo lo permite, se les puede pedir que a partir de la regla que determinaron, encuentren los términos de la sucesión que están en las posiciones 10, 50, 100 y Para reafirmar los conocimientos adquiridos se podrían plantear los problemas siguientes: Escribe una regla general que permita determinar el número de cuadrados de cualquier figura de cada una de las siguientes sucesiones: a) a) Regla: Regla:

6 Genera una sucesión de números, cuya diferencia entre dos términos consecutivos sea siempre 5. Luego escribe con palabras la regla que permita calcular cualquier término de la sucesión. Para cada caso, escribe la regla general que permite determinar cualquier término de la sucesión. a) 6, 10, 14, 18, 22, 26, Regla: b) 3, 5, 7, 9, 11, 13, Regla: c) 1/12, 4/12, 7/12, 10/12, Regla: Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? _ 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? _ 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

7 Cuál es la regularidad? Plan de clase (3/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 7 Eje temático: SN y PA Contenido: Construcción de sucesiones de números o de figuras a partir de una regla dada en lenguaje común. Formulación en lenguaje común de expresiones generales que definen las reglas de sucesiones con progresión aritmética o geométrica, de números y de figuras. Intenciones didácticas: Que los alumnos formulen, en lenguaje común, la regla de la regularidad o del patrón de comportamiento de los elementos de una sucesión con progresión geométrica. Consigna. En equipo, completen las siguiente sucesiones y escriban con palabras una regla que defina la regularidad de cada una. Regla: Regla: Consideraciones previas: Las sucesiones que se plantean en este plan son de progresión geométrica. En el primer caso se trata de una sucesión con progresión geométrica creciente porque su razón es mayor que 1, es decir, 2. En el análisis que hagan los alumnos de esta sucesión, se espera que puedan darse cuenta que cada término de la sucesión se obtiene multiplicando por 2 al anterior, excepto el primer término. Las reglas generales de este tipo de sucesiones son exponenciales; por lo que es difícil que los alumnos de este nivel puedan obtenerla por los conocimientos necesarios para tal fin. Por ejemplo, para esta sucesión, la regla general para determinar cualquier término de la sucesión es: Dos elevado al número de la posición del término; es decir, (a n = 2 n ). Como puede verse, esta expresión es exponencial.

8 En este tipo de sucesiones, es suficiente que los alumnos lleguen a identificar el comportamiento de los términos pero no a la regla general; se espera que los alumnos lleguen a escribir la regla que corresponde a la regularidad o patrón de comportamiento entre los términos como: Cada término se obtiene multiplicando por 2 al término anterior. Con respecto a la segunda sucesión, se espera que los alumnos determinen que la razón de crecimiento es ½, es decir, que cada término de la sucesión se obtiene multiplicando el término anterior por ½; por lo que la regla que corresponde a la regularidad o patrón de comportamiento entre los términos es la siguiente: Cada término se obtiene multiplicando por 1/2 al término anterior. Para reafirmar los conocimientos adquiridos se podrían plantear los problemas siguientes: siguientes sucesiones. Encuentra el octavo término de cada una de las a) 3, 9, 27, 81, 243, b) 3, 6, 12, 24, 48,... c) 1, 0.1, 0.01, 0.001,... d) 1,1/4,1/16,1/64,... e) 2, 6, 18, 54, 162,... f) 5, 5/3, 5/9, 5/27, g) 54, 36, 24, 16, El cuarto término de una sucesión con progresión geométrica es 40. Si cada término se obtiene multiplicando al anterior por 2, encuentra el primer, segundo y tercer términos de la sucesión. Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? _ 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase?

9 _ 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

Plan de clase (1/3) Profr. (a):

Plan de clase (1/3) Profr. (a): Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 8 Eje temático: SN y PA Contenido: 8.4.1 Construcción de sucesiones de números enteros a partir de las reglas algebraicas que las definen.

Más detalles

Productos elevados Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Productos elevados Plan de clase (1/3) Escuela: Fecha: Profesor (a): Productos elevados Plan de clase (1/) Escuela: Fecha: Profesor (a): Curso: Matemáticas Secundaria Eje temático: SN y PA Contenido: 8.1. Cálculo de productos y cocientes de potencias enteras positivas de

Más detalles

Escalas con enteros Plan de clase (1/2) Escuela: Fecha: Profr. (a):

Escalas con enteros Plan de clase (1/2) Escuela: Fecha: Profr. (a): Escalas con enteros Plan de clase (1/2) Escuela: Fecha: Profr. (a): Curso: Matemáticas 7 secundaria Eje temático: MI Contenido: 7.2.7 Identificación y resolución de situaciones de proporcionalidad directa

Más detalles

Cálculos rápidos Plan de clase (1/4) Escuela: Fecha: Profr. (a):

Cálculos rápidos Plan de clase (1/4) Escuela: Fecha: Profr. (a): Cálculos rápidos Plan de clase (1/4) Escuela: Fecha: Profr. (a): Curso: Matemáticas 2 Secundaria Eje temático: MI Contenido: 8.1.6 Resolución de problemas diversos relacionados con el porcentaje, como

Más detalles

Con las letras se hace lo mismo Plan de clase (1/4) Escuela: Fecha: Profr(a).

Con las letras se hace lo mismo Plan de clase (1/4) Escuela: Fecha: Profr(a). Con las letras se hace lo mismo Plan de clase (1/4) Escuela: Fecha: Profr(a). Curso: Matemáticas 2 secundaria Eje temático: SN y PA Contenido: 8.2.2 Resolución de problemas que impliquen adición y sustracción

Más detalles

Primos y compuestos Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Primos y compuestos Plan de clase (1/2) Escuela: Fecha: Profesor (a): Primos y compuestos Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 1 secundaria Eje temático: SNyPA Contenido: 7.2.1 Formulación de los criterios de divisibilidad entre 2, 3 y 5.

Más detalles

Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA

Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA Contenido: 9.2.1 Uso de ecuaciones cuadráticas para modelar situaciones y resolverlas

Más detalles

Representación algebraica Plan de clase (1/8) Escuela: Fecha: Profr. (a):

Representación algebraica Plan de clase (1/8) Escuela: Fecha: Profr. (a): Representación algebraica Plan de clase (1/8) Escuela: Fecha: Profr. (a): Curso: Matemáticas 2 Secundaria Eje temático: SN y PA Contenido: 8.3.2 Resolución de problemas multiplicativos que impliquen el

Más detalles

Móviles Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Móviles Plan de clase (1/3) Escuela: Fecha: Profesor (a): Móviles Plan de clase (1/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 3 Secundaria Eje temático: MI Contenido: 9.1.5 Representación tabular y algebraica de relaciones de variación cuadrática, identificadas

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Plan de clase (1/3) Escuela: Fecha: Profesor (a): Plan de clase (1/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 9 Eje temático: SN y PA Contenido: 9.5.1 Resolución de problemas que implican el uso de ecuaciones lineales, cuadráticas o sistemas

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Plan de clase (1/3) Escuela: Fecha: Profesor (a): Plan de clase (1/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 7 Eje temático: SN y PA Contenido: 7.5.2 Uso de la notación científica para realizar cálculos en los que intervienen cantidades muy

Más detalles

En busca de resultados Plan de clase (1/4) Escuela: Fecha: Profesor (a):

En busca de resultados Plan de clase (1/4) Escuela: Fecha: Profesor (a): En busca de resultados Plan de clase (1/4) Escuela: Fecha: Profesor (a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA Contenido: 9.1.1 Resolución de problemas que impliquen el uso de ecuaciones

Más detalles

Hablemos de cisternas Plan de clase (1/3) Escuela: Fecha: Prof. (a):

Hablemos de cisternas Plan de clase (1/3) Escuela: Fecha: Prof. (a): Hablemos de cisternas Plan de clase (1/3) Escuela: Fecha: Prof. (a): Curso: Matemáticas 8 Eje temático: MI Contenido: 8.3.6. Representación algebraica y análisis de una relación de proporcionalidad y=

Más detalles

b) El cuadrado de un número es igual a ese número menos ¼. Qué número es?

b) El cuadrado de un número es igual a ese número menos ¼. Qué número es? Plan de clase (1/3) Escuela: Fecha: Profr(a).: Curso: Matemáticas 9 Eje temático: SNyPA Contenido: 9.3.1 Resolución de problemas que implican el uso de ecuaciones cuadráticas. Aplicación de la fórmula

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 7 Eje temático: SN y PA Contenido 7.3.2 Resolución de problemas que impliquen la división de números decimales en distintos contextos,

Más detalles

Hay jerarquías! Plan de clase (1/4) Escuela: Fecha: Profr.(a):

Hay jerarquías! Plan de clase (1/4) Escuela: Fecha: Profr.(a): Hay jerarquías! Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 2. Secundaria Eje temático: SN y PA Contenido: 8.3.1 Resolución de cálculos numéricos que implican usar la jerarquía de

Más detalles

Qué movimiento hizo? Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Qué movimiento hizo? Plan de clase (1/3) Escuela: Fecha: Profr. (a): Qué movimiento hizo? Plan de clase (1/3) Escuela: _ Fecha: Profr. (a): Curso: Matemáticas 3 Secundaria Eje temático: FEyM Contenido: 9.2.3 Construcción de diseños que combinan la simetría axial y central,

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Plan de clase (1/3) Escuela: Fecha: Profesor (a): Plan de clase (1/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 8 Eje temático: SN y PA Contenido: 8.5.2 Representación gráfica de un sistema de ecuaciones 2 x 2 con coeficientes enteros. Reconocimiento

Más detalles

De manteles largos Plan de clase (1/2) Escuela: Fecha: Profesor (a):

De manteles largos Plan de clase (1/2) Escuela: Fecha: Profesor (a): De manteles largos Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 1 Secundaria Eje temático: SNyPA Contenido: 7.1.5 Explicación del significado de fórmulas geométricas, al considerar

Más detalles

No importa la letra Plan de clase (1/3) Escuela: Fecha: Prof. (a): Contenido: Explicitación y uso del Teorema de Pitágoras.

No importa la letra Plan de clase (1/3) Escuela: Fecha: Prof. (a): Contenido: Explicitación y uso del Teorema de Pitágoras. No importa la letra Plan de clase (1/3) Escuela: Fecha: Prof. (a): Curso: Matemáticas 3 Secundaria Eje temático: FEM Contenido: 9.2.5 Explicitación y uso del Teorema de Pitágoras. Intención didáctica:

Más detalles

Qué se obtiene? Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Qué se obtiene? Plan de clase (1/2) Escuela: Fecha: Profesor (a): Qué se obtiene? Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 3 ecundaria Eje temático: MI Contenido: 9.1.6 Conocimiento de la escala de la probabilidad. nálisis de las características

Más detalles

Dónde está la incógnita? Plan de clase (1/2) Escuela: Fecha: Profr. (a):

Dónde está la incógnita? Plan de clase (1/2) Escuela: Fecha: Profr. (a): Dónde está la incógnita? Plan de clase (1/2) Escuela: Fecha: Profr. (a): Curso: Matemáticas 1 secundaria Eje temático: FEyM Contenido: 7.3.5 Resolución de problemas que impliquen calcular el perímetro

Más detalles

Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a):

Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a): Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a): Curso: Matemáticas 3 Secundaria Eje temático: FEyM Contenido: 9.1.2 Construcción de figuras congruentes o semejantes (triángulos, cuadrados

Más detalles

Triángulos que se forman Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Triángulos que se forman Plan de clase (1/3) Escuela: Fecha: Profr. (a): Triángulos que se forman Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 2 Secundaria Eje temático: FEyM Contenido: 8.3.3 Formulación de una regla que permita calcular la suma de los

Más detalles

Qué tipo de variación? Plan de clase (1/3) Escuela: Fecha: Prof. (a):

Qué tipo de variación? Plan de clase (1/3) Escuela: Fecha: Prof. (a): Qué tipo de variación? Plan de clase (1/3) Escuela: Fecha: Prof. (a): Curso: Matemáticas 2 secundaria Eje temático: MI Contenido: 8.2.6 Identificación y resolución de situaciones de proporcionalidad inversa

Más detalles

Caminos rectos Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Caminos rectos Plan de clase (1/3) Escuela: Fecha: Profesor (a): Caminos rectos Plan de clase (/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas Secundaria Eje temático: SN y PA Contenido: 7..2 Representación de números fraccionarios y decimales en la recta numérica

Más detalles

Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Plan de clase (1/2) Escuela: Fecha: Profesor (a): Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 7 Eje temático: FE y M Contenido: 7.5.5 Uso de las fórmulas para calcular el perímetro y el área del círculo en la resolución de problemas.

Más detalles

Cómo se expresa? Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Cómo se expresa? Plan de clase (1/2) Escuela: Fecha: Profesor (a): Cómo se expresa? Plan de clase (/) Escuela: Fecha: Profesor (a): Curso: Matemáticas secundaria Eje temático: SN PA Contenido: 8.. Resolución de problemas que impliquen adición sustracción de monomios.

Más detalles

Dados y monedas Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Dados y monedas Plan de clase (1/3) Escuela: Fecha: Profr. (a): Dados y monedas Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 2 secundaria Eje temático: MI Contenido: 8.2.7 Realización de experimentos aleatorios y registro de resultados para un

Más detalles

Cuánto aumenta? Plan de clase 1/4. Escuela: Fecha: Prof.(a):

Cuánto aumenta? Plan de clase 1/4. Escuela: Fecha: Prof.(a): Cuánto aumenta? Plan de clase 1/4 Escuela: Fecha: Prof.(a): Curso: Matemáticas 2 Secundaria Eje temático: FE y M Contenido: 8.2.5 Estimación y cálculo del volumen de cubos, prismas y pirámides rectos o

Más detalles

Qué modelos! Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Qué modelos! Plan de clase (1/3) Escuela: Fecha: Profr. (a): Qué odelos! Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Mateáticas 2 secundaria Eje teático: SNyPA Contenido: 8.2.3 Identificación y búsqueda de expresiones algebraicas equivalentes a partir

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profesor (a).

Plan de clase (1/3) Escuela: Fecha: Profesor (a). Plan de clase (1/3) Escuela: Fecha: Profesor (a). Curso: Matemáticas 7 Eje temático: SN y PA Contenido: 7.5.4 Obtención de la regla general (en lenguaje algebraico) de una sucesión con progresión aritmética.

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profr(a).:

Plan de clase (1/3) Escuela: Fecha: Profr(a).: Plan de clase (1/3) Escuela: Fecha: Profr(a).: Curso: Matemáticas 8 Eje temático: FEyM Contenido: 8.2.4 Justificación de las fórmulas para calcular el volumen de cubos, prismas y pirámides rectos. Intenciones

Más detalles

Los Boletos de la Rifa Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Los Boletos de la Rifa Plan de clase (1/2) Escuela: Fecha: Profesor (a): Los Boletos de la Rifa Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 1 Secundaria Eje temático: MI Contenido: 7.1.8 Resolución de problemas de reparto proporcional. Intenciones didácticas:

Más detalles

Las Adivinanzas Plan de clase (1/5) Escuela: Fecha: Profr. (a).:

Las Adivinanzas Plan de clase (1/5) Escuela: Fecha: Profr. (a).: Las Adivinanzas Plan de clase (1/5) Escuela: Fecha: Profr. (a).: Curso: Matemáticas 1 secundaria Eje temático: SNyPA Contenido: 7.3.3 Resolución de problemas que impliquen el planteamiento y resolución

Más detalles

Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Plan de clase (1/2) Escuela: Fecha: Profesor (a): Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 2 Secundaria Eje temático: MI Contenido: 8.1.9 Análisis de casos en los que la media aritmética o mediana son útiles para comparar dos

Más detalles

Plan de Clase (1/3) Caja Largo Ancho Alto Volumen A 3 dm 2 dm 4 dm 24 dm 3 B 6 dm 2 dm 4 dm C 3 dm 6 dm 4 dm D 6 dm 4 dm 8 dm E 9 dm 6 dm 12 dm

Plan de Clase (1/3) Caja Largo Ancho Alto Volumen A 3 dm 2 dm 4 dm 24 dm 3 B 6 dm 2 dm 4 dm C 3 dm 6 dm 4 dm D 6 dm 4 dm 8 dm E 9 dm 6 dm 12 dm Plan de Clase (1/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 7 Eje temático: MI Contenido: 7.5.6 Resolución de problemas de proporcionalidad múltiple. Intenciones didácticas: Que los alumnos Identifiquen

Más detalles

Solera y ángulo Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Solera y ángulo Plan de clase (1/3) Escuela: Fecha: Profesor (a): Solera y ángulo Plan de clase (1/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 1 Secundaria Eje temático: SNyPA Contenido: 7.1.1 Conversión de fracciones decimales y no decimales a su escritura decimal

Más detalles

Cuál es el valor de la ordenada del punto cuya abscisa es 1 (x = 1)? Cuál es la constante de proporcionalidad?

Cuál es el valor de la ordenada del punto cuya abscisa es 1 (x = 1)? Cuál es la constante de proporcionalidad? La misma para dos Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 3 Secundaria Eje temático: MI Contenido: 9.1.4 Análisis de representaciones (gráficas, tabulares y algebraicas) que

Más detalles

Plan de clase (1/2) Escuela: Fecha: Profesor: (a):

Plan de clase (1/2) Escuela: Fecha: Profesor: (a): Plan de clase (1/2) Escuela: Fecha: Profesor: (a): Curso: Matemáticas 9 Eje temático: FE y M Contenido: 9.5.2 Análisis de las secciones que se obtienen al realizar cortes a un cilindro o a un cono recto.

Más detalles

u n i d a d Sucesiones. Progresiones aritméticas y geométricas

u n i d a d Sucesiones. Progresiones aritméticas y geométricas u n i d a d Sucesiones. Progresiones aritméticas y geométricas Sucesiones Una sucesión es un conjunto ordenado de números u objetos, llamados términos. Cada término de la sucesión se representa con una

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: atemáticas 7 Eje temático: FE y Contenido: 7.4.2 Construcción de círculos a partir de diferentes datos (el radio, una cuerda, tres puntos no alineados,

Más detalles

Plan de clase (1/4) b) Cuál es la probabilidad de que en ambas caras aparezca el mismo número?

Plan de clase (1/4) b) Cuál es la probabilidad de que en ambas caras aparezca el mismo número? Plan de clase (1/4) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: MI Contenido. 9.3.7 Cálculo de la probabilidad de ocurrencia de dos eventos independientes (regla del producto). Intenciones

Más detalles

Coincidencias Plan de clase (1/2) Escuela: Fecha: Profr. (a):

Coincidencias Plan de clase (1/2) Escuela: Fecha: Profr. (a): Coincidencias Plan de clase (1/2) Escuela: Fecha: Profr. (a): Curso: Matemáticas 1 secundaria Eje temático: SN y PA Contenido: 7.2.2 Resolución de problemas que impliquen el cálculo del máximo común divisor

Más detalles

SUCESIONES Y PROGRESIONES 3º ESO MATEMÁTICAS

SUCESIONES Y PROGRESIONES 3º ESO MATEMÁTICAS SUCESIONES Y PROGRESIONES 3º ESO MATEMÁTICAS Una sucesión es un conjunto de números ordenados que siguen alguna regla. Cada uno de estos números se llama término y se representa por a n, donde n es el

Más detalles

Qué característica tienen? Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Qué característica tienen? Plan de clase (1/3) Escuela: Fecha: Profr. (a): Qué característica tienen? Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 2 Secundaria Eje temático: FEyM Contenido: 8.3.4 Análisis y explicitación de las características de los polígonos

Más detalles

Plan de clase (1/4) Escuela: Fecha: Profesor (a).

Plan de clase (1/4) Escuela: Fecha: Profesor (a). Plan de clase (1/4) Intenciones didácticas: Que los alumnos expresen en forma de potencia multiplicaciones de factores iguales al resolver problemas. Consigna: Organizados en equipos y sin utilizar calculadora,

Más detalles

SUCESIONES Y SERIES MATEMÁTICAS

SUCESIONES Y SERIES MATEMÁTICAS SUCESIONES Y SERIES MATEMÁTICAS SUCESION.- Es un conjunto de número ordenados de modo que uno es el primer término, otro es el segundo término, otro el tercero y así sucesivamente. Por ejemplo: a) 1,2,3,

Más detalles

Cuadrados y círculos Plan de clase (1/5) Escuela: Fecha: Profesor (a):

Cuadrados y círculos Plan de clase (1/5) Escuela: Fecha: Profesor (a): Cuadrados y círculos Plan de clase (1/5) Escuela: Fecha: Profesor (a): Curso: Matemáticas 2 Secundaria Eje temático: FE y M Contenido: 8.1.5 Resolución de problemas que impliquen el cálculo de áreas de

Más detalles

Plan de clase (1/3) a) Los siguientes triángulos son semejantes. Calcula la medida del lado que falta en cada uno, sin medir:

Plan de clase (1/3) a) Los siguientes triángulos son semejantes. Calcula la medida del lado que falta en cada uno, sin medir: Plan de clase (1/3) Escuela: Fecha: Prof. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: 9.3.3 Resolución de problemas geométricos mediante el teorema de Tales. Intención didáctica. Que

Más detalles

Cuáles son las condiciones? Plan de clase (1/6) Escuela: Fecha: Profr. (a):

Cuáles son las condiciones? Plan de clase (1/6) Escuela: Fecha: Profr. (a): Cuáles son las condiciones? Plan de clase (1/6) Escuela: Fecha: Profr. (a): Curso: Matemáticas 3 secundaria Eje temático: FEyM Contenido: 9.1.3 Explicitación de los criterios de congruencia y semejanza

Más detalles

Partido a la mitad Plan de clase (1/2) Escuela: Fecha: Profr. (a):

Partido a la mitad Plan de clase (1/2) Escuela: Fecha: Profr. (a): Partido a la mitad Plan de clase (1/2) Escuela: Fecha: Profr. (a): Curso: Matemáticas 1 secundaria Eje temático: FEyM Contenido: 7.2.5 Resolución de problemas geométricos que impliquen el uso de las propiedades

Más detalles

3. A partir de las características observadas en las figuras construidas, completar la tabla siguiente:

3. A partir de las características observadas en las figuras construidas, completar la tabla siguiente: Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 7 Eje temático: FE y M Contenido: 7.3.4 Construcción de polígonos regulares a partir de distintas informaciones (medida de un lado, del

Más detalles

Para el carpintero Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Para el carpintero Plan de clase (1/2) Escuela: Fecha: Profesor (a): Para el carpintero Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 1 Secundaria Eje temático: FEyM Contenido: 7.1.6 Trazo de triángulos y cuadriláteros mediante el uso del juego de

Más detalles

La feria Plan de clase (1/2) Escuela: Fecha: Profesor (a):

La feria Plan de clase (1/2) Escuela: Fecha: Profesor (a): La feria Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 2 Secundaria Eje temático: MI Contenido: 8.1.8 Comparación de dos o más eventos a partir de sus resultados posibles, usando

Más detalles

Plan de clase (1/5) Escuela: Fecha: Profr. (a):

Plan de clase (1/5) Escuela: Fecha: Profr. (a): Plan de clase (1/5) Escuela: Fecha: Profr. (a): Curso: Matemáticas 8 Eje temático: SN y PA Contenido: 8.4.2 Resolución de problemas que impliquen el planteamiento y la resolución de ecuaciones de primer

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M.

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: 9.4.2 Análisis de las características de los cuerpos que se generan al girar sobre un eje, un triángulo

Más detalles

SECRETARÍA DE EDUCACIÓN DE TAMAULIPAS SUBSECRETARÍA DE PLANEACIÓN DIRECCIÓN DE EVALUACIÓN CONTENIDOS RELEVANTES PARA EVALUACIÓN 5 BIMESTRE

SECRETARÍA DE EDUCACIÓN DE TAMAULIPAS SUBSECRETARÍA DE PLANEACIÓN DIRECCIÓN DE EVALUACIÓN CONTENIDOS RELEVANTES PARA EVALUACIÓN 5 BIMESTRE SECRETARÍA DE EDUCACIÓN DE TAMAULIPAS SUBSECRETARÍA DE PLANEACIÓN DIRECCIÓN DE EVALUACIÓN CONTENIDOS RELEVANTES PARA EVALUACIÓN 5 BIMESTRE Tabla de Contenidos Tercer Grado Matemáticas Bloque Eje Temático

Más detalles

PLAN DE CLASE (1/4) Escuela: Fecha: Profesor (a):

PLAN DE CLASE (1/4) Escuela: Fecha: Profesor (a): PLAN DE CLASE (1/4) Escuela: Fecha: Profesor (a): Curso: Matemáticas 8 Eje temático: F E y M Contenido: 8.5.4 Cálculo de la medida de ángulos inscritos y centrales, así como de arcos, el área de sectores

Más detalles

Regla general: Al número de la posición se multiplica por dos y al resultado se le resta dos. Sucesión

Regla general: Al número de la posición se multiplica por dos y al resultado se le resta dos. Sucesión ACTIVIDAD 2 Organizados en equipos realicen lo que se indica a continuación. 1. El siguiente esquema representa lo que realiza una máquina al introducir las posiciones de los primeros cinco términos de

Más detalles

Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Plan de clase (1/2) Escuela: Fecha: Profesor (a): Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 8 Eje temático: F E y M Contenido: 8.5.3 Construcción de figuras simétricas respecto de un eje, análisis y explicitación de las propiedades

Más detalles

Tema # 2 Objetivo 1. Análisis de las propiedades de la rotación y de la traslación de figuras. Actividad # 1

Tema # 2 Objetivo 1. Análisis de las propiedades de la rotación y de la traslación de figuras. Actividad # 1 Tema # 2 Objetivo 1. Análisis de las propiedades de la rotación y de la traslación de figuras. Actividad # 1 Intenciones didácticas: Que los alumnos comprendan que al trazar el simétrico de una figura,

Más detalles

COLEGIO ALEXANDER DUL

COLEGIO ALEXANDER DUL PRIMER BIMESTRE CICLO ESCOLAR 2016 2017 MATEMÁTICAS ESTRUCTURA DEL APRENDIZAJES ESPERADOS PROGRAMA REALIZACIÓN 1-8 TEMA 1 2. Tema: Problemas aditivos. Tema: Problemas multiplicativos. impliquen sumar o

Más detalles

Plan de clase (1/7) Escuela: Fecha: Profesor (a):

Plan de clase (1/7) Escuela: Fecha: Profesor (a): Plan de clase (1/7) Escuela: Fecha: Profesor (a): Curso: Matemáticas 8 Eje temático: SN y PA Contenido: 8.5.1 Resolución de problemas que impliquen el planteamiento y la resolución de un sistema de ecuaciones

Más detalles

Cuadrado 3. Cuadrado 1 Cuadrado 2. 1 x + 1 4(x+1)= (x+1) 2 =(x+1)(x+1)=x 2 +x+x+1=x 2 +2x a x + a (x + a) 2 = (x + a)(x + a) =

Cuadrado 3. Cuadrado 1 Cuadrado 2. 1 x + 1 4(x+1)= (x+1) 2 =(x+1)(x+1)=x 2 +x+x+1=x 2 +2x a x + a (x + a) 2 = (x + a)(x + a) = Conocimientos y habilidades: Efectuar o simplificar cálculos con epresiones algebraicas tales como: ( + a) 2; ( + a) ( + b); ( + a) ( a). Factorizar epresiones algebraicas tales como: 2 + 2a + a 2 ; a

Más detalles

Plan de clase (1/2) Escuela: Fecha: Profesor (a): Contenido: Análisis de la regla de tres, empleando valores enteros o fraccionarios.

Plan de clase (1/2) Escuela: Fecha: Profesor (a): Contenido: Análisis de la regla de tres, empleando valores enteros o fraccionarios. Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 7 Eje temático: MI Contenido: 7.4.4 Análisis de la regla de tres, empleando valores enteros o fraccionarios. Intenciones didácticas:

Más detalles

Sucesiones. Progresiones

Sucesiones. Progresiones 230 11 PROGRAMACIÓN DIDÁCTICA Sucesiones. Progresiones INTRODUCCIÓN En este tema se estudian las sucesiones, estableciendo su definición y deteniéndose en el estudio de las progresiones aritméticas y geométricas.

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Plan de clase (1/3) Intenciones didácticas: Que los alumnos obtengan un valor aproximado de π al establecer la razón entre Con base en esto justifiquen la fórmula para calcular el perímetro del círculo

Más detalles

Relaciones de recurrencia

Relaciones de recurrencia MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Relaciones de recurrencia F. Informática. UPM 1 / 7 Relaciones de recurrencia Relaciones de recurrencia Definición Una relación de recurrencia

Más detalles

UNIDAD 1 NUMEROS COMPLEJOS

UNIDAD 1 NUMEROS COMPLEJOS UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 8 Eje temático: FE y M Contenido: 8.4.3 Caracterización de ángulos inscritos y centrales en un círculo y análisis de sus relaciones. Intención

Más detalles

Sucesiones y Progresiones. Guía de Ejercicios

Sucesiones y Progresiones. Guía de Ejercicios . Módulo 5 Sucesiones y Progresiones Guía de Ejercicios Índice Unidad I. Sucesiones Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 06 Unidad II. Sumatorias de sucesiones Ejercicios Resueltos...

Más detalles

E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S

E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S EJERCICIO : Halla el término general de cada una de las siguientes sucesiones: a), 8 7, 5, 5,... b) 7, 7, 5 7, 7,... c),5, 0, 7 5,... a), 8

Más detalles

UNIDAD 1: ESTUDIEMOS SUCECIONES ARITMETICAS Y GEOMETRICAS.

UNIDAD 1: ESTUDIEMOS SUCECIONES ARITMETICAS Y GEOMETRICAS. UNIDAD 1: ESTUDIEMOS SUCECIONES ARITMETICAS Y GEOMETRICAS. Sucesiones Una sucesión es un conjunto de números que son imagen de una función, cuyo dominio son, (normalmente), los enteros positivos, comenzando

Más detalles

=22; r = 7 ( ) + (2 + 99) + (3 + 98) +... ( ) + (n - 1)r Cuyo resultado será: a 20. Calcular: S = a 1, a 2, a 3

=22; r = 7 ( ) + (2 + 99) + (3 + 98) +... ( ) + (n - 1)r Cuyo resultado será: a 20. Calcular: S = a 1, a 2, a 3 0 (5 0 ) = 5 050 Progresión aritmética Aquí una historia: - Término enésimo ( ) Se dice que cuando el gran matemático Gauss aún era pequeño e iba al colegio su maestro tenía la costumbre de poner problemas

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemáticas Financieras 1 Sesión No. 2 Nombre: Fundamentos Matemáticos Contextualización En el área de las inversiones, algunos fundamentos matemáticos son una parte muy importante, ya que los intereses

Más detalles

GBG ejerciciosyexamenes.com 1

GBG ejerciciosyexamenes.com 1 PROGRESIONES PROGRESIONES ARITMÉTICAS 1. Hallar los términos que se indican de las siguientes progresiones aritméticas: a) El término 20 en: 1, 6, 11, 16... b) El término 6 en: 3, 7, 11, 15... c) El 12

Más detalles

Vitrales en puertas Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Vitrales en puertas Plan de clase (1/3) Escuela: Fecha: Profr. (a): Vitrales en puertas Plan de clase (1/3) Escuela: Fecha: Profr. (a): urso: Matemáticas 2 Secundaria Eje temático: FE y M ontenido: 8.1.3 Identificación de relaciones entre los ángulos que se forman entre

Más detalles

Problemas resueltos. - Términos equidistantes. 2. Hallar el décimo tercer término en la P.G.:

Problemas resueltos. - Términos equidistantes. 2. Hallar el décimo tercer término en la P.G.: S Progresión geométrica Progresión geométrica Decimos que una sucesión de números están en progresión geométrica (P.G. cuando cada uno de ellos es igual al anterior multiplicado por una cantidad constante

Más detalles

Modalidad virtual. Matemática

Modalidad virtual. Matemática EXPRESIONES ALGEBRAICAS, FÓRMULAS, ECUACIONES 1 En matemática es habitual trabajar con relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se denominan incógnitas o

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 8 Eje temático: FE y M Contenido: 8.3.5 Relación entre el decímetro cúbico y el litro. Deducción de otras equivalencias entre unidades

Más detalles

Sucesiones. Concepto de sucesión. Determinación de una sucesión: Por el término general. Por una ley de recurrencia. a 1, a 2, a 3,...

Sucesiones. Concepto de sucesión. Determinación de una sucesión: Por el término general. Por una ley de recurrencia. a 1, a 2, a 3,... Concepto de sucesión Sucesiones Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro. a 1, a 2, a 3,..., a n 3, 6, 9,..., 3n Los números a 1, a 2, a 3,...; se llaman términos

Más detalles

EL LENGUAJE ALGEBRAICO

EL LENGUAJE ALGEBRAICO LENGUAJE ALGEBRAICO Guillermo Ruiz Varela - PT EL LENGUAJE ALGEBRAICO Hasta ahora siempre hemos trabajado en matemáticas con números y signos, es lo que se llama lenguaje numérico. A partir de ahora, vamos

Más detalles

Guía 1: PATRONES DE REPETICIÓN

Guía 1: PATRONES DE REPETICIÓN Guía : PATRONES DE REPETICIÓN Un patrón es una sucesión de elementos (orales, gestuales, gráficos, de comportamiento, numéricos) que se construye siguiendo una regla, ya sea de repetición o de recurrencia.

Más detalles

Bloque 4. El propósito de este bloque es introducir el estudio de los números. Números con signo y sus operaciones

Bloque 4. El propósito de este bloque es introducir el estudio de los números. Números con signo y sus operaciones Bloque 4 Números con signo y sus operaciones El propósito de este bloque es introducir el estudio de los números con signo. En diversas situaciones de la vida cotidiana se usan los números negativos, y

Más detalles

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel ,

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel , COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 MATEMATICAS TERCER GRADO SECCIÓN SECUNDARIA TRABAJO PARA REALIZAR EN CLASE CURSO 2015-2016

Más detalles

Estrategias didácticas para la resolución de problemas en Matemática de I y II ciclos

Estrategias didácticas para la resolución de problemas en Matemática de I y II ciclos Estrategias didácticas para la resolución de problemas en Matemática de I y II ciclos Segundo Ciclo, Relaciones y Álgebra Abril, 2014 En el Segundo ciclo se busca la profundización en los aprendizajes

Más detalles

1. Conocimientos previos. 2. Sucesión Progresiones aritméticas. 1 CONOCIMIENTOS PREVIOS. 1

1. Conocimientos previos. 2. Sucesión Progresiones aritméticas. 1 CONOCIMIENTOS PREVIOS. 1 CONOCIMIENTOS PREVIOS. Límites.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Repasar las operaciones básicas con expresiones algebraicas. Repasar

Más detalles

EVALUACIÓN DE CONTENIDOS

EVALUACIÓN DE CONTENIDOS PRUEBA B 3 EVALUACIÓN DE CONTENIDOS Nombre: Curso: Fecha: 1 Expresa en lenguaje algebraico. a) Ángel es 15 centímetros más alto que Andrea. b) En la clase de Pedro hay el doble de chicas que de chicos.

Más detalles

Frisos desplazados Plan de clase (1/2) Escuela: Fecha: Profesor (a).

Frisos desplazados Plan de clase (1/2) Escuela: Fecha: Profesor (a). Frisos desplazados Plan de clase (1/2) Escuela: Fecha: Profesor (a). Curso: Matemáticas 3 Secundaria Eje temático: FEyM Contenido: 9.2.2 Análisis de las propiedades de la rotación y de la traslación de

Más detalles

La suma de n términos de una progresión. aritmética es: Sn= El producto de n términos de una progresión. geométrica es: P = ( a a ).

La suma de n términos de una progresión. aritmética es: Sn= El producto de n términos de una progresión. geométrica es: P = ( a a ). Progresiones INTRODUCCIÓN Las sucesiones aparecen en diversos campos, tales como la medicina (evolución de un cultivo bacteriano), genética (distribución de los caracteres), informática (utilización de

Más detalles

EJEMPLO OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: FECHA:

EJEMPLO OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: FECHA: OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: ECHA: SUCESIÓN Una sucesión es un conjunto ordenado de números reales: a 1, a 2, a 3, a 4 Cada uno de los números que forman la sucesión es un

Más detalles

Sucesiones. Límite de una sucesión.

Sucesiones. Límite de una sucesión. 1 CONOCIMIENTOS PREVIOS. 1 Sucesiones. Límite de una sucesión. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Repasar las operaciones básicas

Más detalles

UNIDAD 7: PROGRESIONES OBJETIVOS

UNIDAD 7: PROGRESIONES OBJETIVOS UNIDAD 7: PROGRESIONES Reconocer sucesiones y deducir su regla de formación en los casos en que sea posible. Obtener distintos términos en sucesiones recurrentes. Distinguir si una sucesión es una progresión

Más detalles

Criterios de evaluación. Tema 1. Matemáticas. 5º Primaria

Criterios de evaluación. Tema 1. Matemáticas. 5º Primaria Criterios de evaluación. Tema 1. Matemáticas. 5º Primaria Leer, escribir, descomponer y comparar números de hasta nueve cifras Aproximar números naturales a distintos órdenes. Utilizar las aproximaciones

Más detalles

Bloque 4 1. Números con signo y sus operaciones

Bloque 4 1. Números con signo y sus operaciones Bloque 4 1 Números con signo y sus operaciones 1 Este manuscrito es un extracto del libro Del Sentido Numérico al Pensamiento Prealgebraico, de T. Cedillo y V. Cruz (en proceso de edición) Bloque 4 Números

Más detalles

Águilas Azarosas Plan de clase (1/2) Escuela: Fecha: Profr. (a):

Águilas Azarosas Plan de clase (1/2) Escuela: Fecha: Profr. (a): Águilas Azarosas Plan de clase (1/2) Escuela: Fecha: Profr. (a): Curso: Matemáticas 1 secundaria Eje temático: MI Contenido: 7.3.7 Anticipación de resultados de una experiencia aleatoria, su verificación

Más detalles

Progresiones. obra incluyó el estudio de las progresiones aritméticas, que no trató Euclides cuatrocientos años antes.

Progresiones. obra incluyó el estudio de las progresiones aritméticas, que no trató Euclides cuatrocientos años antes. Progresiones Las progresiones geométricas fueron tratadas por primera vez, de forma rigurosa, por Euclides, matemático griego del siglo iii a.c. Fue el fundador y primer director de la gran escuela matemática

Más detalles

Ejercicios de sucesiones.

Ejercicios de sucesiones. Ejercicios de sucesiones. 1.- Cuando escribimos a n queremos decir: término n-ésimo o toda la sucesión? Qué diferencia hay entre a n y (a n )? a).-cuando escribimos a n nos referimos a término enésimo.

Más detalles

MULTIPLICACIÓN DE POTENCIAS DE IGUAL BASE

MULTIPLICACIÓN DE POTENCIAS DE IGUAL BASE MULTIPLICACIÓN DE POTENCIAS DE IGUAL BASE Ejemplos 1. Resuelva la operación 9. 1 Solución En esta operación hay tres factores. Dos de esos factores tienen la misma base que es base. y el tercer factor

Más detalles